organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 68| Part 3| March 2012| Pages o885-o886

2-(Morpholin-4-yl)-6-(1H-pyrrol-1-yl)­pyridine-3,5-dicarbo­nitrile

aSchool of Chemistry, University of Southampton, Highfield, Southampton SO17 1BJ, England, bChemistry and Environmental Science Division, School of Science, Manchester Metropolitan University, England, cDepartment of Chemistry, Faculty of Science, Sohag University, Sohag, Egypt, and dDepartment of Physics, Faculty of Sciences, Erciyes University, 38039 Kayseri, Turkey
*Correspondence e-mail: akkurt@erciyes.edu.tr

(Received 22 February 2012; accepted 23 February 2012; online 29 February 2012)

In the title compound, C15H13N5O, the morpholine ring adopts a chair conformation. The dihedral angle between the pyrrole ring and the pyridine ring is 28.93 (14)°. In the crystal, the molecules are linked by C—H⋯O hydrogen bonds occur, and aromatic weak ππ stacking [centroid–centroid separation = 4.178 (2) Å] and C—H⋯π inter­actions consolidate the packing.

Related literature

For the biological activity of pyridine derivatives, see: Altomare et al. (2000[Altomare, C., Cellamare, S., Summo, L., Fossa, P., Mosti, L. & Carotti, A. (2000). Bioorg. Med. Chem. 8, 909-916.]); Basavaraja et al. (2010[Basavaraja, H. S., Jayadevaiah, K. V., Mumtaz, M. H., Vi-Kumar, M. M. J. & Basavaraj, P. (2010). J. Pharm. Sci. Res. 2, 5-12.]); Cho et al. (2001[Cho, S. Y., Kang, S. K., Kim, S. S., Cheon, H. G., Choi, J. K. & Yum, E. K. (2001). Bull. Korean Chem. Soc. 22, 1217-1223.]); Goda et al. (2004[Goda, F. E., Abdel-Aziz, A. A.-M. & Attef, O. A. (2004). Bioorg. Med. Chem. 12, 1845-1852.]); Hosni & Abdualla (2008[Hosni, H. M. & Abdualla, M. M. (2008). Acta Pharm. 58, 175-186.]); Kovala-Demertzi et al. (2007[Kovala-Demertzi, D., Boccarelli, A. M. A., Demertzis, M. A. & Coluccia, M. (2007). Chemotherapy, 53, 148-152.]); Mikail et al. (2001[Mikail, G. H., Arnold, M. R. & Scott, G. F. (2001). J. Med. Chem. 44,1560-1570.]); Sylvie et al. (2002[Sylvie, M., Jean-Louis, R., Christophe, G., Hassan, A., Robert, S., Graciella, A., Erik, D. C., Jan, B. & Alain, G. (2002). Bioorg. Med. Chem. 10, 941-946.]); Tiwari et al. (2002[Tiwari, A., Waud, W. R. & Struck, R. F. (2002). Bioorg. Med. Chem. 10, 3593-3598.]); Yeong et al. (2004[Yeong, W. J., Weon, B. I., Jae, K. R., Shim, M. J., Won, B. K. & Eung, C. C. (2004). Bioorg. Med. Chem. 12, 5909-5915.]). For the definition of puckering parameters, see: Cremer & Pople (1975[Cremer, D. & Pople, J. A. (1975). J. Am. Chem. Soc. 97, 1354-1358.]).

[Scheme 1]

Experimental

Crystal data
  • C15H13N5O

  • Mr = 279.30

  • Triclinic, [P \overline 1]

  • a = 8.633 (2) Å

  • b = 8.763 (3) Å

  • c = 9.559 (3) Å

  • α = 91.715 (7)°

  • β = 108.110 (8)°

  • γ = 100.572 (7)°

  • V = 672.7 (4) Å3

  • Z = 2

  • Mo Kα radiation

  • μ = 0.09 mm−1

  • T = 120 K

  • 0.52 × 0.44 × 0.18 mm

Data collection
  • Rigaku R-AXIS conversion diffractometer

  • Absorption correction: multi-scan (CrystalClear-SM Expert; Rigaku, 2011[Rigaku (2011). CrystalClear-SM Expert. Rigaku Corporation, Tokyo, Japan.]) Tmin = 0.953, Tmax = 0.984

  • 8461 measured reflections

  • 3067 independent reflections

  • 1884 reflections with I > 2σ(I)

  • Rint = 0.081

Refinement
  • R[F2 > 2σ(F2)] = 0.075

  • wR(F2) = 0.225

  • S = 1.05

  • 3067 reflections

  • 190 parameters

  • H-atom parameters constrained

  • Δρmax = 0.35 e Å−3

  • Δρmin = −0.39 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

Cg3 is the centroid of the N1/C1–C5 pyridine ring.

D—H⋯A D—H H⋯A DA D—H⋯A
C8—H8⋯O1i 0.93 2.44 3.294 (3) 152
C12—H12B⋯O1ii 0.97 2.51 3.397 (3) 153
C12—H12ACg3iii 0.97 2.92 3.429 (3) 114
Symmetry codes: (i) x, y, z+1; (ii) -x+1, -y+1, -z; (iii) -x+1, -y+1, -z+1.

Data collection: CrystalClear-SM Expert (Rigaku, 2011[Rigaku (2011). CrystalClear-SM Expert. Rigaku Corporation, Tokyo, Japan.]); cell refinement: CrystalClear-SM Expert; data reduction: CrystalClear-SM Expert; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: ORTEP-3 for Windows (Farrugia, 1997[Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.]) and PLATON (Spek, 2009[Spek, A. L. (2009). Acta Cryst. D65, 148-155.]); software used to prepare material for publication: WinGX (Farrugia, 1999[Farrugia, L. J. (1999). J. Appl. Cryst. 32, 837-838.]) and PLATON.

Supporting information


Comment top

The pyridine skeleton is of great importance to chemists as well as to biologists as it is found in a large variety of naturally occurring compounds and also in clinically useful molecules having diverse biological activities. Its derivatives are known to possess antitubercular (Mikail et al., 2001), anti-ulcer (Cho et al., 2001), antimicrobial (Yeong et al., 2004; Goda et al., 2004), antitumor (Tiwari et al., 2002; Kovala-Demertzi et al., 2007), antiviral (Sylvie et al., 2002) and cardio tonic properties (Altomare et al., 2000). Poly-substituted pyridines, especially the 3,5-pyridinedicarbonitriles, are interesting as antioxidants and NADH co-enzyme analogues that mediate hydrogen transfer in biological systems, and for their antihistaminic, anti-inflammatory and analgesic activity (Hosni & Abdualla, 2008). In addition, it was found that drugs containing morpholine moiety in their structures have exhibited remarkable biological properties (Basavaraja et al., 2010). These facts stimulated us to synthesis the title compound for its potential biological activity.

The title molecule (I) has an open conformation as shown in Fig. 1. The N3/O1/C12–C15 morpholine ring adopts a chair conformation [puckering parameters (Cremer & Pople, 1975): QT = 0.576 (3) Å, θ = 3.0 (3) ° and ϕ = 131 (6) °]. The pyridine ring is almost planar with maximum deviations of -0.061 (3) Å for C2 and -0.69 (3) Å for C5 [puckering parameters: QT = 0.117 (3) Å, θ = 86.4 (15) ° and ϕ = 283.7 (13) °]. The N1/C1–C5 pyridine ring makes a dihedral angle of 28.93 (14)° with the N2/C8–C11 pyrrole ring which is essentially planar with a maximum deviation of 0.009 (3) Å for C11.

The crystal structure is stabilized by intermolecular C—H···O hydrogen bonds (Table 1, Fig. 2) and weak π-π stacking [Cg1···Cg3(1 - x, -y, 1 - z) = 4.178 (2) Å; where Cg1 and Cg3 are the centroids of the N2/C8–C11 pyrrole and N1/C1–C5 pyridine rings, respectively] and C—H···π interactions.

Related literature top

For the biological activity of pyridine derivatives, see: Altomare et al. (2000); Basavaraja et al. (2010); Cho et al. (2001); Goda et al. (2004); Hosni & Abdualla (2008); Kovala-Demertzi et al. (2007); Mikail et al. (2001); Sylvie et al. (2002); Tiwari et al. (2002); Yeong et al. (2004). For the definition of puckering parameters, see: Cremer & Pople (1975).

Experimental top

An equimolar mixture of 2-amino-6-morpholin-4-ylpyridine-3,5-dicarbonitrile and 2,5-dimethoxytetrahydrofuran was refluxed in acetic acid at 491 K for one hour. The solid was obtained on cooling, filtered, washed with water and re-crystallized from ethanol to afford the title compound. 89% yield, m.p. 433 K. Needle crystals of the title compound, suitable for X-ray diffraction, were obtained by slow evaporation of a solution in ethanol over 24 h.

Refinement top

All H-atoms were placed in calculated positions [C—H = 0.93 Å for aromatic and C—H = 0.97 Å for methylene Uiso(H) = 1.2 Ueq(C)] and were refined using a riding model approximation. The (-3 - 2 1) and (-4 - 3 1) reflections were omitted owing to bad disagreement.

Computing details top

Data collection: CrystalClear-SM Expert (Rigaku, 2011); cell refinement: CrystalClear-SM Expert (Rigaku, 2011); data reduction: CrystalClear-SM Expert (Rigaku, 2011); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 for Windows (Farrugia, 1997) and PLATON (Spek, 2009); software used to prepare material for publication: WinGX (Farrugia, 1999) and PLATON (Spek, 2009).

Figures top
[Figure 1] Fig. 1. The molecular structure of (I), showing the atom-numbering scheme and displacement ellipsoids drawn at the 50% probability level.
[Figure 2] Fig. 2. View of the packing and hydrogen bonding of (I) down the b axis. The hydrogen atoms not involved in the hydrogen bonds have been omitted for clarity.
2-(Morpholin-4-yl)-6-(1H-pyrrol-1-yl)pyridine-3,5-dicarbonitrile top
Crystal data top
C15H13N5OZ = 2
Mr = 279.30F(000) = 292
Triclinic, P1Dx = 1.379 Mg m3
Hall symbol: -P 1Mo Kα radiation, λ = 0.71073 Å
a = 8.633 (2) ÅCell parameters from 3872 reflections
b = 8.763 (3) Åθ = 3.1–27.5°
c = 9.559 (3) ŵ = 0.09 mm1
α = 91.715 (7)°T = 120 K
β = 108.110 (8)°Cut Block, colourless
γ = 100.572 (7)°0.52 × 0.44 × 0.18 mm
V = 672.7 (4) Å3
Data collection top
Rigaku R-AXIS conversion
diffractometer
3067 independent reflections
Radiation source: Sealed Tube1884 reflections with I > 2σ(I)
Graphite Monochromator monochromatorRint = 0.081
Detector resolution: 10.0000 pixels mm-1θmax = 27.5°, θmin = 3.1°
profile data from ω–scansh = 1111
Absorption correction: multi-scan
(CrystalClear-SM Expert; Rigaku, 2011)
k = 1111
Tmin = 0.953, Tmax = 0.984l = 1212
8461 measured reflections
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.075Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.225H-atom parameters constrained
S = 1.05 w = 1/[σ2(Fo2) + (0.1134P)2]
where P = (Fo2 + 2Fc2)/3
3067 reflections(Δ/σ)max < 0.001
190 parametersΔρmax = 0.35 e Å3
0 restraintsΔρmin = 0.39 e Å3
Crystal data top
C15H13N5Oγ = 100.572 (7)°
Mr = 279.30V = 672.7 (4) Å3
Triclinic, P1Z = 2
a = 8.633 (2) ÅMo Kα radiation
b = 8.763 (3) ŵ = 0.09 mm1
c = 9.559 (3) ÅT = 120 K
α = 91.715 (7)°0.52 × 0.44 × 0.18 mm
β = 108.110 (8)°
Data collection top
Rigaku R-AXIS conversion
diffractometer
3067 independent reflections
Absorption correction: multi-scan
(CrystalClear-SM Expert; Rigaku, 2011)
1884 reflections with I > 2σ(I)
Tmin = 0.953, Tmax = 0.984Rint = 0.081
8461 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0750 restraints
wR(F2) = 0.225H-atom parameters constrained
S = 1.05Δρmax = 0.35 e Å3
3067 reflectionsΔρmin = 0.39 e Å3
190 parameters
Special details top

Experimental. Rigaku CrystalClear-SM Expert 2.0 r10

Geometry. Bond distances, angles etc. have been calculated using the rounded fractional coordinates. All su's are estimated from the variances of the (full) variance-covariance matrix. The cell e.s.d.'s are taken into account in the estimation of distances, angles and torsion angles

Refinement. Refinement on F2 for ALL reflections except those flagged by the user for potential systematic errors. Weighted R-factors wR and all goodnesses of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The observed criterion of F2 > σ(F2) is used only for calculating -R-factor-obs etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R-factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
O10.3867 (2)0.3040 (2)0.00807 (19)0.0420 (6)
N10.4420 (3)0.2960 (2)0.4639 (2)0.0340 (7)
N20.5601 (3)0.1672 (2)0.6628 (2)0.0343 (7)
N30.3463 (3)0.4202 (3)0.2558 (2)0.0362 (7)
N40.1904 (3)0.0380 (3)0.7594 (2)0.0435 (8)
N50.0679 (3)0.4902 (3)0.2845 (3)0.0481 (9)
C10.4195 (3)0.2145 (3)0.5715 (3)0.0315 (8)
C20.2626 (3)0.1732 (3)0.5944 (3)0.0332 (8)
C30.1383 (3)0.2445 (3)0.5105 (3)0.0362 (8)
C40.1611 (3)0.3373 (3)0.4010 (3)0.0341 (8)
C50.3158 (3)0.3500 (3)0.3710 (3)0.0327 (8)
C60.2270 (3)0.0584 (3)0.6897 (3)0.0368 (8)
C70.0352 (3)0.4214 (3)0.3333 (3)0.0383 (9)
C80.5972 (3)0.1465 (3)0.8128 (3)0.0363 (8)
C90.7503 (3)0.1120 (3)0.8612 (3)0.0395 (9)
C100.8110 (3)0.1098 (3)0.7379 (3)0.0405 (9)
C110.6950 (3)0.1461 (3)0.6203 (3)0.0385 (9)
C120.5130 (3)0.4356 (3)0.2379 (3)0.0366 (8)
C130.5100 (3)0.3023 (3)0.1320 (3)0.0383 (8)
C140.2248 (3)0.2914 (3)0.0054 (3)0.0389 (9)
C150.2197 (3)0.4214 (3)0.1118 (3)0.0384 (8)
H30.036900.229600.528300.0430*
H80.528600.154900.869700.0440*
H90.806100.093200.957200.0470*
H100.912500.087200.739000.0490*
H110.703700.155500.526300.0460*
H12A0.596000.433400.333000.0440*
H12B0.542000.534200.199600.0440*
H13A0.618500.311900.119300.0460*
H13B0.485300.204000.172500.0460*
H14A0.192700.191500.040400.0470*
H14B0.145100.295400.091000.0470*
H15A0.241200.521200.072800.0460*
H15B0.110300.406500.123300.0460*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
O10.0463 (11)0.0543 (12)0.0264 (9)0.0118 (9)0.0128 (9)0.0030 (8)
N10.0395 (12)0.0407 (12)0.0237 (11)0.0128 (10)0.0107 (10)0.0010 (9)
N20.0386 (12)0.0425 (12)0.0267 (11)0.0155 (10)0.0137 (10)0.0010 (9)
N30.0412 (12)0.0444 (13)0.0252 (11)0.0124 (10)0.0120 (10)0.0022 (9)
N40.0461 (13)0.0517 (15)0.0361 (13)0.0124 (12)0.0164 (11)0.0070 (11)
N50.0503 (14)0.0567 (16)0.0453 (15)0.0213 (13)0.0207 (12)0.0065 (12)
C10.0359 (13)0.0348 (14)0.0255 (12)0.0098 (11)0.0110 (11)0.0015 (10)
C20.0389 (14)0.0374 (14)0.0261 (13)0.0102 (12)0.0133 (11)0.0007 (10)
C30.0390 (14)0.0423 (15)0.0292 (13)0.0117 (12)0.0123 (12)0.0044 (11)
C40.0366 (14)0.0396 (14)0.0269 (13)0.0115 (12)0.0095 (12)0.0009 (11)
C50.0391 (14)0.0356 (14)0.0241 (12)0.0082 (12)0.0111 (11)0.0015 (10)
C60.0383 (14)0.0463 (16)0.0282 (13)0.0149 (13)0.0112 (12)0.0025 (11)
C70.0435 (15)0.0468 (16)0.0297 (14)0.0150 (14)0.0158 (13)0.0028 (12)
C80.0464 (15)0.0375 (14)0.0277 (13)0.0108 (12)0.0145 (12)0.0028 (10)
C90.0452 (15)0.0417 (16)0.0298 (14)0.0131 (13)0.0071 (12)0.0012 (11)
C100.0390 (14)0.0489 (17)0.0372 (15)0.0154 (13)0.0134 (13)0.0055 (12)
C110.0400 (14)0.0492 (17)0.0314 (14)0.0169 (13)0.0143 (12)0.0010 (11)
C120.0412 (14)0.0439 (15)0.0245 (12)0.0082 (12)0.0107 (12)0.0016 (11)
C130.0403 (14)0.0460 (16)0.0298 (13)0.0114 (13)0.0119 (12)0.0004 (11)
C140.0425 (15)0.0460 (16)0.0290 (14)0.0110 (13)0.0117 (12)0.0009 (11)
C150.0456 (15)0.0459 (15)0.0252 (13)0.0155 (13)0.0101 (12)0.0030 (11)
Geometric parameters (Å, º) top
O1—C131.431 (3)C8—C91.352 (4)
O1—C141.428 (3)C9—C101.432 (4)
N1—C11.313 (3)C10—C111.344 (4)
N1—C51.346 (4)C12—C131.514 (4)
N2—C11.398 (4)C14—C151.520 (4)
N2—C81.394 (3)C3—H30.9300
N2—C111.387 (4)C8—H80.9300
N3—C51.350 (3)C9—H90.9300
N3—C121.484 (4)C10—H100.9300
N3—C151.469 (3)C11—H110.9300
N4—C61.151 (4)C12—H12A0.9700
N5—C71.153 (4)C12—H12B0.9700
C1—C21.422 (4)C13—H13A0.9700
C2—C31.388 (4)C13—H13B0.9700
C2—C61.432 (4)C14—H14A0.9700
C3—C41.384 (4)C14—H14B0.9700
C4—C51.437 (4)C15—H15A0.9700
C4—C71.424 (4)C15—H15B0.9700
C13—O1—C14111.61 (19)C2—C3—H3119.00
C1—N1—C5120.8 (3)C4—C3—H3119.00
C1—N2—C8127.1 (2)N2—C8—H8126.00
C1—N2—C11124.7 (2)C9—C8—H8126.00
C8—N2—C11108.1 (2)C8—C9—H9126.00
C5—N3—C12119.8 (2)C10—C9—H9126.00
C5—N3—C15124.4 (2)C9—C10—H10126.00
C12—N3—C15110.1 (2)C11—C10—H10126.00
N1—C1—N2115.8 (2)N2—C11—H11126.00
N1—C1—C2123.1 (3)C10—C11—H11126.00
N2—C1—C2121.2 (2)N3—C12—H12A110.00
C1—C2—C3115.8 (2)N3—C12—H12B110.00
C1—C2—C6123.7 (2)C13—C12—H12A110.00
C3—C2—C6120.4 (3)C13—C12—H12B110.00
C2—C3—C4121.8 (3)H12A—C12—H12B108.00
C3—C4—C5117.3 (2)O1—C13—H13A110.00
C3—C4—C7117.9 (3)O1—C13—H13B110.00
C5—C4—C7124.6 (2)C12—C13—H13A110.00
N1—C5—N3116.6 (3)C12—C13—H13B110.00
N1—C5—C4119.9 (2)H13A—C13—H13B108.00
N3—C5—C4123.5 (3)O1—C14—H14A109.00
N4—C6—C2176.0 (3)O1—C14—H14B109.00
N5—C7—C4176.9 (3)C15—C14—H14A109.00
N2—C8—C9108.1 (2)C15—C14—H14B109.00
C8—C9—C10107.6 (2)H14A—C14—H14B108.00
C9—C10—C11107.8 (2)N3—C15—H15A110.00
N2—C11—C10108.5 (2)N3—C15—H15B110.00
N3—C12—C13109.2 (2)C14—C15—H15A110.00
O1—C13—C12110.1 (2)C14—C15—H15B110.00
O1—C14—C15111.6 (2)H15A—C15—H15B108.00
N3—C15—C14109.3 (2)
C14—O1—C13—C1258.8 (3)C5—N3—C15—C1496.4 (3)
C13—O1—C14—C1557.6 (3)C12—N3—C5—N10.5 (4)
C1—N1—C5—C48.6 (4)N2—C1—C2—C612.6 (4)
C5—N1—C1—N2178.8 (2)N2—C1—C2—C3171.4 (2)
C5—N1—C1—C22.3 (4)N1—C1—C2—C39.8 (4)
C1—N1—C5—N3174.1 (2)N1—C1—C2—C6166.3 (2)
C8—N2—C1—C232.7 (4)C6—C2—C3—C4169.8 (3)
C1—N2—C11—C10176.3 (2)C1—C2—C3—C46.3 (4)
C8—N2—C1—N1148.3 (2)C2—C3—C4—C7172.3 (3)
C1—N2—C8—C9175.3 (2)C2—C3—C4—C53.6 (4)
C11—N2—C8—C90.6 (3)C3—C4—C5—N111.4 (4)
C8—N2—C11—C101.4 (3)C7—C4—C5—N313.0 (4)
C11—N2—C1—C2153.4 (2)C7—C4—C5—N1164.2 (2)
C11—N2—C1—N125.6 (3)C3—C4—C5—N3171.5 (3)
C12—N3—C15—C1456.8 (3)N2—C8—C9—C100.4 (3)
C15—N3—C5—C432.6 (4)C8—C9—C10—C111.3 (3)
C5—N3—C12—C1395.8 (3)C9—C10—C11—N21.7 (3)
C15—N3—C12—C1358.8 (3)N3—C12—C13—O159.0 (3)
C15—N3—C5—N1150.2 (2)O1—C14—C15—N356.1 (3)
C12—N3—C5—C4176.7 (2)
Hydrogen-bond geometry (Å, º) top
Cg3 is the centroid of the N1/C1–C5 pyridine ring.
D—H···AD—HH···AD···AD—H···A
C8—H8···O1i0.932.443.294 (3)152
C12—H12A···N10.972.312.692 (3)103
C12—H12B···O1ii0.972.513.397 (3)153
C12—H12A···Cg3iii0.972.923.429 (3)114
Symmetry codes: (i) x, y, z+1; (ii) x+1, y+1, z; (iii) x+1, y+1, z+1.

Experimental details

Crystal data
Chemical formulaC15H13N5O
Mr279.30
Crystal system, space groupTriclinic, P1
Temperature (K)120
a, b, c (Å)8.633 (2), 8.763 (3), 9.559 (3)
α, β, γ (°)91.715 (7), 108.110 (8), 100.572 (7)
V3)672.7 (4)
Z2
Radiation typeMo Kα
µ (mm1)0.09
Crystal size (mm)0.52 × 0.44 × 0.18
Data collection
DiffractometerRigaku R-AXIS conversion
diffractometer
Absorption correctionMulti-scan
(CrystalClear-SM Expert; Rigaku, 2011)
Tmin, Tmax0.953, 0.984
No. of measured, independent and
observed [I > 2σ(I)] reflections
8461, 3067, 1884
Rint0.081
(sin θ/λ)max1)0.649
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.075, 0.225, 1.05
No. of reflections3067
No. of parameters190
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.35, 0.39

Computer programs: CrystalClear-SM Expert (Rigaku, 2011), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), ORTEP-3 for Windows (Farrugia, 1997) and PLATON (Spek, 2009), WinGX (Farrugia, 1999) and PLATON (Spek, 2009).

Hydrogen-bond geometry (Å, º) top
Cg3 is the centroid of the N1/C1–C5 pyridine ring.
D—H···AD—HH···AD···AD—H···A
C8—H8···O1i0.932.443.294 (3)152
C12—H12B···O1ii0.972.513.397 (3)153
C12—H12A···Cg3iii0.972.923.429 (3)114
Symmetry codes: (i) x, y, z+1; (ii) x+1, y+1, z; (iii) x+1, y+1, z+1.
 

Acknowledgements

The EPSRC National Crystallography Service is gratefully acknowledged for X-ray diffractions. The authors are thankful to Manchester Metropolitan University and Sohag University for supporting this study.

References

First citationAltomare, C., Cellamare, S., Summo, L., Fossa, P., Mosti, L. & Carotti, A. (2000). Bioorg. Med. Chem. 8, 909–916.  Web of Science CrossRef PubMed CAS Google Scholar
First citationBasavaraja, H. S., Jayadevaiah, K. V., Mumtaz, M. H., Vi-Kumar, M. M. J. & Basavaraj, P. (2010). J. Pharm. Sci. Res. 2, 5–12.  CAS Google Scholar
First citationCho, S. Y., Kang, S. K., Kim, S. S., Cheon, H. G., Choi, J. K. & Yum, E. K. (2001). Bull. Korean Chem. Soc. 22, 1217–1223.  CAS Google Scholar
First citationCremer, D. & Pople, J. A. (1975). J. Am. Chem. Soc. 97, 1354–1358.  CrossRef CAS Web of Science Google Scholar
First citationFarrugia, L. J. (1997). J. Appl. Cryst. 30, 565.  CrossRef IUCr Journals Google Scholar
First citationFarrugia, L. J. (1999). J. Appl. Cryst. 32, 837–838.  CrossRef CAS IUCr Journals Google Scholar
First citationGoda, F. E., Abdel-Aziz, A. A.-M. & Attef, O. A. (2004). Bioorg. Med. Chem. 12, 1845–1852.  Web of Science CrossRef PubMed CAS Google Scholar
First citationHosni, H. M. & Abdualla, M. M. (2008). Acta Pharm. 58, 175–186.  Web of Science CrossRef PubMed CAS Google Scholar
First citationKovala-Demertzi, D., Boccarelli, A. M. A., Demertzis, M. A. & Coluccia, M. (2007). Chemotherapy, 53, 148–152.  Web of Science PubMed CAS Google Scholar
First citationMikail, G. H., Arnold, M. R. & Scott, G. F. (2001). J. Med. Chem. 44,1560–1570.  Web of Science PubMed Google Scholar
First citationRigaku (2011). CrystalClear-SM Expert. Rigaku Corporation, Tokyo, Japan.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSpek, A. L. (2009). Acta Cryst. D65, 148–155.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSylvie, M., Jean-Louis, R., Christophe, G., Hassan, A., Robert, S., Graciella, A., Erik, D. C., Jan, B. & Alain, G. (2002). Bioorg. Med. Chem. 10, 941–946.  Web of Science PubMed Google Scholar
First citationTiwari, A., Waud, W. R. & Struck, R. F. (2002). Bioorg. Med. Chem. 10, 3593-3598.  Web of Science CrossRef PubMed CAS Google Scholar
First citationYeong, W. J., Weon, B. I., Jae, K. R., Shim, M. J., Won, B. K. & Eung, C. C. (2004). Bioorg. Med. Chem. 12, 5909–5915.  Web of Science PubMed Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 68| Part 3| March 2012| Pages o885-o886
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds