metal-organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

catena-Poly[[bis­­(di­methyl­formamide-κO)cadmium]-bis­­(μ-4-nitro­phenyl­cyanamido-κ2N1:N3)]

aDepartment of Chemistry, Isfahan University of Technology, Isfahan 84456-38111, Iran, and bDepartment of Chemistry, Shahid Beheshti University, G. C., Evin, Tehran 1983963113, Iran
*Correspondence e-mail: chinif@cc.iut.ac.ir

(Received 5 December 2011; accepted 16 January 2012; online 4 February 2012)

In the title coordination polymer, [Cd(C7H4N3O2)2(C3H7NO)2]n, the CdII atom, lying on an inversion center, is six-coordinated in a distorted N4O2 octa­hedral geometry. The N atoms of the 4-nitrophenylcyanamide anions form the equatorial plane and the O atoms of the dimethyl­formamide mol­ecules occupy the axial positions. The anions act as bridging ligands, connecting the Cd atoms into a one-dimensional coordination polymer along [100].

Related literature

For background to phenyl­cyanamide ligands and their complexes, see: Crutchley (2001[Crutchley, R. J. (2001). Coord. Chem. Rev. 219, 125-155.]). For polynuclear complexes of phenyl­cyanamide ligands, see: Ainscough et al. (1991[Ainscough, E. W., Baker, E. N., Brader, M. L. & Brodie, A. M. (1991). J. Chem. Soc. Dalton Trans. pp. 1243-1249.]); Chiniforoshan et al. (2009[Chiniforoshan, H., Jalilpour, S., Shirinfar, B. & Khavasi, H. R. (2009). Acta Cryst. E65, m386.], 2010[Chiniforoshan, H., Shirinfar, B., Jalilpour, S. & Khavasi, H. R. (2010). Acta Cryst. E66, m331.]); Escuer et al. (2004[Escuer, A., Mautner, F. A., Sanz, N. & Vicente, R. (2004). Polyhedron, 23, 1409-1417.]). For the preparation of 4-nitro-phenyl­cyanamide used in the synthesis of the title compound, see: Crutchley & Naklicki (1989[Crutchley, R. J. & Naklicki, M. L. (1989). Inorg. Chem. 28, 1955-1958.]).

[Scheme 1]

Experimental

Crystal data
  • [Cd(C7H4N3O2)2(C3H7NO)2]

  • Mr = 582.87

  • Triclinic, [P \overline 1]

  • a = 5.6070 (11) Å

  • b = 9.811 (2) Å

  • c = 11.679 (2) Å

  • α = 67.44 (3)°

  • β = 81.93 (3)°

  • γ = 84.28 (3)°

  • V = 586.7 (2) Å3

  • Z = 1

  • Mo Kα radiation

  • μ = 0.98 mm−1

  • T = 298 K

  • 0.45 × 0.10 × 0.08 mm

Data collection
  • Stoe IPDS 2T diffractometer

  • Absorption correction: numerical (X-SHAPE and X-RED32; Stoe & Cie, 2002[Stoe & Cie (2002). X-AREA, X-RED32 and X-SHAPE. Stoe & Cie, Darmstadt, Germany.]) Tmin = 0.887, Tmax = 0.923

  • 6589 measured reflections

  • 3150 independent reflections

  • 3038 reflections with I > 2σ(I)

  • Rint = 0.066

Refinement
  • R[F2 > 2σ(F2)] = 0.044

  • wR(F2) = 0.114

  • S = 1.11

  • 3150 reflections

  • 162 parameters

  • H-atom parameters constrained

  • Δρmax = 0.82 e Å−3

  • Δρmin = −0.89 e Å−3

Table 1
Selected bond lengths (Å)

Cd1—N1i 2.287 (3)
Cd1—O3 2.347 (3)
Cd1—N2 2.383 (3)
Symmetry code: (i) -x+1, -y+2, -z.

Data collection: X-AREA (Stoe & Cie, 2002[Stoe & Cie (2002). X-AREA, X-RED32 and X-SHAPE. Stoe & Cie, Darmstadt, Germany.]); cell refinement: X-AREA; data reduction: X-AREA; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: ORTEP-3 (Farrugia, 1997[Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.]); software used to prepare material for publication: WinGX (Farrugia, 1999[Farrugia, L. J. (1999). J. Appl. Cryst. 32, 837-838.]).

Supporting information


Comment top

Phenylcyanmide ligands can act as monodentate, bidentate and also as bridging ligands (Crutchley, 2001). In the bridging mode, the cyanamido group (NCN) is coordinated in an end-to-end mode, forming polynuclear complexes (Ainscough et al., 1991; Chiniforoshan et al., 2009, 2010; Escuer et al., 2004).

Following our work with this family of ligands, we report here the synthesis and crystal structure of a cadmium(II) coordination polymer of 4-nitro-phenylcyanamide ligand (Crutchley & Naklicki, 1989). The asymmetric unit of the title compound is shown in Fig. 1. In the title compound, the CdII atom lies on an inversion center and has a distorted octahedral geometry (Fig. 2, Table 1). The coordination environment consists of four N atoms from 4-nitro-phenylcyanamide ligands in the equatorial plane and two O atoms from DMF molecules in the axial positions. The one-dimensional structure of the title compound is shown in Fig. 2.

Related literature top

For background to phenylcyanamide ligands and their complexes, see: Crutchley (2001). For polynuclear complexes of phenylcyanamide ligands, see: Ainscough et al. (1991); Chiniforoshan et al. (2009, 2010); Escuer et al. (2004). For the preparation of 4-nitro-phenylcyanamide used in the synthesis of the title compound, see: Crutchley & Naklicki (1989).

Experimental top

4-Nitrophenylcynamide (Crutchley & Naklicki, 1989) (0.163 g, 1 mmol) was dissolved in methanol (25 ml) and was added slowly to a solution of cadmium(II) acetate (0.133 g, 0.5 mmol) in methanol (25 ml). The mixture was stirred for 3 hrs. The resulting solid was filtered off. Yellow needles of the title compound were obtained by n-hexane diffusion into a DMF solution of the title compound after 4 weeks.

Refinement top

H atoms were positioned geometrically and refined as riding atoms, with C—H = 0.93 (CH) and 0.96 (CH3) Å and with Uiso(H) = 1.2(1.5 for methyl)Ueq(C).

Computing details top

Data collection: X-AREA (Stoe & Cie, 2002); cell refinement: X-AREA (Stoe & Cie, 2002); data reduction: X-AREA (Stoe & Cie, 2002); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 (Farrugia, 1997); software used to prepare material for publication: WinGX (Farrugia, 1999).

Figures top
[Figure 1] Fig. 1. The asymmetric unit of the title compound with displacement ellipsoids drawn at 50% probability level.
[Figure 2] Fig. 2. The one-dimensional polymeric structure of the title compound. [Symmetry codes: (i) 1-x, 2-y, -z; (ii) -1+x, y, z; (iii) -x, 2-y, -z; (iv) 1+x, y, z.]
catena-Poly[[bis(dimethylformamide-κO)cadmium]-bis(µ-4- nitrophenylcyanamido-κ2N1:N3)] top
Crystal data top
[Cd(C7H4N3O2)2(C3H7NO)2]Z = 1
Mr = 582.87F(000) = 294
Triclinic, P1Dx = 1.650 Mg m3
Hall symbol: -P 1Mo Kα radiation, λ = 0.71073 Å
a = 5.6070 (11) ÅCell parameters from 3150 reflections
b = 9.811 (2) Åθ = 2.3–29.2°
c = 11.679 (2) ŵ = 0.98 mm1
α = 67.44 (3)°T = 298 K
β = 81.93 (3)°Needle, yellow
γ = 84.28 (3)°0.45 × 0.10 × 0.08 mm
V = 586.7 (2) Å3
Data collection top
Stoe IPDS 2T
diffractometer
3150 independent reflections
Radiation source: fine-focus sealed tube3038 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.066
ω scansθmax = 29.2°, θmin = 2.3°
Absorption correction: numerical
(X-SHAPE and X-RED32; Stoe & Cie, 2002)
h = 77
Tmin = 0.887, Tmax = 0.923k = 1313
6589 measured reflectionsl = 1516
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.044Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.114H-atom parameters constrained
S = 1.11 w = 1/[σ2(Fo2) + (0.0672P)2 + 0.308P]
where P = (Fo2 + 2Fc2)/3
3150 reflections(Δ/σ)max < 0.001
162 parametersΔρmax = 0.82 e Å3
0 restraintsΔρmin = 0.89 e Å3
Crystal data top
[Cd(C7H4N3O2)2(C3H7NO)2]γ = 84.28 (3)°
Mr = 582.87V = 586.7 (2) Å3
Triclinic, P1Z = 1
a = 5.6070 (11) ÅMo Kα radiation
b = 9.811 (2) ŵ = 0.98 mm1
c = 11.679 (2) ÅT = 298 K
α = 67.44 (3)°0.45 × 0.10 × 0.08 mm
β = 81.93 (3)°
Data collection top
Stoe IPDS 2T
diffractometer
3150 independent reflections
Absorption correction: numerical
(X-SHAPE and X-RED32; Stoe & Cie, 2002)
3038 reflections with I > 2σ(I)
Tmin = 0.887, Tmax = 0.923Rint = 0.066
6589 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0440 restraints
wR(F2) = 0.114H-atom parameters constrained
S = 1.11Δρmax = 0.82 e Å3
3150 reflectionsΔρmin = 0.89 e Å3
162 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Cd10.00001.00000.00000.03092 (12)
O10.1591 (9)0.2034 (5)0.4718 (4)0.0897 (14)
O20.1354 (7)0.1984 (4)0.5719 (3)0.0705 (10)
O30.0654 (5)1.1593 (3)0.0984 (3)0.0493 (6)
N10.6524 (5)0.9163 (3)0.1262 (3)0.0404 (6)
N20.2627 (5)0.8176 (3)0.1293 (3)0.0362 (5)
N30.0180 (6)0.2570 (4)0.4842 (3)0.0511 (8)
N40.3441 (5)1.1798 (4)0.2129 (3)0.0417 (6)
C10.2102 (5)0.6769 (3)0.2158 (3)0.0326 (6)
C20.3446 (6)0.6018 (4)0.3172 (3)0.0392 (7)
H20.47650.64570.32640.047*
C30.2838 (7)0.4640 (4)0.4033 (3)0.0437 (7)
H30.37480.41490.46940.052*
C40.0864 (6)0.4002 (4)0.3899 (3)0.0387 (7)
C50.0458 (6)0.4682 (4)0.2903 (4)0.0446 (8)
H50.17610.42250.28180.053*
C60.0172 (6)0.6057 (4)0.2026 (4)0.0413 (7)
H60.06970.65110.13440.050*
C70.4701 (5)0.8656 (4)0.1296 (3)0.0338 (6)
C80.1668 (6)1.1147 (4)0.1947 (4)0.0412 (7)
H80.11371.02880.25900.049*
C90.4414 (9)1.3125 (5)0.1153 (5)0.0584 (10)
H9A0.60501.29130.08730.088*
H9B0.43711.38920.14760.088*
H9C0.34611.34440.04660.088*
C100.4716 (9)1.1095 (6)0.3235 (5)0.0598 (11)
H10A0.38821.02460.38060.090*
H10B0.47781.17840.36310.090*
H10C0.63271.07930.29940.090*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Cd10.01969 (14)0.03075 (16)0.03821 (18)0.00441 (9)0.00930 (10)0.00556 (12)
O10.092 (3)0.066 (2)0.089 (3)0.048 (2)0.027 (2)0.011 (2)
O20.073 (2)0.0528 (18)0.0584 (19)0.0116 (16)0.0145 (16)0.0133 (15)
O30.0510 (14)0.0441 (14)0.0569 (16)0.0031 (11)0.0226 (12)0.0175 (12)
N10.0274 (11)0.0406 (14)0.0439 (15)0.0065 (10)0.0072 (10)0.0035 (12)
N20.0253 (11)0.0335 (13)0.0425 (14)0.0060 (9)0.0082 (10)0.0037 (11)
N30.0499 (17)0.0391 (16)0.0529 (18)0.0092 (13)0.0037 (14)0.0038 (14)
N40.0381 (13)0.0435 (15)0.0451 (15)0.0046 (11)0.0100 (11)0.0159 (13)
C10.0256 (12)0.0321 (14)0.0362 (14)0.0014 (10)0.0073 (10)0.0072 (11)
C20.0347 (14)0.0401 (16)0.0398 (16)0.0078 (12)0.0126 (12)0.0075 (13)
C30.0431 (17)0.0400 (17)0.0389 (17)0.0069 (13)0.0139 (13)0.0003 (13)
C40.0380 (15)0.0302 (14)0.0436 (17)0.0045 (11)0.0024 (13)0.0092 (13)
C50.0341 (15)0.0359 (16)0.059 (2)0.0078 (12)0.0133 (14)0.0081 (15)
C60.0332 (14)0.0350 (15)0.0507 (19)0.0046 (11)0.0181 (13)0.0052 (14)
C70.0256 (12)0.0349 (14)0.0340 (14)0.0007 (10)0.0073 (10)0.0045 (11)
C80.0410 (16)0.0386 (16)0.0467 (18)0.0055 (13)0.0073 (13)0.0172 (14)
C90.059 (2)0.054 (2)0.060 (2)0.0214 (19)0.0045 (19)0.015 (2)
C100.056 (2)0.072 (3)0.056 (2)0.001 (2)0.0242 (19)0.024 (2)
Geometric parameters (Å, º) top
Cd1—N1i2.287 (3)C2—C31.381 (5)
Cd1—O32.347 (3)C2—H20.9300
Cd1—N22.383 (3)C3—C41.380 (5)
O1—N31.219 (5)C3—H30.9300
O2—N31.214 (5)C4—C51.377 (5)
O3—C81.238 (5)C5—C61.388 (5)
N1—C71.170 (4)C5—H50.9300
N1—Cd1ii2.287 (3)C6—H60.9300
N2—C71.299 (4)C8—H80.9300
N2—C11.392 (4)C9—H9A0.9600
N3—C41.461 (4)C9—H9B0.9600
N4—C81.316 (4)C9—H9C0.9600
N4—C91.456 (5)C10—H10A0.9600
N4—C101.460 (5)C10—H10B0.9600
C1—C61.401 (4)C10—H10C0.9600
C1—C21.409 (4)
N1i—Cd1—N1iii180.000 (1)C3—C2—H2119.5
N1i—Cd1—O386.19 (12)C1—C2—H2119.5
N1iii—Cd1—O393.81 (12)C4—C3—C2119.2 (3)
N1i—Cd1—O3iv93.81 (12)C4—C3—H3120.4
N1iii—Cd1—O3iv86.19 (12)C2—C3—H3120.4
O3—Cd1—O3iv180.00 (10)C5—C4—C3121.5 (3)
N1i—Cd1—N2iv95.72 (10)C5—C4—N3119.8 (3)
N1iii—Cd1—N2iv84.28 (10)C3—C4—N3118.7 (3)
O3—Cd1—N2iv90.74 (10)C4—C5—C6119.4 (3)
O3iv—Cd1—N2iv89.26 (10)C4—C5—H5120.3
N1i—Cd1—N284.28 (10)C6—C5—H5120.3
N1iii—Cd1—N295.72 (10)C5—C6—C1120.8 (3)
O3—Cd1—N289.26 (10)C5—C6—H6119.6
O3iv—Cd1—N290.74 (10)C1—C6—H6119.6
N2iv—Cd1—N2180.0N1—C7—N2176.4 (3)
C8—O3—Cd1121.5 (2)O3—C8—N4124.9 (4)
C7—N1—Cd1ii142.5 (3)O3—C8—H8117.6
C7—N2—C1116.9 (3)N4—C8—H8117.6
C7—N2—Cd1113.9 (2)N4—C9—H9A109.5
C1—N2—Cd1128.50 (19)N4—C9—H9B109.5
O2—N3—O1123.1 (4)H9A—C9—H9B109.5
O2—N3—C4119.1 (3)N4—C9—H9C109.5
O1—N3—C4117.7 (4)H9A—C9—H9C109.5
C8—N4—C9120.7 (3)H9B—C9—H9C109.5
C8—N4—C10120.8 (4)N4—C10—H10A109.5
C9—N4—C10117.9 (4)N4—C10—H10B109.5
N2—C1—C6119.5 (3)H10A—C10—H10B109.5
N2—C1—C2122.5 (3)N4—C10—H10C109.5
C6—C1—C2118.0 (3)H10A—C10—H10C109.5
C3—C2—C1121.1 (3)H10B—C10—H10C109.5
N1i—Cd1—O3—C896.1 (3)C6—C1—C2—C31.9 (5)
N1iii—Cd1—O3—C883.9 (3)C1—C2—C3—C40.7 (6)
N2iv—Cd1—O3—C8168.2 (3)C2—C3—C4—C52.5 (6)
N2—Cd1—O3—C811.8 (3)C2—C3—C4—N3177.6 (4)
N1i—Cd1—N2—C735.1 (3)O2—N3—C4—C5179.7 (4)
N1iii—Cd1—N2—C7144.9 (3)O1—N3—C4—C51.2 (6)
O3—Cd1—N2—C751.2 (3)O2—N3—C4—C30.4 (6)
O3iv—Cd1—N2—C7128.8 (3)O1—N3—C4—C3178.9 (5)
N1i—Cd1—N2—C1155.1 (3)C3—C4—C5—C61.5 (6)
N1iii—Cd1—N2—C124.9 (3)N3—C4—C5—C6178.6 (4)
O3—Cd1—N2—C1118.6 (3)C4—C5—C6—C11.2 (6)
O3iv—Cd1—N2—C161.4 (3)N2—C1—C6—C5177.2 (3)
C7—N2—C1—C6165.8 (3)C2—C1—C6—C52.9 (5)
Cd1—N2—C1—C624.6 (5)Cd1—O3—C8—N4131.9 (3)
C7—N2—C1—C214.0 (5)C9—N4—C8—O31.7 (6)
Cd1—N2—C1—C2155.5 (3)C10—N4—C8—O3172.6 (4)
N2—C1—C2—C3178.2 (3)
Symmetry codes: (i) x+1, y+2, z; (ii) x+1, y, z; (iii) x1, y, z; (iv) x, y+2, z.

Experimental details

Crystal data
Chemical formula[Cd(C7H4N3O2)2(C3H7NO)2]
Mr582.87
Crystal system, space groupTriclinic, P1
Temperature (K)298
a, b, c (Å)5.6070 (11), 9.811 (2), 11.679 (2)
α, β, γ (°)67.44 (3), 81.93 (3), 84.28 (3)
V3)586.7 (2)
Z1
Radiation typeMo Kα
µ (mm1)0.98
Crystal size (mm)0.45 × 0.10 × 0.08
Data collection
DiffractometerStoe IPDS 2T
diffractometer
Absorption correctionNumerical
(X-SHAPE and X-RED32; Stoe & Cie, 2002)
Tmin, Tmax0.887, 0.923
No. of measured, independent and
observed [I > 2σ(I)] reflections
6589, 3150, 3038
Rint0.066
(sin θ/λ)max1)0.687
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.044, 0.114, 1.11
No. of reflections3150
No. of parameters162
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.82, 0.89

Computer programs: X-AREA (Stoe & Cie, 2002), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), ORTEP-3 (Farrugia, 1997), WinGX (Farrugia, 1999).

Selected bond lengths (Å) top
Cd1—N1i2.287 (3)Cd1—N22.383 (3)
Cd1—O32.347 (3)
Symmetry code: (i) x+1, y+2, z.
 

Acknowledgements

The authors acknowledge financial support from Isfahan University of Technology.

References

First citationAinscough, E. W., Baker, E. N., Brader, M. L. & Brodie, A. M. (1991). J. Chem. Soc. Dalton Trans. pp. 1243–1249.  CSD CrossRef Web of Science Google Scholar
First citationChiniforoshan, H., Jalilpour, S., Shirinfar, B. & Khavasi, H. R. (2009). Acta Cryst. E65, m386.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationChiniforoshan, H., Shirinfar, B., Jalilpour, S. & Khavasi, H. R. (2010). Acta Cryst. E66, m331.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationCrutchley, R. J. (2001). Coord. Chem. Rev. 219, 125–155.  Web of Science CrossRef Google Scholar
First citationCrutchley, R. J. & Naklicki, M. L. (1989). Inorg. Chem. 28, 1955–1958.  CrossRef CAS Web of Science Google Scholar
First citationEscuer, A., Mautner, F. A., Sanz, N. & Vicente, R. (2004). Polyhedron, 23, 1409–1417.  Web of Science CSD CrossRef CAS Google Scholar
First citationFarrugia, L. J. (1997). J. Appl. Cryst. 30, 565.  CrossRef IUCr Journals Google Scholar
First citationFarrugia, L. J. (1999). J. Appl. Cryst. 32, 837–838.  CrossRef CAS IUCr Journals Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationStoe & Cie (2002). X-AREA, X-RED32 and X-SHAPE. Stoe & Cie, Darmstadt, Germany.  Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds