organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 68| Part 3| March 2012| Pages o911-o912

N-(9,9-Di­propyl-9H-fluoren-2-yl)-7-(piperidin-1-yl)-2,1,3-benzo­thia­diazol-4-amine

aOrganic Materials Laboratory, Department of Chemistry, Indian Institute of Technology Roorkee, Roorkee 247 667, India, bDepartment of Chemistry, University of Malaya, 50603 Kuala Lumpur, Malaysia, and cChemistry Department, Faculty of, Science, King Abdulaziz University, PO Box 80203 Jeddah, Saudi Arabia
*Correspondence e-mail: edward.tiekink@gmail.com

(Received 23 February 2012; accepted 23 February 2012; online 29 February 2012)

In the title compound, C30H34N4S, each of the benzothia­diazole and fluorene fused ring systems is almost planar (r.m.s. deviations = 0.010 and 0.013 Å, respectively) and they are inclined to each other with a dihedral angle of 61.69 (3)°; the S atom is directed away from the rest of the mol­ecule. Each of the benzothiadiazole ring N atoms forms a significant intra­molecular contact, i.e. N—H⋯N or C—H⋯N. In the crystal, linear supra­molecular chains along the c axis are generated by C—H⋯N inter­actions involving the tertiary amine N atom.

Related literature

For the application of benzo[c][1,2,5]thia­diazole-based polymers and small mol­ecules in organic light-emitting diodes and bulk heterojunction solar cells, see: Beaujuge et al. (2012[Beaujuge, P. M., Vasilyeva, S. V., Liu, D. Y., Ellinger, S., McCarley, T. D. & Reynolds, J. R. (2012). Chem. Mater. 24, 255-268.]); Horie et al. (2012[Horie, M., Kettle, J., Yu, C.-Y., Maiewski, L. A., Chang, S.-W., Kirkpatrick, J., Tuladhar, S. M., Nelson, J., Saunders, B. R. & Turner, M. L. (2012). J. Mater. Chem. 22, 381-389.]); Thomas et al. (2004[Thomas, K. R. J., Lin, J. T., Velusamy, M., Tao, Y.-T. & Chuen, C.-H. (2004). Adv. Funct. Mater. 14, 83-90.], 2008[Thomas, K. R. J., Huang, T.-H., Lin, J. T., Pu, S.-C., Cheng, Y.-M., Hsieh, C.-C. & Tai, C. P. (2008). Chem. Eur. J. 14, 11231-11241.]). For related structures, see: Sakurai et al. (2005[Sakurai, H., Ritonga, M. T. S., Shibatani, H. & Hirao, T. (2005). J. Org. Chem. 70, 2754-2762.]); Chen et al. (2010[Chen, S., Li, Y., Yang, W., Chen, N., Liu, H. & Li, Y. (2010). J. Phys. Chem. C, 114, 15109-15115.]); Tao et al. (2011[Tao, Y.-M., Li, H.-Y., Xu, Q.-L., Zhu, Y.-C., Kang, L.-C., Zhen, Y.-X., Zuo, J.-L. & You, X. Z. (2011). Synth. Met. 161, 718-723.]).

[Scheme 1]

Experimental

Crystal data
  • C30H34N4S

  • Mr = 482.67

  • Monoclinic, P 21 /n

  • a = 9.6111 (1) Å

  • b = 21.9632 (2) Å

  • c = 12.6954 (1) Å

  • β = 103.936 (1)°

  • V = 2601.00 (4) Å3

  • Z = 4

  • Cu Kα radiation

  • μ = 1.29 mm−1

  • T = 100 K

  • 0.35 × 0.20 × 0.05 mm

Data collection
  • Agilent SuperNova Dual diffractometer with an Atlas detector

  • Absorption correction: multi-scan (CrysAlis PRO; Agilent, 2010[Agilent (2010). CrysAlis PRO. Agilent Technologies, Yarnton, Oxfordshire, England.]) Tmin = 0.302, Tmax = 1.000

  • 14383 measured reflections

  • 5430 independent reflections

  • 4961 reflections with I > 2σ(I)

  • Rint = 0.023

Refinement
  • R[F2 > 2σ(F2)] = 0.038

  • wR(F2) = 0.106

  • S = 1.03

  • 5430 reflections

  • 317 parameters

  • H-atom parameters constrained

  • Δρmax = 0.38 e Å−3

  • Δρmin = −0.37 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
N4—H4⋯N2 0.88 2.55 2.8567 (17) 101
C5—H5B⋯N1 0.99 2.60 3.212 (2) 120
C20—H20⋯N3i 0.95 2.55 3.4577 (16) 161
Symmetry code: (i) x, y, z+1.

Data collection: CrysAlis PRO (Agilent, 2010[Agilent (2010). CrysAlis PRO. Agilent Technologies, Yarnton, Oxfordshire, England.]); cell refinement: CrysAlis PRO; data reduction: CrysAlis PRO; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: ORTEP-3 (Farrugia, 1997[Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.]) and DIAMOND (Brandenburg, 2006[Brandenburg, K. (2006). DIAMOND. Crystal Impact GbR, Bonn, Germany.]); software used to prepare material for publication: publCIF (Westrip, 2010[Westrip, S. P. (2010). J. Appl. Cryst. 43, 920-925.]).

Supporting information


Comment top

Benzo[c][1,2,5]thiadiazole-based polymers (Beaujuge et al., 2012; Horie et al., 2012) and small molecules (Thomas et al., 2004; Thomas et al., 2008) have been explored as functional materials for applications in organic light-emitting diodes and bulk heterojunction solar cells. A new diarylamine, N-(9,9-dipropyl-9H-fluoren-2-yl)-7-(piperidin-1-yl)benzo[c][1,2,5]thiadiazol-4-amine (I), featuring benzo[c][1,2,5]thiadiazole and fluorene units has been synthesized as a building block for the development of organic dyes suitable for use as sensitizers in dye-sensitized solar cells. Herein, the crystal and molecular structure of (I) is described. Related structures are known (Sakurai et al., 2005; Chen et al., 2010; Tao et al., 2011).

In (I), Fig. 1, each of the benzothiadiazole (r.m.s. deviation = 0.010 Å) and fluorene (0.013 Å) fused ring systems are planar and these are inclined at 61.69 (3)° so that the S atom is directed away from the rest of the molecule. Each of the n-propyl groups connected at the C22 atom adopt open conformations with the C22—C25—C26—C27 and C22–C28—C29—C30 torsion angles being -179.98 (10) and 179.50 (11)°, respectively. Each of the ring N atoms forms a significant intramolecular contact, N1 with C5—H and N2 with N4—H, Table 1. The most notable intermolecular contact is of the type C—H···N involving the tertiary amine-N atom, Table 1. These lead to the formation of linear supramolecular chains along the c axis.

Related literature top

For the application of benzo[c][1,2,5]thiadiazole-based polymers and small molecules in organic light-emitting diodes and bulk heterojunction solar cells, see: Beaujuge et al. (2012); Horie et al. (2012); Thomas et al. (2004, 2008). For related structures, see: Sakurai et al. (2005); Chen et al. (2010); Tao et al. (2011).

Experimental top

A mixture of 9,9-dipropyl-9H-fluoren-2-amine (0.66 g, 2.5 mmol), 4-bromo-7-(piperidin-1-yl)benzo[c][1,2,5]thiadiazole (0.75 g, 2.5 mmol), Pd(dba)2 (dba = (1E,4E)-1,5-diphenylpenta-1,4-dien-3-one; 0.03 mmol), dppf (1,1'-bis(diphenylphosphino)ferrocene; 0.03 mmol), t-BuONa (0.38 g, 3 mmol) and toluene (15 ml) was taken in a Schlenk tube and heated at 353 K with stirring for 48 h. After completion of the reaction, the volatiles were evaporated to leave a pink residue. The residue was purified by column chromatography on silica gel by using a dichloromethane/hexanes mixture (1:2) as eluent. Yield 1.1 g (91%). M.pt. 393–395 K. Crystals were grown from its solution in a dichloromethane/hexanes mixture.

1H NMR (CDCl3, 500.13 MHz) δ p.p.m.: 0.65–0.70 (m, 10 H), 1.65–1.70 (m, 2 H), 1.86–1.95 (m, 8 H), 3.3 (t, J = 5.5 Hz, 4 H), 6.78 (d, J = 8.5 Hz, 1 H), 6.92 (s, 1 H), 7.17 (d, J = 8 Hz, 1 H), 7.23–7.25 (m, 3 H), 7.30–7.33 (m, 2 H), 7.63 (t, J = 8.5 Hz, 2 H). 13C NMR (CDCl3, 125.77 MHz) δ p.p.m.: 14.6, 17.3, 24.6, 26.2, 43.0, 52.5, 55.3, 107.4, 113.5, 114.6, 117.5, 119.0, 120.5, 122.8, 126.2, 126.8, 130.0, 135.3, 138.0, 140.9, 141.1,150.0, 150.2, 150.8, 152.4.

Refinement top

Carbon-bound H-atoms were placed in calculated positions [N—H = 0.88 Å; C—H 0.95 to 0.99 Å, Uiso(H) 1.2 to 1.5Ueq(N,C)] and were included in the refinement in the riding model approximation.

Computing details top

Data collection: CrysAlis PRO (Agilent, 2010); cell refinement: CrysAlis PRO (Agilent, 2010); data reduction: CrysAlis PRO (Agilent, 2010); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 (Farrugia, 1997) and DIAMOND (Brandenburg, 2006); software used to prepare material for publication: publCIF (Westrip, 2010).

Figures top
[Figure 1] Fig. 1. The molecular structure of (I) showing the atom-labelling scheme and displacement ellipsoids at the 50% probability level.
[Figure 2] Fig. 2. A view of the linear supramolecular chain along the c axis in (I). The C—H···N interactions are shown as orange dashed lines.
N-(9,9-Dipropyl-9H-fluoren-2-yl)-7-(piperidin-1-yl)- 2,1,3-benzothiadiazol-4-amine top
Crystal data top
C30H34N4SF(000) = 1032
Mr = 482.67Dx = 1.233 Mg m3
Monoclinic, P21/nCu Kα radiation, λ = 1.54184 Å
Hall symbol: -P 2ynCell parameters from 8442 reflections
a = 9.6111 (1) Åθ = 3.6–76.4°
b = 21.9632 (2) ŵ = 1.29 mm1
c = 12.6954 (1) ÅT = 100 K
β = 103.936 (1)°Block, brown
V = 2601.00 (4) Å30.35 × 0.20 × 0.05 mm
Z = 4
Data collection top
Agilent SuperNova Dual
diffractometer with an Atlas detector
5430 independent reflections
Radiation source: SuperNova (Cu) X-ray Source4961 reflections with I > 2σ(I)
Mirror monochromatorRint = 0.023
Detector resolution: 10.4041 pixels mm-1θmax = 76.6°, θmin = 4.0°
ω scanh = 1212
Absorption correction: multi-scan
(CrysAlis PRO; Agilent, 2010)
k = 2718
Tmin = 0.302, Tmax = 1.000l = 1415
14383 measured reflections
Refinement top
Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.038H-atom parameters constrained
wR(F2) = 0.106 w = 1/[σ2(Fo2) + (0.0594P)2 + 0.8093P]
where P = (Fo2 + 2Fc2)/3
S = 1.03(Δ/σ)max < 0.001
5430 reflectionsΔρmax = 0.38 e Å3
317 parametersΔρmin = 0.37 e Å3
0 restraintsExtinction correction: SHELXL97 (Sheldrick, 2008), Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
Primary atom site location: structure-invariant direct methodsExtinction coefficient: 0.00114 (17)
Crystal data top
C30H34N4SV = 2601.00 (4) Å3
Mr = 482.67Z = 4
Monoclinic, P21/nCu Kα radiation
a = 9.6111 (1) ŵ = 1.29 mm1
b = 21.9632 (2) ÅT = 100 K
c = 12.6954 (1) Å0.35 × 0.20 × 0.05 mm
β = 103.936 (1)°
Data collection top
Agilent SuperNova Dual
diffractometer with an Atlas detector
5430 independent reflections
Absorption correction: multi-scan
(CrysAlis PRO; Agilent, 2010)
4961 reflections with I > 2σ(I)
Tmin = 0.302, Tmax = 1.000Rint = 0.023
14383 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0380 restraints
wR(F2) = 0.106H-atom parameters constrained
S = 1.03Δρmax = 0.38 e Å3
5430 reflectionsΔρmin = 0.37 e Å3
317 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
S10.17524 (4)0.516536 (18)0.29347 (3)0.03740 (12)
N10.32500 (14)0.48122 (5)0.30043 (9)0.0300 (3)
N20.12335 (14)0.48521 (6)0.39313 (9)0.0337 (3)
N30.56133 (11)0.39374 (5)0.35759 (8)0.0218 (2)
N40.10144 (13)0.40732 (6)0.56862 (9)0.0314 (3)
H40.02310.42440.52950.038*
C10.63792 (15)0.33572 (6)0.36929 (10)0.0259 (3)
H1A0.56930.30180.36660.031*
H1B0.70850.33430.44030.031*
C20.71468 (16)0.32872 (7)0.27814 (11)0.0337 (3)
H2A0.76810.28980.28710.040*
H2B0.64310.32760.20750.040*
C30.81786 (18)0.38097 (8)0.27843 (16)0.0464 (4)
H3A0.86040.37740.21500.056*
H3B0.89650.37920.34500.056*
C40.73966 (18)0.44147 (8)0.27394 (16)0.0452 (4)
H4A0.67110.44580.20240.054*
H4B0.80980.47520.28210.054*
C50.65895 (15)0.44563 (6)0.36334 (13)0.0329 (3)
H5A0.72830.44610.43500.039*
H5B0.60350.48400.35550.039*
C60.34160 (15)0.44213 (6)0.38424 (10)0.0240 (3)
C70.45773 (14)0.39993 (5)0.41925 (9)0.0216 (2)
C80.45092 (14)0.36470 (6)0.50703 (10)0.0239 (3)
H80.52750.33730.53440.029*
C90.33591 (15)0.36683 (6)0.55952 (10)0.0254 (3)
H90.33850.34060.61950.031*
C100.22113 (14)0.40543 (6)0.52650 (10)0.0256 (3)
C110.22551 (15)0.44449 (6)0.43700 (10)0.0259 (3)
C120.09800 (14)0.38303 (6)0.67210 (10)0.0249 (3)
C130.01831 (14)0.34774 (6)0.68202 (10)0.0266 (3)
H130.09100.33810.61910.032*
C140.02985 (13)0.32626 (6)0.78291 (10)0.0237 (3)
H140.10990.30240.78920.028*
C150.07814 (13)0.34037 (5)0.87438 (10)0.0193 (2)
C160.09581 (12)0.32574 (5)0.98970 (10)0.0184 (2)
C170.00960 (13)0.29269 (5)1.04300 (11)0.0233 (3)
H170.07760.27491.00360.028*
C180.05390 (14)0.28621 (6)1.15523 (11)0.0263 (3)
H180.00350.26361.19260.032*
C190.18115 (14)0.31241 (6)1.21333 (10)0.0246 (3)
H190.20950.30761.28990.030*
C200.26771 (13)0.34567 (5)1.16012 (10)0.0209 (2)
H200.35460.36361.19970.025*
C210.22408 (12)0.35202 (5)1.04844 (9)0.0173 (2)
C220.29987 (12)0.38581 (5)0.97382 (9)0.0169 (2)
C230.19643 (12)0.37525 (5)0.86392 (9)0.0185 (2)
C240.20788 (13)0.39649 (6)0.76383 (10)0.0225 (2)
H240.28870.41980.75730.027*
C250.31877 (12)0.45412 (5)1.00244 (9)0.0190 (2)
H25A0.38270.45791.07600.023*
H25B0.36760.47370.95100.023*
C260.18116 (13)0.48892 (5)0.99994 (10)0.0221 (2)
H26A0.13180.47011.05180.026*
H26B0.11670.48590.92640.026*
C270.20981 (15)0.55594 (6)1.02916 (12)0.0281 (3)
H27A0.11870.57681.02570.042*
H27B0.25810.57480.97770.042*
H27C0.27100.55921.10280.042*
C280.44887 (12)0.35842 (5)0.97719 (9)0.0200 (2)
H28A0.48830.37880.92120.024*
H28B0.51340.36781.04870.024*
C290.45097 (15)0.29009 (6)0.95892 (13)0.0325 (3)
H29A0.41320.26921.01540.039*
H29B0.38660.28030.88750.039*
C300.59965 (16)0.26589 (7)0.96215 (12)0.0354 (3)
H30A0.59460.22190.94920.053*
H30B0.66320.27421.03350.053*
H30C0.63720.28590.90580.053*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
S10.0515 (2)0.0408 (2)0.02084 (18)0.02678 (16)0.01052 (15)0.01025 (13)
N10.0437 (7)0.0260 (6)0.0198 (5)0.0138 (5)0.0064 (5)0.0039 (4)
N20.0431 (7)0.0410 (7)0.0160 (5)0.0213 (6)0.0053 (5)0.0044 (5)
N30.0262 (5)0.0178 (5)0.0204 (5)0.0018 (4)0.0034 (4)0.0002 (4)
N40.0323 (6)0.0459 (7)0.0150 (5)0.0160 (5)0.0039 (4)0.0050 (5)
C10.0323 (7)0.0230 (6)0.0215 (6)0.0071 (5)0.0045 (5)0.0025 (5)
C20.0393 (8)0.0370 (8)0.0259 (6)0.0193 (6)0.0101 (6)0.0082 (6)
C30.0343 (8)0.0523 (10)0.0577 (10)0.0167 (7)0.0210 (7)0.0232 (8)
C40.0334 (8)0.0388 (8)0.0674 (11)0.0045 (6)0.0203 (8)0.0206 (8)
C50.0298 (7)0.0234 (6)0.0419 (8)0.0027 (5)0.0018 (6)0.0014 (6)
C60.0351 (7)0.0203 (6)0.0152 (5)0.0060 (5)0.0030 (5)0.0016 (4)
C70.0287 (6)0.0177 (5)0.0164 (5)0.0031 (5)0.0017 (5)0.0027 (4)
C80.0295 (6)0.0209 (6)0.0191 (6)0.0064 (5)0.0020 (5)0.0006 (4)
C90.0338 (7)0.0249 (6)0.0169 (5)0.0068 (5)0.0048 (5)0.0025 (5)
C100.0319 (7)0.0295 (6)0.0140 (5)0.0076 (5)0.0030 (5)0.0022 (5)
C110.0336 (7)0.0276 (6)0.0142 (5)0.0103 (5)0.0012 (5)0.0019 (5)
C120.0279 (6)0.0302 (6)0.0159 (6)0.0100 (5)0.0036 (5)0.0000 (5)
C130.0251 (6)0.0282 (6)0.0213 (6)0.0058 (5)0.0043 (5)0.0059 (5)
C140.0205 (6)0.0211 (6)0.0266 (6)0.0010 (5)0.0002 (5)0.0039 (5)
C150.0191 (5)0.0165 (5)0.0218 (6)0.0023 (4)0.0038 (4)0.0016 (4)
C160.0179 (5)0.0146 (5)0.0229 (6)0.0015 (4)0.0052 (4)0.0008 (4)
C170.0198 (6)0.0177 (5)0.0331 (7)0.0016 (4)0.0079 (5)0.0010 (5)
C180.0280 (6)0.0217 (6)0.0336 (7)0.0005 (5)0.0161 (5)0.0058 (5)
C190.0297 (6)0.0248 (6)0.0216 (6)0.0018 (5)0.0105 (5)0.0047 (5)
C200.0223 (6)0.0216 (6)0.0192 (6)0.0003 (4)0.0058 (4)0.0005 (4)
C210.0183 (5)0.0156 (5)0.0192 (5)0.0008 (4)0.0068 (4)0.0001 (4)
C220.0170 (5)0.0195 (5)0.0143 (5)0.0011 (4)0.0043 (4)0.0006 (4)
C230.0178 (5)0.0195 (5)0.0173 (5)0.0022 (4)0.0028 (4)0.0015 (4)
C240.0229 (6)0.0267 (6)0.0183 (6)0.0031 (5)0.0054 (5)0.0003 (5)
C250.0185 (5)0.0198 (5)0.0189 (5)0.0026 (4)0.0048 (4)0.0004 (4)
C260.0208 (6)0.0191 (6)0.0266 (6)0.0013 (4)0.0064 (5)0.0003 (4)
C270.0285 (7)0.0197 (6)0.0383 (7)0.0012 (5)0.0124 (5)0.0001 (5)
C280.0168 (5)0.0254 (6)0.0177 (5)0.0007 (4)0.0041 (4)0.0008 (4)
C290.0248 (7)0.0278 (7)0.0446 (8)0.0025 (5)0.0079 (6)0.0072 (6)
C300.0330 (7)0.0407 (8)0.0333 (7)0.0122 (6)0.0097 (6)0.0062 (6)
Geometric parameters (Å, º) top
S1—N11.6186 (12)C14—H140.9500
S1—N21.6208 (13)C15—C231.4035 (17)
N1—C61.3464 (16)C15—C161.4683 (16)
N2—C111.3455 (16)C16—C171.3934 (17)
N3—C71.4136 (16)C16—C211.4023 (16)
N3—C11.4611 (15)C17—C181.3926 (19)
N3—C51.4668 (17)C17—H170.9500
N4—C101.3811 (18)C18—C191.3916 (19)
N4—C121.4258 (16)C18—H180.9500
N4—H40.8800C19—C201.3974 (17)
C1—C21.5225 (18)C19—H190.9500
C1—H1A0.9900C20—C211.3854 (16)
C1—H1B0.9900C20—H200.9500
C2—C31.516 (2)C21—C221.5202 (15)
C2—H2A0.9900C22—C231.5235 (15)
C2—H2B0.9900C22—C281.5443 (16)
C3—C41.521 (2)C22—C251.5441 (15)
C3—H3A0.9900C23—C241.3826 (17)
C3—H3B0.9900C24—H240.9500
C4—C51.524 (2)C25—C261.5212 (16)
C4—H4A0.9900C25—H25A0.9900
C4—H4B0.9900C25—H25B0.9900
C5—H5A0.9900C26—C271.5269 (17)
C5—H5B0.9900C26—H26A0.9900
C6—C111.4339 (19)C26—H26B0.9900
C6—C71.4365 (17)C27—H27A0.9800
C7—C81.3710 (17)C27—H27B0.9800
C8—C91.4223 (19)C27—H27C0.9800
C8—H80.9500C28—C291.5195 (18)
C9—C101.3742 (18)C28—H28A0.9900
C9—H90.9500C28—H28B0.9900
C10—C111.4326 (18)C29—C301.5159 (18)
C12—C131.391 (2)C29—H29A0.9900
C12—C241.4023 (17)C29—H29B0.9900
C13—C141.3943 (19)C30—H30A0.9800
C13—H130.9500C30—H30B0.9800
C14—C151.3933 (16)C30—H30C0.9800
N1—S1—N2101.00 (6)C23—C15—C16108.18 (10)
C6—N1—S1106.45 (10)C17—C16—C21120.38 (11)
C11—N2—S1105.91 (10)C17—C16—C15131.21 (11)
C7—N3—C1115.62 (10)C21—C16—C15108.41 (10)
C7—N3—C5115.16 (10)C18—C17—C16118.62 (11)
C1—N3—C5111.84 (11)C18—C17—H17120.7
C10—N4—C12123.49 (11)C16—C17—H17120.7
C10—N4—H4118.3C19—C18—C17120.88 (11)
C12—N4—H4118.3C19—C18—H18119.6
N3—C1—C2109.59 (10)C17—C18—H18119.6
N3—C1—H1A109.8C18—C19—C20120.63 (12)
C2—C1—H1A109.8C18—C19—H19119.7
N3—C1—H1B109.8C20—C19—H19119.7
C2—C1—H1B109.8C21—C20—C19118.60 (11)
H1A—C1—H1B108.2C21—C20—H20120.7
C3—C2—C1110.98 (13)C19—C20—H20120.7
C3—C2—H2A109.4C20—C21—C16120.89 (11)
C1—C2—H2A109.4C20—C21—C22127.92 (11)
C3—C2—H2B109.4C16—C21—C22111.19 (10)
C1—C2—H2B109.4C21—C22—C23101.04 (9)
H2A—C2—H2B108.0C21—C22—C28111.89 (9)
C2—C3—C4110.13 (13)C23—C22—C28111.24 (9)
C2—C3—H3A109.6C21—C22—C25112.00 (9)
C4—C3—H3A109.6C23—C22—C25112.17 (9)
C2—C3—H3B109.6C28—C22—C25108.43 (9)
C4—C3—H3B109.6C24—C23—C15121.11 (11)
H3A—C3—H3B108.1C24—C23—C22127.70 (11)
C3—C4—C5111.10 (13)C15—C23—C22111.17 (10)
C3—C4—H4A109.4C23—C24—C12118.77 (12)
C5—C4—H4A109.4C23—C24—H24120.6
C3—C4—H4B109.4C12—C24—H24120.6
C5—C4—H4B109.4C26—C25—C22115.52 (9)
H4A—C4—H4B108.0C26—C25—H25A108.4
N3—C5—C4110.52 (12)C22—C25—H25A108.4
N3—C5—H5A109.5C26—C25—H25B108.4
C4—C5—H5A109.5C22—C25—H25B108.4
N3—C5—H5B109.5H25A—C25—H25B107.5
C4—C5—H5B109.5C25—C26—C27111.98 (10)
H5A—C5—H5B108.1C25—C26—H26A109.2
N1—C6—C11112.87 (11)C27—C26—H26A109.2
N1—C6—C7126.25 (12)C25—C26—H26B109.2
C11—C6—C7120.85 (11)C27—C26—H26B109.2
C8—C7—N3125.01 (11)H26A—C26—H26B107.9
C8—C7—C6115.47 (12)C26—C27—H27A109.5
N3—C7—C6119.28 (11)C26—C27—H27B109.5
C7—C8—C9123.84 (12)H27A—C27—H27B109.5
C7—C8—H8118.1C26—C27—H27C109.5
C9—C8—H8118.1H27A—C27—H27C109.5
C10—C9—C8122.32 (12)H27B—C27—H27C109.5
C10—C9—H9118.8C29—C28—C22115.26 (10)
C8—C9—H9118.8C29—C28—H28A108.5
C9—C10—N4125.65 (12)C22—C28—H28A108.5
C9—C10—C11115.89 (12)C29—C28—H28B108.5
N4—C10—C11118.38 (12)C22—C28—H28B108.5
N2—C11—C10124.64 (13)H28A—C28—H28B107.5
N2—C11—C6113.77 (12)C30—C29—C28112.90 (12)
C10—C11—C6121.58 (11)C30—C29—H29A109.0
C13—C12—C24120.22 (12)C28—C29—H29A109.0
C13—C12—N4119.31 (12)C30—C29—H29B109.0
C24—C12—N4120.42 (13)C28—C29—H29B109.0
C12—C13—C14121.01 (11)H29A—C29—H29B107.8
C12—C13—H13119.5C29—C30—H30A109.5
C14—C13—H13119.5C29—C30—H30B109.5
C15—C14—C13118.84 (12)H30A—C30—H30B109.5
C15—C14—H14120.6C29—C30—H30C109.5
C13—C14—H14120.6H30A—C30—H30C109.5
C14—C15—C23120.02 (11)H30B—C30—H30C109.5
C14—C15—C16131.79 (11)
N2—S1—N1—C60.18 (11)C14—C15—C16—C170.5 (2)
N1—S1—N2—C110.05 (11)C23—C15—C16—C17179.88 (12)
C7—N3—C1—C2164.99 (11)C14—C15—C16—C21179.12 (12)
C5—N3—C1—C260.58 (14)C23—C15—C16—C210.29 (13)
N3—C1—C2—C357.96 (15)C21—C16—C17—C180.27 (17)
C1—C2—C3—C454.55 (18)C15—C16—C17—C18179.82 (12)
C2—C3—C4—C553.0 (2)C16—C17—C18—C190.35 (18)
C7—N3—C5—C4165.85 (11)C17—C18—C19—C200.24 (19)
C1—N3—C5—C459.49 (14)C18—C19—C20—C210.04 (18)
C3—C4—C5—N355.19 (18)C19—C20—C21—C160.05 (17)
S1—N1—C6—C110.25 (14)C19—C20—C21—C22179.99 (11)
S1—N1—C6—C7178.26 (10)C17—C16—C21—C200.07 (17)
C1—N3—C7—C818.27 (17)C15—C16—C21—C20179.71 (10)
C5—N3—C7—C8114.65 (14)C17—C16—C21—C22179.90 (10)
C1—N3—C7—C6155.84 (11)C15—C16—C21—C220.26 (13)
C5—N3—C7—C671.24 (14)C20—C21—C22—C23179.84 (11)
N1—C6—C7—C8179.99 (12)C16—C21—C22—C230.13 (12)
C11—C6—C7—C82.13 (17)C20—C21—C22—C2861.72 (15)
N1—C6—C7—N35.34 (19)C16—C21—C22—C28118.31 (11)
C11—C6—C7—N3172.53 (11)C20—C21—C22—C2560.27 (15)
N3—C7—C8—C9172.02 (12)C16—C21—C22—C25119.70 (10)
C6—C7—C8—C92.29 (18)C14—C15—C23—C240.43 (17)
C7—C8—C9—C100.6 (2)C16—C15—C23—C24179.06 (10)
C8—C9—C10—N4175.53 (13)C14—C15—C23—C22179.29 (10)
C8—C9—C10—C111.22 (19)C16—C15—C23—C220.20 (13)
C12—N4—C10—C919.6 (2)C21—C22—C23—C24178.82 (11)
C12—N4—C10—C11163.75 (13)C28—C22—C23—C2462.27 (15)
S1—N2—C11—C10178.62 (11)C25—C22—C23—C2459.37 (15)
S1—N2—C11—C60.09 (15)C21—C22—C23—C150.05 (12)
C9—C10—C11—N2179.92 (13)C28—C22—C23—C15118.96 (11)
N4—C10—C11—N22.9 (2)C25—C22—C23—C15119.39 (11)
C9—C10—C11—C61.30 (19)C15—C23—C24—C120.54 (18)
N4—C10—C11—C6175.70 (12)C22—C23—C24—C12178.11 (11)
N1—C6—C11—N20.24 (17)C13—C12—C24—C231.47 (18)
C7—C6—C11—N2178.37 (11)N4—C12—C24—C23176.02 (11)
N1—C6—C11—C10178.52 (12)C21—C22—C25—C2657.65 (13)
C7—C6—C11—C100.39 (19)C23—C22—C25—C2655.16 (13)
C10—N4—C12—C13134.62 (14)C28—C22—C25—C26178.40 (10)
C10—N4—C12—C2447.87 (19)C22—C25—C26—C27179.98 (10)
C24—C12—C13—C141.44 (19)C21—C22—C28—C2951.69 (14)
N4—C12—C13—C14176.07 (12)C23—C22—C28—C2960.50 (14)
C12—C13—C14—C150.45 (18)C25—C22—C28—C29175.71 (10)
C13—C14—C15—C230.48 (17)C22—C28—C29—C30179.50 (11)
C13—C14—C15—C16178.88 (12)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N4—H4···N20.882.552.8567 (17)101
C5—H5B···N10.992.603.212 (2)120
C20—H20···N3i0.952.553.4577 (16)161
Symmetry code: (i) x, y, z+1.

Experimental details

Crystal data
Chemical formulaC30H34N4S
Mr482.67
Crystal system, space groupMonoclinic, P21/n
Temperature (K)100
a, b, c (Å)9.6111 (1), 21.9632 (2), 12.6954 (1)
β (°) 103.936 (1)
V3)2601.00 (4)
Z4
Radiation typeCu Kα
µ (mm1)1.29
Crystal size (mm)0.35 × 0.20 × 0.05
Data collection
DiffractometerAgilent SuperNova Dual
diffractometer with an Atlas detector
Absorption correctionMulti-scan
(CrysAlis PRO; Agilent, 2010)
Tmin, Tmax0.302, 1.000
No. of measured, independent and
observed [I > 2σ(I)] reflections
14383, 5430, 4961
Rint0.023
(sin θ/λ)max1)0.631
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.038, 0.106, 1.03
No. of reflections5430
No. of parameters317
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.38, 0.37

Computer programs: CrysAlis PRO (Agilent, 2010), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), ORTEP-3 (Farrugia, 1997) and DIAMOND (Brandenburg, 2006), publCIF (Westrip, 2010).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N4—H4···N20.882.552.8567 (17)101
C5—H5B···N10.992.603.212 (2)120
C20—H20···N3i0.952.553.4577 (16)161
Symmetry code: (i) x, y, z+1.
 

Footnotes

Additional correspondence author, e-mail: krjt8fcy@iitr.ernet.in.

Acknowledgements

KRJT is thankful to Department of Science and Technology, New Delhi, India, for financial support (Ref. No. DST/TSG/ME/2010/27). We also thank the Ministry of Higher Education (Malaysia) for funding structural studies through the High-Impact Research scheme (UM.C/HIR/MOHE/SC/12).

References

First citationAgilent (2010). CrysAlis PRO. Agilent Technologies, Yarnton, Oxfordshire, England.  Google Scholar
First citationBeaujuge, P. M., Vasilyeva, S. V., Liu, D. Y., Ellinger, S., McCarley, T. D. & Reynolds, J. R. (2012). Chem. Mater. 24, 255–268.  Web of Science CrossRef CAS Google Scholar
First citationBrandenburg, K. (2006). DIAMOND. Crystal Impact GbR, Bonn, Germany.  Google Scholar
First citationChen, S., Li, Y., Yang, W., Chen, N., Liu, H. & Li, Y. (2010). J. Phys. Chem. C, 114, 15109–15115.  CrossRef CAS Google Scholar
First citationFarrugia, L. J. (1997). J. Appl. Cryst. 30, 565.  CrossRef IUCr Journals Google Scholar
First citationHorie, M., Kettle, J., Yu, C.-Y., Maiewski, L. A., Chang, S.-W., Kirkpatrick, J., Tuladhar, S. M., Nelson, J., Saunders, B. R. & Turner, M. L. (2012). J. Mater. Chem. 22, 381–389.  Web of Science CrossRef CAS Google Scholar
First citationSakurai, H., Ritonga, M. T. S., Shibatani, H. & Hirao, T. (2005). J. Org. Chem. 70, 2754–2762.  Web of Science CSD CrossRef PubMed CAS Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationTao, Y.-M., Li, H.-Y., Xu, Q.-L., Zhu, Y.-C., Kang, L.-C., Zhen, Y.-X., Zuo, J.-L. & You, X. Z. (2011). Synth. Met. 161, 718–723.  Web of Science CSD CrossRef CAS Google Scholar
First citationThomas, K. R. J., Huang, T.-H., Lin, J. T., Pu, S.-C., Cheng, Y.-M., Hsieh, C.-C. & Tai, C. P. (2008). Chem. Eur. J. 14, 11231–11241.  Web of Science CrossRef PubMed CAS Google Scholar
First citationThomas, K. R. J., Lin, J. T., Velusamy, M., Tao, Y.-T. & Chuen, C.-H. (2004). Adv. Funct. Mater. 14, 83–90.  CAS Google Scholar
First citationWestrip, S. P. (2010). J. Appl. Cryst. 43, 920–925.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 68| Part 3| March 2012| Pages o911-o912
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds