organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

(2Z)-1-(5-Hy­dr­oxy-3-methyl-1-phenyl-1H-pyrazol-4-yl)-3-(4-methyl­anilino)­but-2-en-1-one

aChemistry Department, Faculty of Science, King Abdulaziz University, PO Box 80203, Jeddah, Saudi Arabia, bThe Center of Excellence for Advanced Materials Research, King Abdulaziz University, Jeddah, PO Box 80203, Saudi Arabia, and cDepartment of Chemistry, University of Malaya, 50603 Kuala Lumpur, Malaysia
*Correspondence e-mail: edward.tiekink@gmail.com

(Received 12 February 2012; accepted 14 February 2012; online 24 February 2012)

A twist is evident in the title compound, C21H21N3O2, the dihedral angle between the terminal six-membered rings being 29.46 (10)°; the linked five- and six-membered rings are coplanar [1.30 (11)°]. The carbonyl O atom accepts intra­molecular hydrogen bonds from the adjacent hy­droxy and amine groups. The three-dimensional crystal packing is achieved through C—H⋯π inter­actions.

Related literature

For background to the synthesis, see: Gelin et al. (1983[Gelin, S., Chantegrel, B. & Nadi, A. I. (1983). J. Org. Chem. 48, 4078-4082.]); Bendaas et al. (1999[Bendaas, A., Hamdi, M. & Sellier, N. (1999). J. Heterocycl. Chem. 36, 1291-1294.]). For the structures of the 4-chloro and 4-meth­oxy analogues, see: Asiri, Al-Youbi, Alamry et al. (2011[Asiri, A. M., Al-Youbi, A. O., Alamry, K. A., Faidallah, H. M., Ng, S. W. & Tiekink, E. R. T. (2011). Acta Cryst. E67, o2157.]); Asiri, Al-Youbi, Faidallah et al. (2011[Asiri, A. M., Al-Youbi, A. O., Faidallah, H. M., Ng, S. W. & Tiekink, E. R. T. (2011). Acta Cryst. E67, o2353.]).

[Scheme 1]

Experimental

Crystal data
  • C21H21N3O2

  • Mr = 347.41

  • Monoclinic, P 21 /c

  • a = 14.9041 (8) Å

  • b = 6.9222 (4) Å

  • c = 17.1921 (8) Å

  • β = 96.190 (5)°

  • V = 1763.35 (16) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.09 mm−1

  • T = 100 K

  • 0.40 × 0.02 × 0.02 mm

Data collection
  • Agilent SuperNova Dual diffractometer with an Atlas detector

  • Absorption correction: multi-scan (CrysAlis PRO; Agilent, 2011[Agilent (2011). CrysAlis PRO. Agilent Technologies, Yarnton, Oxfordshire, England.]) Tmin = 0.967, Tmax = 0.998

  • 12780 measured reflections

  • 4055 independent reflections

  • 2455 reflections with I > 2σ(I)

  • Rint = 0.076

Refinement
  • R[F2 > 2σ(F2)] = 0.060

  • wR(F2) = 0.164

  • S = 1.02

  • 4055 reflections

  • 246 parameters

  • 2 restraints

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.24 e Å−3

  • Δρmin = −0.29 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

Cg1 and Cg2 are the centroids of the C1–C6 and C15–C20 rings, respectively.

D—H⋯A D—H H⋯A DA D—H⋯A
O1—H1⋯O2 0.86 (1) 1.71 (2) 2.509 (2) 155 (4)
N3—H2⋯O2 0.89 (1) 1.91 (2) 2.671 (3) 143 (2)
C14—H14ACg1i 0.98 2.69 3.475 (2) 138
C14—H14CCg1ii 0.98 2.66 3.563 (2) 153
C17—H17⋯Cg2iii 0.95 2.58 3.424 (2) 148
Symmetry codes: (i) [-x+1, y-{\script{1\over 2}}, -z+{\script{1\over 2}}]; (ii) [-x+1, y+{\script{1\over 2}}, -z+{\script{1\over 2}}]; (iii) [-x, y-{\script{1\over 2}}], [-z+{\script{1\over 2}}].

Data collection: CrysAlis PRO (Agilent, 2011[Agilent (2011). CrysAlis PRO. Agilent Technologies, Yarnton, Oxfordshire, England.]); cell refinement: CrysAlis PRO; data reduction: CrysAlis PRO; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: ORTEP-3 (Farrugia, 1997[Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.]) and DIAMOND (Brandenburg, 2006[Brandenburg, K. (2006). DIAMOND. Crystal Impact GbR, Bonn, Germany.]); software used to prepare material for publication: publCIF (Westrip, 2010[Westrip, S. P. (2010). J. Appl. Cryst. 43, 920-925.]).

Supporting information


Comment top

In connection with recent structural studies (Asiri, Al-Youbi, Alamry et al., 2011; (Asiri, Al-Youbi, Faidallah et al., 2011) of compounds prepared by reactions between pyrazoles and aniline derivatives following literature procedures (Gelin et al., 1983; Bendaas et al., 1999), the title compound, 3-(4-toluidino)-1-(5-hydroxy-3-methyl-1-phenyl-1H-pyrazol-4-yl)but-2-en-1-one (I) was investigated.

While in (I), Fig. 1, the linked five- and six-membered rings are co-planar, forming a dihedral angle of 1.30 (11)°, there is a twist about the N3—C15 bond as seen in the value of the C13—N3—C15—C16 torsion angle of 146.9 (2)°; the dihedral angle between the terminal six-membered rings is 29.46 (10)°. The carbonyl-O2 atom accepts hydrogen bonds from the adjacent hydroxyl- and amine-groups, Table 1. These groups do not participate in intermolecular interactions. Rather, molecules are consolidated in the three-dimensional crystal packing by C—H···π interactions, Fig. 2 and Table 1.

Related literature top

For background to the synthesis, see: Gelin et al. (1983); Bendaas et al. (1999). For the structures of the 4-chloro and 4-methoxy analogues, see: Asiri, Al-Youbi, Alamry et al. (2011); Asiri, Al-Youbi, Faidallah et al. (2011).

Experimental top

A solution of 4-acetoacetyl-5-hydroxy-3-methyl-1-phenylpyrazole (0.005 mol) and p-toluidine (0.005 mol) in ethanol (25 ml) was refluxed for 2 h. The precipitate, obtained from the hot solution, was collected, washed with methanol and recrystallized from its ethanol-benzene solution as yellow needles; M.pt: 419–421 K.

Refinement top

Carbon-bound H-atoms were placed in calculated positions [C—H = 0.95 to 0.98 Å, Uiso(H) = 1.2 to 1.5Ueq(C)] and were included in the refinement in the riding model approximation. The N—H and O—H-atoms were located in a difference Fourier map, and were refined with distance restraints of N—H = 0.88±0.01 and O—H = 0.84±0.01 Å, respectively; their Uiso values were refined. Owing to poor agreement, the (3 6 3) reflection was omitted from the final cycles of refinement.

Computing details top

Data collection: CrysAlis PRO (Agilent, 2011); cell refinement: CrysAlis PRO (Agilent, 2011); data reduction: CrysAlis PRO (Agilent, 2011); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 (Farrugia, 1997) and DIAMOND (Brandenburg, 2006); software used to prepare material for publication: publCIF (Westrip, 2010).

Figures top
[Figure 1] Fig. 1. The molecular structure of (I) showing the atom-labelling scheme and displacement ellipsoids at the 50% probability level.
[Figure 2] Fig. 2. A view in projection down the a axis of the unit-cell contents of (I). The C—H···π interactions are shown as purple dashed lines.
(2Z)-1-(5-Hydroxy-3-methyl-1-phenyl-1H-pyrazol-4-yl)- 3-(4-methylanilino)but-2-en-1-one top
Crystal data top
C21H21N3O2F(000) = 736
Mr = 347.41Dx = 1.309 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ybcCell parameters from 2466 reflections
a = 14.9041 (8) Åθ = 2.4–27.5°
b = 6.9222 (4) ŵ = 0.09 mm1
c = 17.1921 (8) ÅT = 100 K
β = 96.190 (5)°Needle, yellow
V = 1763.35 (16) Å30.40 × 0.02 × 0.02 mm
Z = 4
Data collection top
Agilent SuperNova Dual
diffractometer with an Atlas detector
4055 independent reflections
Radiation source: SuperNova (Mo) X-ray Source2455 reflections with I > 2σ(I)
Mirror monochromatorRint = 0.076
Detector resolution: 10.4041 pixels mm-1θmax = 27.6°, θmin = 2.4°
ω scanh = 1819
Absorption correction: multi-scan
(CrysAlis PRO; Agilent, 2011)
k = 88
Tmin = 0.967, Tmax = 0.998l = 2218
12780 measured reflections
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.060Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.164H atoms treated by a mixture of independent and constrained refinement
S = 1.02 w = 1/[σ2(Fo2) + (0.065P)2 + 0.099P]
where P = (Fo2 + 2Fc2)/3
4055 reflections(Δ/σ)max = 0.001
246 parametersΔρmax = 0.24 e Å3
2 restraintsΔρmin = 0.29 e Å3
Crystal data top
C21H21N3O2V = 1763.35 (16) Å3
Mr = 347.41Z = 4
Monoclinic, P21/cMo Kα radiation
a = 14.9041 (8) ŵ = 0.09 mm1
b = 6.9222 (4) ÅT = 100 K
c = 17.1921 (8) Å0.40 × 0.02 × 0.02 mm
β = 96.190 (5)°
Data collection top
Agilent SuperNova Dual
diffractometer with an Atlas detector
4055 independent reflections
Absorption correction: multi-scan
(CrysAlis PRO; Agilent, 2011)
2455 reflections with I > 2σ(I)
Tmin = 0.967, Tmax = 0.998Rint = 0.076
12780 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0602 restraints
wR(F2) = 0.164H atoms treated by a mixture of independent and constrained refinement
S = 1.02Δρmax = 0.24 e Å3
4055 reflectionsΔρmin = 0.29 e Å3
246 parameters
Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
O10.50304 (12)0.0677 (2)0.39888 (10)0.0275 (4)
O20.37132 (11)0.0655 (2)0.29485 (9)0.0244 (4)
N10.64285 (13)0.0686 (2)0.34357 (10)0.0192 (4)
N20.67114 (13)0.0711 (2)0.26853 (10)0.0229 (4)
N30.23145 (13)0.0409 (3)0.18426 (11)0.0215 (4)
C10.70881 (15)0.0615 (3)0.40934 (12)0.0186 (5)
C20.68417 (16)0.0546 (3)0.48530 (13)0.0231 (5)
H2A0.62230.05410.49410.028*
C30.75125 (17)0.0486 (3)0.54797 (13)0.0256 (5)
H30.73470.04310.59980.031*
C40.84175 (17)0.0503 (3)0.53633 (13)0.0257 (5)
H40.88700.04650.57970.031*
C50.86567 (17)0.0577 (3)0.46044 (13)0.0245 (5)
H50.92760.06000.45190.029*
C60.79969 (15)0.0618 (3)0.39707 (13)0.0227 (5)
H60.81650.06490.34530.027*
C70.55156 (15)0.0701 (3)0.33854 (13)0.0193 (5)
C80.51783 (15)0.0733 (3)0.25960 (12)0.0187 (5)
C90.59647 (16)0.0733 (3)0.21952 (13)0.0215 (5)
C100.60368 (17)0.0740 (3)0.13342 (13)0.0302 (6)
H10A0.66740.07930.12430.045*
H10B0.57210.18710.10960.045*
H10C0.57630.04390.11000.045*
C110.42170 (16)0.0712 (3)0.23786 (13)0.0207 (5)
C120.38378 (16)0.0712 (3)0.15824 (12)0.0205 (5)
H120.42450.08310.11960.025*
C130.29317 (16)0.0556 (3)0.13212 (12)0.0200 (5)
C140.26394 (16)0.0493 (3)0.04612 (12)0.0229 (5)
H14A0.22090.05660.03480.034*
H14B0.31670.02830.01770.034*
H14C0.23510.17200.02960.034*
C150.13787 (16)0.0037 (3)0.17314 (13)0.0209 (5)
C160.10125 (15)0.1006 (3)0.23183 (12)0.0225 (5)
H160.14000.14840.27510.027*
C170.00953 (16)0.1349 (3)0.22785 (13)0.0231 (5)
H170.01380.20330.26920.028*
C180.04959 (16)0.0719 (3)0.16470 (13)0.0227 (5)
C190.01234 (16)0.0307 (3)0.10594 (13)0.0229 (5)
H190.05090.07460.06180.028*
C200.07922 (16)0.0702 (3)0.11024 (12)0.0227 (5)
H200.10220.14320.07000.027*
C210.14922 (16)0.1052 (3)0.16189 (14)0.0295 (6)
H210.17950.05150.11320.044*
H21B0.17210.04160.20670.044*
H21C0.16120.24420.16390.044*
H10.4494 (12)0.069 (5)0.375 (2)0.102 (15)*
H20.2582 (15)0.034 (3)0.2329 (7)0.031 (7)*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
O10.0212 (10)0.0405 (10)0.0217 (9)0.0003 (8)0.0060 (8)0.0002 (7)
O20.0207 (9)0.0336 (9)0.0199 (8)0.0008 (7)0.0060 (7)0.0005 (6)
N10.0186 (10)0.0209 (9)0.0184 (9)0.0007 (7)0.0039 (8)0.0005 (7)
N20.0219 (11)0.0283 (10)0.0190 (10)0.0012 (8)0.0048 (8)0.0007 (7)
N30.0180 (11)0.0307 (11)0.0159 (10)0.0003 (8)0.0016 (8)0.0020 (8)
C10.0204 (12)0.0138 (10)0.0216 (11)0.0004 (9)0.0024 (9)0.0017 (8)
C20.0235 (13)0.0237 (11)0.0224 (12)0.0006 (10)0.0039 (10)0.0017 (9)
C30.0288 (14)0.0278 (12)0.0203 (12)0.0009 (10)0.0028 (10)0.0003 (9)
C40.0277 (14)0.0269 (12)0.0213 (12)0.0019 (10)0.0024 (10)0.0005 (9)
C50.0224 (13)0.0253 (12)0.0256 (12)0.0007 (10)0.0022 (10)0.0008 (9)
C60.0218 (13)0.0208 (11)0.0254 (12)0.0010 (9)0.0029 (10)0.0005 (9)
C70.0182 (12)0.0175 (10)0.0230 (12)0.0001 (9)0.0058 (9)0.0005 (8)
C80.0184 (12)0.0172 (10)0.0203 (11)0.0008 (9)0.0018 (9)0.0009 (8)
C90.0218 (13)0.0209 (11)0.0218 (12)0.0001 (9)0.0022 (10)0.0009 (8)
C100.0248 (14)0.0447 (15)0.0214 (12)0.0012 (11)0.0038 (11)0.0016 (10)
C110.0219 (13)0.0164 (10)0.0244 (12)0.0002 (9)0.0046 (10)0.0007 (8)
C120.0216 (12)0.0208 (11)0.0196 (11)0.0004 (9)0.0047 (9)0.0009 (8)
C130.0230 (13)0.0171 (10)0.0202 (11)0.0002 (9)0.0043 (10)0.0013 (8)
C140.0249 (13)0.0261 (12)0.0187 (11)0.0002 (10)0.0067 (10)0.0002 (9)
C150.0195 (13)0.0227 (11)0.0205 (11)0.0008 (9)0.0026 (9)0.0036 (8)
C160.0218 (13)0.0237 (12)0.0214 (12)0.0037 (9)0.0000 (10)0.0018 (8)
C170.0250 (13)0.0234 (11)0.0219 (12)0.0010 (10)0.0070 (10)0.0026 (9)
C180.0226 (13)0.0217 (11)0.0239 (12)0.0032 (9)0.0026 (10)0.0041 (9)
C190.0232 (13)0.0270 (12)0.0176 (11)0.0038 (9)0.0022 (10)0.0030 (8)
C200.0247 (13)0.0249 (11)0.0185 (11)0.0027 (10)0.0029 (10)0.0019 (9)
C210.0260 (14)0.0347 (13)0.0279 (13)0.0015 (11)0.0038 (11)0.0017 (10)
Geometric parameters (Å, º) top
O1—C71.327 (3)C10—H10A0.9800
O1—H10.858 (10)C10—H10B0.9800
O2—C111.298 (3)C10—H10C0.9800
N1—C71.354 (3)C11—C121.423 (3)
N1—N21.400 (2)C12—C131.381 (3)
N1—C11.417 (3)C12—H120.9500
N2—C91.322 (3)C13—C141.496 (3)
N3—C131.356 (3)C14—H14A0.9800
N3—C151.411 (3)C14—H14B0.9800
N3—H20.888 (10)C14—H14C0.9800
C1—C61.393 (3)C15—C201.393 (3)
C1—C21.395 (3)C15—C161.398 (3)
C2—C31.389 (3)C16—C171.382 (3)
C2—H2A0.9500C16—H160.9500
C3—C41.385 (3)C17—C181.393 (3)
C3—H30.9500C17—H170.9500
C4—C51.390 (3)C18—C191.398 (3)
C4—H40.9500C18—C211.498 (3)
C5—C61.387 (3)C19—C201.386 (3)
C5—H50.9500C19—H190.9500
C6—H60.9500C20—H200.9500
C7—C81.396 (3)C21—H210.9800
C8—C91.422 (3)C21—H21B0.9800
C8—C111.441 (3)C21—H21C0.9800
C9—C101.496 (3)
C7—O1—H1101 (3)H10B—C10—H10C109.5
C7—N1—N2109.97 (18)O2—C11—C12121.6 (2)
C7—N1—C1131.08 (18)O2—C11—C8116.39 (19)
N2—N1—C1118.94 (18)C12—C11—C8122.0 (2)
C9—N2—N1105.72 (18)C13—C12—C11125.9 (2)
C13—N3—C15130.94 (19)C13—C12—H12117.1
C13—N3—H2111.0 (16)C11—C12—H12117.1
C15—N3—H2117.1 (16)N3—C13—C12120.0 (2)
C6—C1—C2120.0 (2)N3—C13—C14120.3 (2)
C6—C1—N1118.77 (19)C12—C13—C14119.61 (19)
C2—C1—N1121.2 (2)C13—C14—H14A109.5
C3—C2—C1119.1 (2)C13—C14—H14B109.5
C3—C2—H2A120.4H14A—C14—H14B109.5
C1—C2—H2A120.4C13—C14—H14C109.5
C4—C3—C2121.2 (2)H14A—C14—H14C109.5
C4—C3—H3119.4H14B—C14—H14C109.5
C2—C3—H3119.4C20—C15—C16118.0 (2)
C3—C4—C5119.2 (2)C20—C15—N3125.0 (2)
C3—C4—H4120.4C16—C15—N3117.0 (2)
C5—C4—H4120.4C17—C16—C15120.9 (2)
C6—C5—C4120.4 (2)C17—C16—H16119.5
C6—C5—H5119.8C15—C16—H16119.5
C4—C5—H5119.8C16—C17—C18121.6 (2)
C5—C6—C1120.0 (2)C16—C17—H17119.2
C5—C6—H6120.0C18—C17—H17119.2
C1—C6—H6120.0C17—C18—C19117.1 (2)
O1—C7—N1125.3 (2)C17—C18—C21121.2 (2)
O1—C7—C8126.2 (2)C19—C18—C21121.6 (2)
N1—C7—C8108.45 (19)C20—C19—C18121.8 (2)
C7—C8—C9104.0 (2)C20—C19—H19119.1
C7—C8—C11119.7 (2)C18—C19—H19119.1
C9—C8—C11136.3 (2)C19—C20—C15120.5 (2)
N2—C9—C8111.87 (19)C19—C20—H20119.7
N2—C9—C10119.0 (2)C15—C20—H20119.7
C8—C9—C10129.1 (2)C18—C21—H21109.5
C9—C10—H10A109.5C18—C21—H21B109.5
C9—C10—H10B109.5H21—C21—H21B109.5
H10A—C10—H10B109.5C18—C21—H21C109.5
C9—C10—H10C109.5H21—C21—H21C109.5
H10A—C10—H10C109.5H21B—C21—H21C109.5
C7—N1—N2—C90.2 (2)C11—C8—C9—N2178.4 (2)
C1—N1—N2—C9178.60 (16)C7—C8—C9—C10179.3 (2)
C7—N1—C1—C6180.0 (2)C11—C8—C9—C101.1 (4)
N2—N1—C1—C61.5 (3)C7—C8—C11—O20.3 (3)
C7—N1—C1—C20.1 (3)C9—C8—C11—O2177.8 (2)
N2—N1—C1—C2178.62 (17)C7—C8—C11—C12179.00 (18)
C6—C1—C2—C30.1 (3)C9—C8—C11—C121.0 (4)
N1—C1—C2—C3179.74 (17)O2—C11—C12—C133.5 (3)
C1—C2—C3—C40.4 (3)C8—C11—C12—C13175.14 (19)
C2—C3—C4—C50.2 (3)C15—N3—C13—C12172.5 (2)
C3—C4—C5—C60.5 (3)C15—N3—C13—C145.7 (3)
C4—C5—C6—C11.0 (3)C11—C12—C13—N30.9 (3)
C2—C1—C6—C50.8 (3)C11—C12—C13—C14177.35 (18)
N1—C1—C6—C5179.08 (17)C13—N3—C15—C2036.1 (3)
N2—N1—C7—O1179.73 (18)C13—N3—C15—C16146.9 (2)
C1—N1—C7—O11.1 (3)C20—C15—C16—C170.6 (3)
N2—N1—C7—C80.1 (2)N3—C15—C16—C17176.58 (19)
C1—N1—C7—C8178.55 (18)C15—C16—C17—C181.6 (3)
O1—C7—C8—C9179.57 (19)C16—C17—C18—C191.0 (3)
N1—C7—C8—C90.1 (2)C16—C17—C18—C21178.35 (19)
O1—C7—C8—C111.0 (3)C17—C18—C19—C200.6 (3)
N1—C7—C8—C11178.65 (17)C21—C18—C19—C20176.7 (2)
N1—N2—C9—C80.3 (2)C18—C19—C20—C151.7 (3)
N1—N2—C9—C10179.30 (17)C16—C15—C20—C191.0 (3)
C7—C8—C9—N20.2 (2)N3—C15—C20—C19177.94 (19)
Hydrogen-bond geometry (Å, º) top
Cg1 and Cg2 are the centroids of the C1–C6 and C15–C20 rings, respectively.
D—H···AD—HH···AD···AD—H···A
O1—H1···O20.86 (1)1.71 (2)2.509 (2)155 (4)
N3—H2···O20.89 (1)1.91 (2)2.671 (3)143 (2)
C14—H14A···Cg2i0.982.693.475 (2)138
C14—H14C···Cg2ii0.982.663.563 (2)153
C17—H17···Cg3iii0.952.583.424 (2)148
Symmetry codes: (i) x+1, y1/2, z+1/2; (ii) x+1, y+1/2, z+1/2; (iii) x, y1/2, z+1/2.

Experimental details

Crystal data
Chemical formulaC21H21N3O2
Mr347.41
Crystal system, space groupMonoclinic, P21/c
Temperature (K)100
a, b, c (Å)14.9041 (8), 6.9222 (4), 17.1921 (8)
β (°) 96.190 (5)
V3)1763.35 (16)
Z4
Radiation typeMo Kα
µ (mm1)0.09
Crystal size (mm)0.40 × 0.02 × 0.02
Data collection
DiffractometerAgilent SuperNova Dual
diffractometer with an Atlas detector
Absorption correctionMulti-scan
(CrysAlis PRO; Agilent, 2011)
Tmin, Tmax0.967, 0.998
No. of measured, independent and
observed [I > 2σ(I)] reflections
12780, 4055, 2455
Rint0.076
(sin θ/λ)max1)0.651
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.060, 0.164, 1.02
No. of reflections4055
No. of parameters246
No. of restraints2
H-atom treatmentH atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å3)0.24, 0.29

Computer programs: CrysAlis PRO (Agilent, 2011), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), ORTEP-3 (Farrugia, 1997) and DIAMOND (Brandenburg, 2006), publCIF (Westrip, 2010).

Hydrogen-bond geometry (Å, º) top
Cg1 and Cg2 are the centroids of the C1–C6 and C15–C20 rings, respectively.
D—H···AD—HH···AD···AD—H···A
O1—H1···O20.86 (1)1.71 (2)2.509 (2)155 (4)
N3—H2···O20.89 (1)1.91 (2)2.671 (3)143 (2)
C14—H14A···Cg2i0.982.693.475 (2)138
C14—H14C···Cg2ii0.982.663.563 (2)153
C17—H17···Cg3iii0.952.583.424 (2)148
Symmetry codes: (i) x+1, y1/2, z+1/2; (ii) x+1, y+1/2, z+1/2; (iii) x, y1/2, z+1/2.
 

Footnotes

Additional correspondence author, e-mail: aasiri2@kau.edu.sa.

Acknowledgements

The authors are thankful to the Center of Excellence for Advanced Materials Research and the Chemistry Department of King Abdulaziz University for providing research facilities. We also thank the Ministry of Higher Education (Malaysia) for funding structural studies through the High-Impact Research scheme (UM.C/HIR/MOHE/SC/12).

References

First citationAgilent (2011). CrysAlis PRO. Agilent Technologies, Yarnton, Oxfordshire, England.  Google Scholar
First citationAsiri, A. M., Al-Youbi, A. O., Alamry, K. A., Faidallah, H. M., Ng, S. W. & Tiekink, E. R. T. (2011). Acta Cryst. E67, o2157.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationAsiri, A. M., Al-Youbi, A. O., Faidallah, H. M., Ng, S. W. & Tiekink, E. R. T. (2011). Acta Cryst. E67, o2353.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationBendaas, A., Hamdi, M. & Sellier, N. (1999). J. Heterocycl. Chem. 36, 1291–1294.  CrossRef CAS Google Scholar
First citationBrandenburg, K. (2006). DIAMOND. Crystal Impact GbR, Bonn, Germany.  Google Scholar
First citationFarrugia, L. J. (1997). J. Appl. Cryst. 30, 565.  CrossRef IUCr Journals Google Scholar
First citationGelin, S., Chantegrel, B. & Nadi, A. I. (1983). J. Org. Chem. 48, 4078–4082.  CrossRef CAS Web of Science Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationWestrip, S. P. (2010). J. Appl. Cryst. 43, 920–925.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds