metal-organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

(Acetyl­acetonato-κ2O,O′)bis­­[2-(5-methyl-3-phenyl­pyrazin-2-yl-κN1)phen­yl-κC1]iridium(III)

aState Key Laboratory Base of Novel Functional Materials and Preparation Science, Institute of Solid Materials Chemistry, Faculty of Materials Science and Chemical Engineering, Ningbo University, Ningbo 315211, People's Republic of China
*Correspondence e-mail: geguoping@nbu.edu.cn

(Received 9 January 2012; accepted 10 February 2012; online 17 February 2012)

In the title complex, [Ir(C17H13N2)2(C5H7O2)], the IrIII atom is hexa­coordinated in a distorted octa­hedral geometry by two C,N-bidentate 2-(5-methyl-3-phenyl­pyrazin-2-yl)phenyl (mdpp) ligands and one O,O-bidentate acetyl­acetonate ligand. The dihedral angles between the phenyl rings and the pyrazine ring are 9.56 (14) and 58.99 (14)° for one mdpp ligand and 9.34 (14) and 79.94 (15)° for the other.

Related literature

For background to organic light-emitting diodes based on phospho­rescent complexes, see: Baldo et al. (1998[Baldo, M. A., O'Brien, D. F., You, Y., Shoustikov, A., Sibley, S., Thompson, M. E. & Forrest, S. R. (1998). Nature (London), 395, 151-154.], 2000[Baldo, M. A., Thompson, M. E. & Forrest, S. R. (2000). Nature (London), 403, 750-753.]); Hwang et al. (2005[Hwang, F. M., Chen, H. Y., Chen, P. S., Liu, C. S., Chi, Y. C., Shu, C. F., Wu, F. L., Chou, P. T., Peng, S. M. & Lee, G. H. (2005). Inorg. Chem. 44, 1344-1353.]); Liu et al. (2008[Liu, Z.-W., Nie, D.-B., Bian, Z.-Q., Chen, F.-F., Lou, B., Bian, J. & Huang, C.-H. (2008). ChemPhysChem, 9, 634-640.]); Tsuboyama et al. (2003[Tsuboyama, A., Iwawaki, H., Furugori, M., Mukaide, T., Kamatani, J., Igawa, S., Moriyama, T., Miura, S., Takiguchi, T., Okada, S., Hoshino, M. & Ueno, K. (2003). J. Am. Chem. Soc. 125, 12971-12979.]). For the synthesis, see: Zhang et al. (2003[Zhang, G.-L., Liu, Z.-H. & Guo, H.-Q. (2003). Acta Phys. Chim. Sin. 19, 889-891.], 2005[Zhang, G.-L., Guo, H.-Q., Chuai, Y.-T. & Zou, D.-C. (2005). Mater. Lett. 59, 3002-3006.]).

[Scheme 1]

Experimental

Crystal data
  • [Ir(C17H13N2)2(C5H7O2)]

  • Mr = 781.91

  • Monoclinic, P 21 /c

  • a = 11.078 (2) Å

  • b = 26.021 (5) Å

  • c = 12.155 (2) Å

  • β = 106.09 (3)°

  • V = 3366.6 (12) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 4.01 mm−1

  • T = 295 K

  • 0.43 × 0.30 × 0.12 mm

Data collection
  • Rigaku R-AXIS RAPID diffractometer

  • Absorption correction: multi-scan (ABSCOR; Higashi, 1995[Higashi, T. (1995). ABSCOR. Rigaku Corporation, Tokyo, Japan.]) Tmin = 0.240, Tmax = 0.606

  • 25384 measured reflections

  • 5991 independent reflections

  • 4919 reflections with I > 2σ(I)

  • Rint = 0.044

Refinement
  • R[F2 > 2σ(F2)] = 0.031

  • wR(F2) = 0.062

  • S = 1.05

  • 5991 reflections

  • 415 parameters

  • H-atom parameters constrained

  • Δρmax = 1.12 e Å−3

  • Δρmin = −0.38 e Å−3

Table 1
Selected bond lengths (Å)

Ir1—N1 2.035 (3)
Ir1—N3 2.035 (3)
Ir1—O1 2.162 (3)
Ir1—O2 2.173 (3)
Ir1—C22 2.006 (4)
Ir1—C39 1.999 (4)

Data collection: RAPID-AUTO (Rigaku, 1998[Rigaku (1998). RAPID-AUTO. Rigaku Corporation, Tokyo, Japan.]); cell refinement: RAPID-AUTO; data reduction: CrystalStructure (Rigaku/MSC, 2002[Rigaku/MSC (2002). CrystalStructure. Rigaku/MSC Inc., The Woodlands, Texas, USA.]); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: XP in SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); software used to prepare material for publication: SHELXTL.

Supporting information


Comment top

In recent decades, organic light-emitting diodes (OLEDs) based on phosphorescent complexes have attracted increasing attention due to their potential applications in full-color flat panel displays (Baldo et al., 1998, 2000). Among these phosphorescent complexes, iridium cyclometalates often exhibit favorable photoproperties for OLEDs including short phosphorescent lifetimes, high quantum efficiencies and good stability (Liu et al., 2008; Hwang et al., 2005; Tsuboyama et al., 2003). Zhang et al. (2005) demonstrated a high efficiency yellow OLED using [Ir(mdpp)2(acac)] [mdpp = 2-(5-methyl-3-phenylpyrazine-2-yl)phenyl, Hacac = acetylacetone] as the dopant. In this work, we synthesized the title complex, [Ir(mdpp)2(acac)], and investigated its crystal structure.

The molecular structure of the title complex is shown in Fig. 1. The IrIII ion has an approximately octahedral coordination geometry and is hexacoordinated by two C atoms and two N atoms from two C,N-bidentate mdpp ligands, which exhibit cis-C,C and trans-N,N chelate dispositions, and two O atoms from one O,O-bidentate acac ligand. The bond lengths of Ir—N,O,C are listed in Table 1. Due to steric interactions, the phenyl groups are not coplanar with the pyrazine group. The dihedral angles between the phenyl rings and pyrazine ring are 58.99 (14)° (between the N1,N2,C6–C9 ring and C11–C16 ring), 9.56 (14)° (between the N1,N2,C6–C9 ring and C17–C22 ring), 79.94 (15)° (between the N3,N4,C23–C26 ring and C28–C33 ring) and 9.34 (14)° (between the N3,N4,C23–C26 ring and C34–C39 ring).

Related literature top

For background to organic light-emitting diodes based on phosphorescent complexes, see: Baldo et al. (1998, 2000); Hwang et al. (2005); Liu et al. (2008); Tsuboyama et al. (2003). For the synthesis, see: Zhang et al. (2003, 2005).

Experimental top

The title complex was obtained according to the procedure previously reported (Zhang et al., 2003, 2005). Orange red crystals of the title complex suitable for X-ray structure analysis were grown from a mixture of 3 ml dichloromethane and 12 ml ethanol.

Refinement top

H atoms attached to C atoms were positioned geometrically and treated as riding, with C—H = 0.93 (aromatic) and 0.96 (methyl) Å and with Uiso(H) = 1.2(1.5 for methyl)Ueq(C). The highest residual electron density was found at 0.88 Å from Ir1 atom and the deepest hole at 1.51 Å from O1 atom.

Computing details top

Data collection: RAPID-AUTO (Rigaku, 1998); cell refinement: RAPID-AUTO (Rigaku, 1998); data reduction: CrystalStructure (Rigaku/MSC, 2002); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: XP in SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. The molecular structure of the title complex, showing displacement ellipsoids at the 30% probability level.
(Acetylacetonato-κ2O,O')bis[2-(5-methyl-3-phenylpyrazin- 2-yl-κN1)phenyl-κC1]iridium(III) top
Crystal data top
[Ir(C17H13N2)2(C5H7O2)]F(000) = 1552.0
Mr = 781.91Dx = 1.543 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ybcCell parameters from 6987 reflections
a = 11.078 (2) Åθ = 1.0–25.1°
b = 26.021 (5) ŵ = 4.01 mm1
c = 12.155 (2) ÅT = 295 K
β = 106.09 (3)°Flaky, orange
V = 3366.6 (12) Å30.43 × 0.30 × 0.12 mm
Z = 4
Data collection top
Rigaku R-AXIS RAPID
diffractometer
5991 independent reflections
Radiation source: rotation anode4919 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.044
ω scansθmax = 25.1°, θmin = 3.0°
Absorption correction: multi-scan
(ABSCOR; Higashi, 1995)
h = 1312
Tmin = 0.240, Tmax = 0.606k = 3131
25384 measured reflectionsl = 1414
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.031Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.062H-atom parameters constrained
S = 1.05 w = 1/[σ2(Fo2) + (0.0275P)2 + 3.1586P]
where P = (Fo2 + 2Fc2)/3
5991 reflections(Δ/σ)max = 0.001
415 parametersΔρmax = 1.12 e Å3
0 restraintsΔρmin = 0.38 e Å3
Crystal data top
[Ir(C17H13N2)2(C5H7O2)]V = 3366.6 (12) Å3
Mr = 781.91Z = 4
Monoclinic, P21/cMo Kα radiation
a = 11.078 (2) ŵ = 4.01 mm1
b = 26.021 (5) ÅT = 295 K
c = 12.155 (2) Å0.43 × 0.30 × 0.12 mm
β = 106.09 (3)°
Data collection top
Rigaku R-AXIS RAPID
diffractometer
5991 independent reflections
Absorption correction: multi-scan
(ABSCOR; Higashi, 1995)
4919 reflections with I > 2σ(I)
Tmin = 0.240, Tmax = 0.606Rint = 0.044
25384 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0310 restraints
wR(F2) = 0.062H-atom parameters constrained
S = 1.05Δρmax = 1.12 e Å3
5991 reflectionsΔρmin = 0.38 e Å3
415 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R-factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Ir10.208032 (15)0.139098 (6)0.782061 (14)0.03722 (6)
C10.4386 (5)0.1537 (2)1.1455 (4)0.0693 (15)
H22A0.50540.16911.12090.104*
H22B0.46680.12171.18330.104*
H22C0.41400.17641.19770.104*
C20.3278 (4)0.14403 (17)1.0431 (4)0.0525 (11)
C30.2208 (5)0.1215 (2)1.0628 (4)0.0698 (15)
H20A0.22640.11401.13890.084*
C40.1087 (5)0.10886 (19)0.9852 (5)0.0580 (13)
C50.0044 (5)0.0863 (2)1.0299 (5)0.0805 (17)
H19A0.06790.07940.96680.121*
H19B0.01770.11041.08100.121*
H19C0.03300.05491.07020.121*
C60.2705 (5)0.02880 (17)0.8455 (4)0.0589 (13)
H2A0.20610.03090.88080.071*
C70.3347 (5)0.01666 (18)0.8502 (5)0.0722 (16)
C80.4656 (4)0.02194 (16)0.7558 (4)0.0475 (11)
C90.3949 (4)0.06790 (15)0.7408 (3)0.0393 (9)
C100.3003 (7)0.0642 (2)0.9060 (7)0.123 (3)
H39A0.35580.09180.90030.185*
H39B0.21530.07380.86800.185*
H39C0.30790.05720.98520.185*
C110.5840 (4)0.01549 (16)0.7211 (4)0.0468 (11)
C120.6876 (4)0.0471 (2)0.7647 (4)0.0627 (14)
H17A0.68310.07340.81510.075*
C130.7983 (5)0.0394 (2)0.7333 (5)0.0747 (16)
H13A0.86720.06070.76210.090*
C140.8042 (5)0.0002 (2)0.6596 (6)0.0769 (17)
H14A0.87840.00560.63990.092*
C150.7021 (5)0.0308 (2)0.6146 (5)0.0705 (15)
H15A0.70620.05640.56240.085*
C160.5932 (5)0.02378 (18)0.6470 (4)0.0572 (12)
H16A0.52540.04570.61870.069*
C170.4081 (4)0.11465 (16)0.6771 (3)0.0394 (9)
C180.4850 (4)0.11940 (17)0.6030 (4)0.0443 (10)
H8A0.53100.09140.58960.053*
C190.4920 (4)0.16631 (17)0.5498 (4)0.0496 (11)
H4A0.54320.16970.50110.059*
C200.4227 (4)0.20772 (17)0.5693 (4)0.0488 (11)
H10A0.43040.23930.53630.059*
C210.3419 (4)0.20268 (16)0.6377 (4)0.0464 (10)
H11A0.29480.23090.64790.056*
C220.3292 (4)0.15624 (15)0.6917 (3)0.0377 (9)
C230.1626 (4)0.24994 (16)0.8225 (4)0.0428 (10)
H28A0.23270.24680.88540.051*
C240.1039 (4)0.29742 (16)0.7977 (4)0.0450 (10)
C250.0375 (4)0.26227 (16)0.6396 (4)0.0437 (10)
C260.0176 (4)0.21332 (15)0.6644 (4)0.0403 (9)
C270.1525 (5)0.34458 (17)0.8674 (4)0.0650 (14)
H34A0.09940.37330.83690.098*
H34B0.23660.35160.86430.098*
H34C0.15250.33890.94540.098*
C280.1423 (4)0.27482 (16)0.5357 (4)0.0444 (10)
C290.2639 (4)0.2821 (2)0.5423 (5)0.0689 (15)
H33A0.28250.27730.61170.083*
C300.3581 (5)0.2964 (2)0.4461 (5)0.0759 (17)
H35A0.43980.30090.45080.091*
C310.3309 (5)0.3038 (2)0.3450 (5)0.0669 (14)
H36A0.39500.31220.28000.080*
C320.2114 (5)0.2992 (2)0.3375 (5)0.0765 (16)
H37A0.19280.30610.26900.092*
C330.1174 (5)0.2840 (2)0.4334 (4)0.0701 (15)
H38A0.03580.27990.42790.084*
C340.0151 (4)0.16473 (16)0.5999 (4)0.0448 (10)
C350.1229 (5)0.15696 (19)0.5085 (5)0.0658 (14)
H25A0.18180.18310.48630.079*
C360.1418 (5)0.1103 (2)0.4511 (5)0.0747 (16)
H30A0.21350.10490.39090.090*
C370.0527 (5)0.07180 (18)0.4845 (4)0.0626 (13)
H24A0.06380.04090.44450.075*
C380.0516 (4)0.07848 (16)0.5754 (4)0.0493 (11)
H23A0.10960.05190.59600.059*
C390.0730 (4)0.12449 (15)0.6381 (4)0.0411 (10)
N10.2983 (3)0.07045 (12)0.7911 (3)0.0414 (8)
N20.4340 (4)0.01988 (14)0.8071 (4)0.0649 (12)
N30.1204 (3)0.20862 (12)0.7578 (3)0.0376 (8)
N40.0040 (3)0.30328 (13)0.7065 (3)0.0487 (9)
O10.0806 (3)0.11293 (12)0.8766 (3)0.0520 (8)
O20.3405 (3)0.15789 (11)0.9454 (3)0.0471 (7)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Ir10.03609 (9)0.03515 (9)0.04216 (10)0.00151 (8)0.01377 (7)0.00015 (8)
C10.073 (4)0.070 (3)0.056 (3)0.004 (3)0.003 (3)0.005 (3)
C20.058 (3)0.050 (3)0.049 (3)0.005 (2)0.014 (2)0.001 (2)
C30.075 (4)0.092 (4)0.045 (3)0.015 (3)0.022 (3)0.002 (3)
C40.069 (3)0.057 (3)0.059 (3)0.005 (3)0.035 (3)0.004 (2)
C50.085 (4)0.094 (4)0.080 (4)0.026 (3)0.051 (3)0.010 (3)
C60.067 (3)0.048 (3)0.076 (4)0.009 (2)0.044 (3)0.013 (2)
C70.090 (4)0.043 (3)0.105 (5)0.017 (3)0.062 (4)0.023 (3)
C80.054 (3)0.041 (2)0.052 (3)0.005 (2)0.023 (2)0.000 (2)
C90.040 (2)0.038 (2)0.041 (2)0.0029 (18)0.0147 (19)0.0014 (18)
C100.166 (7)0.056 (4)0.203 (8)0.029 (4)0.145 (7)0.050 (4)
C110.046 (3)0.041 (2)0.055 (3)0.007 (2)0.018 (2)0.007 (2)
C120.062 (3)0.064 (3)0.062 (3)0.007 (3)0.016 (3)0.005 (3)
C130.050 (3)0.087 (4)0.086 (4)0.004 (3)0.016 (3)0.005 (3)
C140.062 (4)0.078 (4)0.103 (5)0.016 (3)0.044 (3)0.004 (3)
C150.078 (4)0.065 (3)0.081 (4)0.011 (3)0.043 (3)0.009 (3)
C160.060 (3)0.046 (3)0.071 (3)0.006 (2)0.027 (3)0.001 (2)
C170.037 (2)0.040 (2)0.039 (2)0.0041 (18)0.0057 (19)0.0006 (18)
C180.047 (2)0.045 (2)0.044 (3)0.004 (2)0.019 (2)0.002 (2)
C190.053 (3)0.054 (3)0.047 (3)0.007 (2)0.023 (2)0.002 (2)
C200.049 (3)0.047 (3)0.048 (3)0.008 (2)0.009 (2)0.010 (2)
C210.043 (2)0.041 (2)0.052 (3)0.004 (2)0.009 (2)0.007 (2)
C220.037 (2)0.040 (2)0.034 (2)0.0005 (18)0.0063 (18)0.0029 (17)
C230.043 (2)0.045 (2)0.039 (2)0.002 (2)0.009 (2)0.0051 (19)
C240.050 (3)0.043 (2)0.043 (3)0.003 (2)0.015 (2)0.0064 (19)
C250.040 (2)0.045 (2)0.045 (3)0.002 (2)0.010 (2)0.003 (2)
C260.035 (2)0.043 (2)0.042 (2)0.0021 (18)0.0081 (19)0.0049 (19)
C270.083 (4)0.043 (3)0.060 (3)0.010 (3)0.007 (3)0.009 (2)
C280.038 (2)0.045 (2)0.048 (3)0.0048 (19)0.009 (2)0.000 (2)
C290.046 (3)0.096 (4)0.066 (4)0.012 (3)0.017 (3)0.024 (3)
C300.038 (3)0.108 (5)0.080 (4)0.014 (3)0.012 (3)0.027 (4)
C310.050 (3)0.079 (4)0.060 (3)0.012 (3)0.003 (3)0.012 (3)
C320.063 (3)0.115 (5)0.048 (3)0.010 (3)0.010 (3)0.006 (3)
C330.048 (3)0.106 (4)0.059 (3)0.016 (3)0.019 (3)0.002 (3)
C340.039 (2)0.043 (2)0.049 (3)0.003 (2)0.007 (2)0.006 (2)
C350.058 (3)0.049 (3)0.077 (4)0.006 (2)0.003 (3)0.017 (3)
C360.065 (3)0.064 (3)0.076 (4)0.013 (3)0.012 (3)0.018 (3)
C370.072 (3)0.044 (3)0.068 (3)0.011 (3)0.013 (3)0.014 (2)
C380.054 (3)0.037 (2)0.058 (3)0.001 (2)0.017 (2)0.006 (2)
C390.037 (2)0.042 (2)0.047 (3)0.0039 (18)0.016 (2)0.0003 (19)
N10.048 (2)0.0341 (18)0.046 (2)0.0037 (15)0.0191 (17)0.0035 (15)
N20.081 (3)0.039 (2)0.093 (3)0.016 (2)0.054 (3)0.016 (2)
N30.0367 (18)0.0359 (18)0.042 (2)0.0017 (15)0.0136 (16)0.0035 (15)
N40.050 (2)0.044 (2)0.051 (2)0.0083 (17)0.0122 (19)0.0024 (18)
O10.0475 (18)0.0573 (19)0.057 (2)0.0063 (15)0.0237 (16)0.0032 (16)
O20.0431 (17)0.0506 (17)0.0455 (18)0.0010 (14)0.0086 (14)0.0029 (14)
Geometric parameters (Å, º) top
Ir1—N12.035 (3)C17—C221.433 (6)
Ir1—N32.035 (3)C18—C191.394 (6)
Ir1—O12.162 (3)C18—H8A0.9300
Ir1—O22.173 (3)C19—C201.381 (6)
Ir1—C222.006 (4)C19—H4A0.9300
Ir1—C391.999 (4)C20—C211.386 (6)
C1—C21.508 (7)C20—H10A0.9300
C1—H22A0.9600C21—C221.401 (6)
C1—H22B0.9600C21—H11A0.9300
C1—H22C0.9600C23—N31.338 (5)
C2—O21.285 (5)C23—C241.390 (6)
C2—C31.401 (7)C23—H28A0.9300
C3—C41.375 (7)C24—N41.340 (5)
C3—H20A0.9300C24—C271.503 (6)
C4—O11.274 (6)C25—N41.344 (5)
C4—C51.525 (6)C25—C261.409 (6)
C5—H19A0.9600C25—C281.495 (6)
C5—H19B0.9600C26—N31.373 (5)
C5—H19C0.9600C26—C341.479 (6)
C6—N11.349 (5)C27—H34A0.9600
C6—C71.374 (6)C27—H34B0.9600
C6—H2A0.9300C27—H34C0.9600
C7—N21.346 (6)C28—C331.367 (6)
C7—C101.509 (7)C28—C291.385 (6)
C8—N21.347 (5)C29—C301.385 (7)
C8—C91.413 (6)C29—H33A0.9300
C8—C111.495 (6)C30—C311.358 (7)
C9—N11.373 (5)C30—H35A0.9300
C9—C171.471 (6)C31—C321.356 (7)
C10—H39A0.9600C31—H36A0.9300
C10—H39B0.9600C32—C331.388 (7)
C10—H39C0.9600C32—H37A0.9300
C11—C161.385 (6)C33—H38A0.9300
C11—C121.391 (6)C34—C351.402 (6)
C12—C131.395 (6)C34—C391.419 (6)
C12—H17A0.9300C35—C361.387 (7)
C13—C141.373 (8)C35—H25A0.9300
C13—H13A0.9300C36—C371.385 (7)
C14—C151.372 (8)C36—H30A0.9300
C14—H14A0.9300C37—C381.371 (6)
C15—C161.380 (6)C37—H24A0.9300
C15—H15A0.9300C38—C391.404 (6)
C16—H16A0.9300C38—H23A0.9300
C17—C181.407 (5)
C39—Ir1—C2290.85 (16)C17—C18—H8A120.1
C39—Ir1—N380.27 (15)C20—C19—C18119.9 (4)
C22—Ir1—N395.01 (15)C20—C19—H4A120.1
C39—Ir1—N196.76 (15)C18—C19—H4A120.1
C22—Ir1—N180.28 (14)C19—C20—C21120.7 (4)
N3—Ir1—N1174.44 (12)C19—C20—H10A119.6
C39—Ir1—O187.99 (14)C21—C20—H10A119.6
C22—Ir1—O1174.49 (13)C20—C21—C22121.9 (4)
N3—Ir1—O190.10 (12)C20—C21—H11A119.1
N1—Ir1—O194.50 (12)C22—C21—H11A119.1
C39—Ir1—O2174.37 (13)C21—C22—C17116.7 (4)
C22—Ir1—O293.77 (14)C21—C22—Ir1128.2 (3)
N3—Ir1—O296.12 (12)C17—C22—Ir1115.0 (3)
N1—Ir1—O287.19 (12)N3—C23—C24121.4 (4)
O1—Ir1—O287.71 (11)N3—C23—H28A119.3
C2—C1—H22A109.5C24—C23—H28A119.3
C2—C1—H22B109.5N4—C24—C23120.7 (4)
H22A—C1—H22B109.5N4—C24—C27117.2 (4)
C2—C1—H22C109.5C23—C24—C27122.0 (4)
H22A—C1—H22C109.5N4—C25—C26122.2 (4)
H22B—C1—H22C109.5N4—C25—C28113.2 (4)
O2—C2—C3126.1 (5)C26—C25—C28124.6 (4)
O2—C2—C1116.4 (4)N3—C26—C25118.0 (4)
C3—C2—C1117.5 (4)N3—C26—C34112.8 (3)
C4—C3—C2128.9 (5)C25—C26—C34129.1 (4)
C4—C3—H20A115.5C24—C27—H34A109.5
C2—C3—H20A115.5C24—C27—H34B109.5
O1—C4—C3127.3 (4)H34A—C27—H34B109.5
O1—C4—C5114.2 (5)C24—C27—H34C109.5
C3—C4—C5118.5 (5)H34A—C27—H34C109.5
C4—C5—H19A109.5H34B—C27—H34C109.5
C4—C5—H19B109.5C33—C28—C29118.3 (4)
H19A—C5—H19B109.5C33—C28—C25120.1 (4)
C4—C5—H19C109.5C29—C28—C25121.4 (4)
H19A—C5—H19C109.5C28—C29—C30120.3 (5)
H19B—C5—H19C109.5C28—C29—H33A119.8
N1—C6—C7121.7 (4)C30—C29—H33A119.8
N1—C6—H2A119.1C31—C30—C29119.9 (5)
C7—C6—H2A119.1C31—C30—H35A120.1
N2—C7—C6120.5 (4)C29—C30—H35A120.1
N2—C7—C10117.3 (4)C32—C31—C30120.9 (5)
C6—C7—C10122.1 (4)C32—C31—H36A119.5
N2—C8—C9122.5 (4)C30—C31—H36A119.5
N2—C8—C11113.6 (4)C31—C32—C33119.2 (5)
C9—C8—C11123.8 (4)C31—C32—H37A120.4
N1—C9—C8117.1 (4)C33—C32—H37A120.4
N1—C9—C17113.4 (3)C28—C33—C32121.3 (5)
C8—C9—C17129.5 (4)C28—C33—H38A119.4
C7—C10—H39A109.5C32—C33—H38A119.4
C7—C10—H39B109.5C35—C34—C39120.7 (4)
H39A—C10—H39B109.5C35—C34—C26125.0 (4)
C7—C10—H39C109.5C39—C34—C26114.3 (4)
H39A—C10—H39C109.5C36—C35—C34120.1 (5)
H39B—C10—H39C109.5C36—C35—H25A120.0
C16—C11—C12118.8 (4)C34—C35—H25A120.0
C16—C11—C8119.7 (4)C37—C36—C35119.3 (5)
C12—C11—C8121.5 (4)C37—C36—H30A120.3
C11—C12—C13120.5 (5)C35—C36—H30A120.3
C11—C12—H17A119.8C38—C37—C36121.2 (4)
C13—C12—H17A119.8C38—C37—H24A119.4
C14—C13—C12119.3 (5)C36—C37—H24A119.4
C14—C13—H13A120.4C37—C38—C39121.6 (4)
C12—C13—H13A120.4C37—C38—H23A119.2
C15—C14—C13120.9 (5)C39—C38—H23A119.2
C15—C14—H14A119.6C38—C39—C34117.0 (4)
C13—C14—H14A119.6C38—C39—Ir1127.6 (3)
C14—C15—C16119.9 (5)C34—C39—Ir1115.2 (3)
C14—C15—H15A120.1C6—N1—C9119.5 (3)
C16—C15—H15A120.1C6—N1—Ir1123.7 (3)
C15—C16—C11120.7 (5)C9—N1—Ir1116.8 (3)
C15—C16—H16A119.6C7—N2—C8118.3 (4)
C11—C16—H16A119.6C23—N3—C26119.3 (3)
C18—C17—C22120.7 (4)C23—N3—Ir1123.7 (3)
C18—C17—C9125.2 (4)C26—N3—Ir1116.9 (3)
C22—C17—C9114.0 (3)C24—N4—C25118.4 (4)
C19—C18—C17119.7 (4)C4—O1—Ir1124.7 (3)
C19—C18—H8A120.1C2—O2—Ir1124.2 (3)
O2—C2—C3—C40.6 (9)C39—C34—C35—C362.8 (8)
C1—C2—C3—C4179.9 (5)C26—C34—C35—C36177.5 (5)
C2—C3—C4—O13.7 (10)C34—C35—C36—C370.6 (9)
C2—C3—C4—C5177.7 (5)C35—C36—C37—C382.1 (9)
N1—C6—C7—N24.8 (9)C36—C37—C38—C390.3 (8)
N1—C6—C7—C10177.1 (6)C37—C38—C39—C342.9 (6)
N2—C8—C9—N16.4 (7)C37—C38—C39—Ir1172.9 (4)
C11—C8—C9—N1171.2 (4)C35—C34—C39—C384.4 (6)
N2—C8—C9—C17173.0 (4)C26—C34—C39—C38175.8 (4)
C11—C8—C9—C179.5 (7)C35—C34—C39—Ir1171.9 (4)
N2—C8—C11—C1658.3 (6)C26—C34—C39—Ir17.8 (5)
C9—C8—C11—C16123.9 (5)C22—Ir1—C39—C3884.3 (4)
N2—C8—C11—C12119.4 (5)N3—Ir1—C39—C38179.2 (4)
C9—C8—C11—C1258.3 (7)N1—Ir1—C39—C384.0 (4)
C16—C11—C12—C130.5 (7)O1—Ir1—C39—C3890.3 (4)
C8—C11—C12—C13178.3 (5)C22—Ir1—C39—C3499.8 (3)
C11—C12—C13—C140.5 (8)N3—Ir1—C39—C344.9 (3)
C12—C13—C14—C151.5 (9)N1—Ir1—C39—C34179.9 (3)
C13—C14—C15—C162.5 (9)O1—Ir1—C39—C3485.6 (3)
C14—C15—C16—C112.6 (8)C7—C6—N1—C91.3 (8)
C12—C11—C16—C151.6 (7)C7—C6—N1—Ir1179.5 (4)
C8—C11—C16—C15179.4 (5)C8—C9—N1—C64.0 (6)
N1—C9—C17—C18169.3 (4)C17—C9—N1—C6175.5 (4)
C8—C9—C17—C1810.1 (7)C8—C9—N1—Ir1174.3 (3)
N1—C9—C17—C227.7 (5)C17—C9—N1—Ir16.3 (4)
C8—C9—C17—C22172.9 (4)C39—Ir1—N1—C689.6 (4)
C22—C17—C18—C194.9 (6)C22—Ir1—N1—C6179.3 (4)
C9—C17—C18—C19178.3 (4)O1—Ir1—N1—C61.1 (4)
C17—C18—C19—C200.5 (7)O2—Ir1—N1—C686.4 (4)
C18—C19—C20—C212.8 (7)C39—Ir1—N1—C992.3 (3)
C19—C20—C21—C221.6 (7)C22—Ir1—N1—C92.5 (3)
C20—C21—C22—C172.7 (6)O1—Ir1—N1—C9179.2 (3)
C20—C21—C22—Ir1174.2 (3)O2—Ir1—N1—C991.8 (3)
C18—C17—C22—C215.9 (6)C6—C7—N2—C82.4 (9)
C9—C17—C22—C21177.0 (4)C10—C7—N2—C8179.3 (6)
C18—C17—C22—Ir1171.4 (3)C9—C8—N2—C73.1 (8)
C9—C17—C22—Ir15.7 (4)C11—C8—N2—C7174.6 (5)
C39—Ir1—C22—C2182.1 (4)C24—C23—N3—C260.5 (6)
N3—Ir1—C22—C211.8 (4)C24—C23—N3—Ir1175.7 (3)
N1—Ir1—C22—C21178.8 (4)C25—C26—N3—C231.4 (5)
O2—Ir1—C22—C2194.7 (4)C34—C26—N3—C23178.3 (4)
C39—Ir1—C22—C1794.8 (3)C25—C26—N3—Ir1174.1 (3)
N3—Ir1—C22—C17175.1 (3)C34—C26—N3—Ir12.8 (4)
N1—Ir1—C22—C171.9 (3)C39—Ir1—N3—C23174.3 (3)
O2—Ir1—C22—C1788.4 (3)C22—Ir1—N3—C2384.3 (3)
N3—C23—C24—N41.0 (6)O1—Ir1—N3—C2397.8 (3)
N3—C23—C24—C27178.1 (4)O2—Ir1—N3—C2310.1 (3)
N4—C25—C26—N32.8 (6)C39—Ir1—N3—C261.0 (3)
C28—C25—C26—N3174.3 (4)C22—Ir1—N3—C2691.0 (3)
N4—C25—C26—C34179.2 (4)O1—Ir1—N3—C2686.9 (3)
C28—C25—C26—C342.1 (7)O2—Ir1—N3—C26174.6 (3)
N4—C25—C28—C3396.8 (5)C23—C24—N4—C250.4 (6)
C26—C25—C28—C3380.6 (6)C27—C24—N4—C25176.8 (4)
N4—C25—C28—C2977.3 (6)C26—C25—N4—C242.3 (6)
C26—C25—C28—C29105.4 (5)C28—C25—N4—C24175.2 (4)
C33—C28—C29—C302.3 (8)C3—C4—O1—Ir12.3 (7)
C25—C28—C29—C30176.5 (5)C5—C4—O1—Ir1176.4 (3)
C28—C29—C30—C310.6 (9)C39—Ir1—O1—C4176.2 (4)
C29—C30—C31—C322.4 (10)N3—Ir1—O1—C4103.6 (4)
C30—C31—C32—C333.4 (9)N1—Ir1—O1—C479.6 (4)
C29—C28—C33—C321.3 (8)O2—Ir1—O1—C47.4 (4)
C25—C28—C33—C32175.5 (5)C3—C2—O2—Ir19.8 (7)
C31—C32—C33—C281.6 (9)C1—C2—O2—Ir1171.0 (3)
N3—C26—C34—C35172.9 (4)C22—Ir1—O2—C2163.8 (3)
C25—C26—C34—C3510.5 (7)N3—Ir1—O2—C2100.8 (3)
N3—C26—C34—C396.8 (5)N1—Ir1—O2—C283.7 (3)
C25—C26—C34—C39169.7 (4)O1—Ir1—O2—C210.9 (3)

Experimental details

Crystal data
Chemical formula[Ir(C17H13N2)2(C5H7O2)]
Mr781.91
Crystal system, space groupMonoclinic, P21/c
Temperature (K)295
a, b, c (Å)11.078 (2), 26.021 (5), 12.155 (2)
β (°) 106.09 (3)
V3)3366.6 (12)
Z4
Radiation typeMo Kα
µ (mm1)4.01
Crystal size (mm)0.43 × 0.30 × 0.12
Data collection
DiffractometerRigaku R-AXIS RAPID
diffractometer
Absorption correctionMulti-scan
(ABSCOR; Higashi, 1995)
Tmin, Tmax0.240, 0.606
No. of measured, independent and
observed [I > 2σ(I)] reflections
25384, 5991, 4919
Rint0.044
(sin θ/λ)max1)0.597
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.031, 0.062, 1.05
No. of reflections5991
No. of parameters415
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)1.12, 0.38

Computer programs: RAPID-AUTO (Rigaku, 1998), CrystalStructure (Rigaku/MSC, 2002), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), XP in SHELXTL (Sheldrick, 2008), SHELXTL (Sheldrick, 2008).

Selected bond lengths (Å) top
Ir1—N12.035 (3)Ir1—O22.173 (3)
Ir1—N32.035 (3)Ir1—C222.006 (4)
Ir1—O12.162 (3)Ir1—C391.999 (4)
 

Acknowledgements

This project was supported by Ningbo Municipal Natural Science Foundation (grant No. 2010 A610164) and sponsored by the K. C. Wong Magna Fund of Ningbo University.

References

First citationBaldo, M. A., O'Brien, D. F., You, Y., Shoustikov, A., Sibley, S., Thompson, M. E. & Forrest, S. R. (1998). Nature (London), 395, 151–154.  CAS Google Scholar
First citationBaldo, M. A., Thompson, M. E. & Forrest, S. R. (2000). Nature (London), 403, 750–753.  PubMed CAS Google Scholar
First citationHigashi, T. (1995). ABSCOR. Rigaku Corporation, Tokyo, Japan.  Google Scholar
First citationHwang, F. M., Chen, H. Y., Chen, P. S., Liu, C. S., Chi, Y. C., Shu, C. F., Wu, F. L., Chou, P. T., Peng, S. M. & Lee, G. H. (2005). Inorg. Chem. 44, 1344–1353.  Web of Science CSD CrossRef PubMed CAS Google Scholar
First citationLiu, Z.-W., Nie, D.-B., Bian, Z.-Q., Chen, F.-F., Lou, B., Bian, J. & Huang, C.-H. (2008). ChemPhysChem, 9, 634–640.  Web of Science CSD CrossRef PubMed CAS Google Scholar
First citationRigaku (1998). RAPID-AUTO. Rigaku Corporation, Tokyo, Japan.  Google Scholar
First citationRigaku/MSC (2002). CrystalStructure. Rigaku/MSC Inc., The Woodlands, Texas, USA.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationTsuboyama, A., Iwawaki, H., Furugori, M., Mukaide, T., Kamatani, J., Igawa, S., Moriyama, T., Miura, S., Takiguchi, T., Okada, S., Hoshino, M. & Ueno, K. (2003). J. Am. Chem. Soc. 125, 12971–12979.  Web of Science CSD CrossRef PubMed CAS Google Scholar
First citationZhang, G.-L., Guo, H.-Q., Chuai, Y.-T. & Zou, D.-C. (2005). Mater. Lett. 59, 3002–3006.  Web of Science CrossRef CAS Google Scholar
First citationZhang, G.-L., Liu, Z.-H. & Guo, H.-Q. (2003). Acta Phys. Chim. Sin. 19, 889–891.  CAS Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds