metal-organic compounds
catena-Poly[[(isoquinoline-κN)(triphenylphospane-κP)copper(I)]-μ-thiocyanato-κ2N:S]
aDepartment of Chemistry, Capital Normal University, Beijing 100048, People's Republic of China, bResearch Center for Import-Export Chemicals Safety of the General Administration of Quality Supervision, Inspection and Quarantine of the People's Republic of China (AQSIQ), Beijing 100123, People's Republic of China, and cKey Laboratory of Terahertz Optoelectronics of the Ministry of Education, Department of Physics, Capital Normal University, Beijing 100048, People's Republic of China
*Correspondence e-mail: jinqh204@163.com
In the title coordination compound, [Cu(NCS)(C9H7N)(C18H15P)]n, the CuI atom is tetrahedrally coordinated by one N atom from an isoquinoline ligand, one P atom from a triphenylphospane ligand, and one N and one S atom from two thiocyanate anions. The thiocyanide anions bridge the CuI atoms into a chain along [100]. π–π interactions between the pyridine and benzene rings of the isoquinoline ligands connect the chains [centroid-to-centroid distance = 3.722 (3) Å].
Related literature
For background to the applications of copper(I) complexes, see: Dai et al. (2010); Jin et al. (2010); Lu et al. (1997); Song et al. (2010). For related structures, see: Jin et al. (1999); Li, Wu et al. (2011); Li, Xiao et al. (2011).
Experimental
Crystal data
|
Refinement
|
Data collection: SMART (Bruker, 2007); cell SAINT-Plus (Bruker, 2007); data reduction: SAINT-Plus; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: DIAMOND (Brandenburg, 1999); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).
Supporting information
10.1107/S1600536812004837/hy2511sup1.cif
contains datablocks global, I. DOI:Structure factors: contains datablock I. DOI: 10.1107/S1600536812004837/hy2511Isup2.hkl
The title complex was prepared by adding PPh3 (0.3 mmol, 0.079 g) into a mixture of CH2Cl2 (5 ml) and MeOH (5 ml) containing CuSCN (0.3 mmol, 0.036 g) and excess iq. The stirring continued for 3 h. After slow evaporation of the filtrate at ambient temperature for several days, yellow strip-shaped crystals were obtained. Crystals suitable for single-crystal X-ray diffraction were selected directly from the sample as prepared.
H atoms were positioned geometrically and refined as riding atoms, with C—H = 0.93 Å and with Uiso(H) = 1.2Ueq(C).
Data collection: SMART (Bruker, 2007); cell
SAINT-Plus (Bruker, 2007); data reduction: SAINT-Plus (Bruker, 2007); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: DIAMOND (Brandenburg, 1999); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).[Cu(NCS)(C9H7N)(C18H15P)] | F(000) = 1056 |
Mr = 513.05 | Dx = 1.393 Mg m−3 |
Monoclinic, P21/c | Mo Kα radiation, λ = 0.71073 Å |
Hall symbol: -P 2ybc | Cell parameters from 2854 reflections |
a = 12.9573 (13) Å | θ = 2.6–22.5° |
b = 10.5506 (11) Å | µ = 1.06 mm−1 |
c = 18.9241 (18) Å | T = 298 K |
β = 108.961 (1)° | Prism, yellow |
V = 2446.7 (4) Å3 | 0.32 × 0.21 × 0.19 mm |
Z = 4 |
Bruker SMART 1000 CCD diffractometer | 4313 independent reflections |
Radiation source: fine-focus sealed tube | 2656 reflections with I > 2σ(I) |
Graphite monochromator | Rint = 0.042 |
ϕ and ω scans | θmax = 25.0°, θmin = 2.6° |
Absorption correction: multi-scan (SADABS; Bruker, 2001) | h = −15→15 |
Tmin = 0.727, Tmax = 0.824 | k = −12→12 |
12067 measured reflections | l = −22→18 |
Refinement on F2 | Primary atom site location: structure-invariant direct methods |
Least-squares matrix: full | Secondary atom site location: difference Fourier map |
R[F2 > 2σ(F2)] = 0.041 | Hydrogen site location: inferred from neighbouring sites |
wR(F2) = 0.108 | H-atom parameters constrained |
S = 1.05 | w = 1/[σ2(Fo2) + (0.0387P)2 + 1.2684P] where P = (Fo2 + 2Fc2)/3 |
4313 reflections | (Δ/σ)max < 0.001 |
298 parameters | Δρmax = 0.41 e Å−3 |
0 restraints | Δρmin = −0.25 e Å−3 |
[Cu(NCS)(C9H7N)(C18H15P)] | V = 2446.7 (4) Å3 |
Mr = 513.05 | Z = 4 |
Monoclinic, P21/c | Mo Kα radiation |
a = 12.9573 (13) Å | µ = 1.06 mm−1 |
b = 10.5506 (11) Å | T = 298 K |
c = 18.9241 (18) Å | 0.32 × 0.21 × 0.19 mm |
β = 108.961 (1)° |
Bruker SMART 1000 CCD diffractometer | 4313 independent reflections |
Absorption correction: multi-scan (SADABS; Bruker, 2001) | 2656 reflections with I > 2σ(I) |
Tmin = 0.727, Tmax = 0.824 | Rint = 0.042 |
12067 measured reflections |
R[F2 > 2σ(F2)] = 0.041 | 0 restraints |
wR(F2) = 0.108 | H-atom parameters constrained |
S = 1.05 | Δρmax = 0.41 e Å−3 |
4313 reflections | Δρmin = −0.25 e Å−3 |
298 parameters |
Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes. |
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R-factors based on ALL data will be even larger. |
x | y | z | Uiso*/Ueq | ||
Cu1 | 0.60682 (4) | 0.39666 (4) | 0.25965 (3) | 0.04929 (17) | |
P1 | 0.75772 (8) | 0.43807 (9) | 0.35473 (6) | 0.0449 (3) | |
S1 | 0.44293 (9) | 0.45262 (10) | 0.28281 (7) | 0.0572 (3) | |
N1 | 0.6132 (3) | 0.4852 (3) | 0.16249 (18) | 0.0523 (9) | |
N2 | 0.4224 (3) | 0.7158 (3) | 0.2701 (2) | 0.0638 (10) | |
C1 | 0.6628 (3) | 0.4305 (4) | 0.1208 (2) | 0.0575 (11) | |
H1 | 0.6942 | 0.3515 | 0.1357 | 0.069* | |
C2 | 0.5675 (3) | 0.6006 (4) | 0.1397 (2) | 0.0581 (11) | |
H2 | 0.5312 | 0.6408 | 0.1685 | 0.070* | |
C3 | 0.5719 (4) | 0.6601 (4) | 0.0774 (3) | 0.0629 (12) | |
H3 | 0.5406 | 0.7398 | 0.0650 | 0.076* | |
C4 | 0.6232 (3) | 0.6021 (4) | 0.0322 (2) | 0.0499 (10) | |
C5 | 0.6721 (3) | 0.4842 (4) | 0.0535 (2) | 0.0486 (10) | |
C6 | 0.7248 (4) | 0.4218 (5) | 0.0107 (3) | 0.0700 (13) | |
H6 | 0.7581 | 0.3440 | 0.0262 | 0.084* | |
C7 | 0.7275 (4) | 0.4745 (5) | −0.0540 (3) | 0.0770 (14) | |
H7 | 0.7627 | 0.4329 | −0.0830 | 0.092* | |
C8 | 0.6774 (4) | 0.5913 (5) | −0.0770 (3) | 0.0744 (14) | |
H8 | 0.6794 | 0.6257 | −0.1218 | 0.089* | |
C9 | 0.6265 (4) | 0.6557 (5) | −0.0369 (3) | 0.0653 (12) | |
H9 | 0.5939 | 0.7335 | −0.0535 | 0.078* | |
C10 | 0.8397 (3) | 0.5678 (3) | 0.3374 (2) | 0.0437 (9) | |
C11 | 0.7862 (3) | 0.6785 (4) | 0.3058 (2) | 0.0566 (11) | |
H11 | 0.7108 | 0.6840 | 0.2942 | 0.068* | |
C12 | 0.8432 (4) | 0.7799 (4) | 0.2916 (3) | 0.0689 (13) | |
H12 | 0.8066 | 0.8541 | 0.2716 | 0.083* | |
C13 | 0.9535 (4) | 0.7718 (4) | 0.3067 (3) | 0.0694 (13) | |
H13 | 0.9915 | 0.8398 | 0.2959 | 0.083* | |
C14 | 1.0081 (4) | 0.6638 (4) | 0.3376 (2) | 0.0641 (12) | |
H14 | 1.0833 | 0.6588 | 0.3486 | 0.077* | |
C15 | 0.9514 (3) | 0.5630 (4) | 0.3524 (2) | 0.0546 (11) | |
H15 | 0.9891 | 0.4897 | 0.3731 | 0.065* | |
C16 | 0.8556 (3) | 0.3077 (3) | 0.3805 (2) | 0.0475 (10) | |
C17 | 0.9200 (3) | 0.2820 (4) | 0.4534 (2) | 0.0564 (11) | |
H17 | 0.9139 | 0.3318 | 0.4924 | 0.068* | |
C18 | 0.9935 (4) | 0.1819 (4) | 0.4680 (3) | 0.0672 (13) | |
H18 | 1.0364 | 0.1647 | 0.5170 | 0.081* | |
C19 | 1.0033 (4) | 0.1087 (4) | 0.4113 (3) | 0.0755 (15) | |
H19 | 1.0534 | 0.0425 | 0.4216 | 0.091* | |
C20 | 0.9398 (4) | 0.1320 (4) | 0.3393 (3) | 0.0807 (15) | |
H20 | 0.9462 | 0.0814 | 0.3007 | 0.097* | |
C21 | 0.8663 (4) | 0.2305 (4) | 0.3241 (3) | 0.0645 (12) | |
H21 | 0.8230 | 0.2456 | 0.2750 | 0.077* | |
C22 | 0.7412 (3) | 0.4807 (4) | 0.4436 (2) | 0.0457 (10) | |
C23 | 0.8026 (3) | 0.5724 (4) | 0.4911 (2) | 0.0563 (11) | |
H23 | 0.8544 | 0.6179 | 0.4772 | 0.068* | |
C24 | 0.7881 (4) | 0.5973 (4) | 0.5587 (2) | 0.0674 (13) | |
H24 | 0.8301 | 0.6592 | 0.5900 | 0.081* | |
C25 | 0.7125 (4) | 0.5319 (5) | 0.5801 (3) | 0.0747 (14) | |
H25 | 0.7030 | 0.5491 | 0.6258 | 0.090* | |
C26 | 0.6510 (4) | 0.4414 (5) | 0.5342 (3) | 0.0824 (15) | |
H26 | 0.6001 | 0.3957 | 0.5489 | 0.099* | |
C27 | 0.6640 (4) | 0.4169 (4) | 0.4657 (3) | 0.0682 (13) | |
H27 | 0.6200 | 0.3565 | 0.4342 | 0.082* | |
C28 | 0.4320 (3) | 0.6079 (4) | 0.2756 (2) | 0.0466 (10) |
U11 | U22 | U33 | U12 | U13 | U23 | |
Cu1 | 0.0578 (3) | 0.0447 (3) | 0.0480 (3) | −0.0041 (2) | 0.0207 (2) | −0.0004 (2) |
P1 | 0.0494 (6) | 0.0434 (6) | 0.0444 (6) | −0.0001 (5) | 0.0187 (5) | 0.0021 (5) |
S1 | 0.0612 (7) | 0.0445 (6) | 0.0755 (8) | 0.0004 (5) | 0.0353 (6) | 0.0060 (5) |
N1 | 0.051 (2) | 0.061 (2) | 0.048 (2) | −0.0058 (17) | 0.0210 (18) | −0.0031 (17) |
N2 | 0.076 (3) | 0.050 (2) | 0.073 (3) | −0.0087 (19) | 0.035 (2) | −0.0070 (19) |
C1 | 0.057 (3) | 0.058 (3) | 0.057 (3) | −0.003 (2) | 0.019 (2) | −0.002 (2) |
C2 | 0.061 (3) | 0.060 (3) | 0.062 (3) | 0.003 (2) | 0.033 (2) | 0.002 (2) |
C3 | 0.071 (3) | 0.055 (3) | 0.072 (3) | 0.007 (2) | 0.035 (3) | 0.006 (2) |
C4 | 0.042 (2) | 0.057 (3) | 0.050 (3) | −0.008 (2) | 0.016 (2) | −0.007 (2) |
C5 | 0.043 (2) | 0.054 (3) | 0.051 (3) | −0.0049 (19) | 0.018 (2) | −0.007 (2) |
C6 | 0.069 (3) | 0.077 (3) | 0.070 (3) | 0.009 (2) | 0.031 (3) | −0.004 (3) |
C7 | 0.089 (4) | 0.094 (4) | 0.058 (3) | −0.005 (3) | 0.037 (3) | −0.004 (3) |
C8 | 0.081 (3) | 0.101 (4) | 0.047 (3) | −0.014 (3) | 0.027 (3) | 0.003 (3) |
C9 | 0.066 (3) | 0.075 (3) | 0.056 (3) | −0.009 (2) | 0.021 (3) | 0.009 (2) |
C10 | 0.053 (2) | 0.043 (2) | 0.038 (2) | −0.0006 (18) | 0.020 (2) | −0.0005 (17) |
C11 | 0.054 (3) | 0.053 (3) | 0.061 (3) | 0.000 (2) | 0.016 (2) | 0.003 (2) |
C12 | 0.084 (4) | 0.047 (3) | 0.081 (4) | 0.006 (2) | 0.034 (3) | 0.014 (2) |
C13 | 0.087 (4) | 0.053 (3) | 0.080 (4) | −0.014 (3) | 0.043 (3) | 0.005 (2) |
C14 | 0.061 (3) | 0.066 (3) | 0.075 (3) | −0.007 (2) | 0.035 (3) | 0.005 (3) |
C15 | 0.059 (3) | 0.053 (3) | 0.060 (3) | 0.004 (2) | 0.031 (2) | 0.010 (2) |
C16 | 0.056 (3) | 0.041 (2) | 0.050 (3) | −0.0028 (19) | 0.024 (2) | 0.0048 (19) |
C17 | 0.061 (3) | 0.051 (3) | 0.057 (3) | −0.003 (2) | 0.019 (2) | 0.005 (2) |
C18 | 0.066 (3) | 0.058 (3) | 0.072 (3) | 0.004 (2) | 0.013 (3) | 0.023 (3) |
C19 | 0.076 (3) | 0.053 (3) | 0.105 (5) | 0.019 (2) | 0.039 (3) | 0.023 (3) |
C20 | 0.108 (4) | 0.063 (3) | 0.082 (4) | 0.027 (3) | 0.046 (3) | 0.013 (3) |
C21 | 0.089 (3) | 0.055 (3) | 0.055 (3) | 0.017 (2) | 0.030 (3) | 0.012 (2) |
C22 | 0.046 (2) | 0.050 (2) | 0.043 (2) | 0.0034 (19) | 0.017 (2) | 0.0042 (19) |
C23 | 0.058 (3) | 0.061 (3) | 0.055 (3) | −0.001 (2) | 0.025 (2) | −0.002 (2) |
C24 | 0.068 (3) | 0.081 (3) | 0.054 (3) | 0.006 (3) | 0.021 (3) | −0.014 (2) |
C25 | 0.069 (3) | 0.111 (4) | 0.054 (3) | 0.016 (3) | 0.033 (3) | 0.000 (3) |
C26 | 0.070 (3) | 0.127 (5) | 0.062 (3) | −0.021 (3) | 0.037 (3) | 0.002 (3) |
C27 | 0.064 (3) | 0.091 (4) | 0.054 (3) | −0.020 (3) | 0.025 (2) | −0.005 (2) |
C28 | 0.049 (2) | 0.052 (3) | 0.042 (2) | −0.002 (2) | 0.0204 (19) | 0.002 (2) |
Cu1—N1 | 2.087 (3) | C11—H11 | 0.9300 |
Cu1—N2i | 1.991 (4) | C12—C13 | 1.366 (6) |
Cu1—P1 | 2.2282 (11) | C12—H12 | 0.9300 |
Cu1—S1 | 2.3781 (12) | C13—C14 | 1.369 (6) |
P1—C22 | 1.820 (4) | C13—H13 | 0.9300 |
P1—C16 | 1.826 (4) | C14—C15 | 1.372 (5) |
P1—C10 | 1.826 (4) | C14—H14 | 0.9300 |
S1—C28 | 1.647 (4) | C15—H15 | 0.9300 |
N1—C1 | 1.303 (5) | C16—C21 | 1.385 (5) |
N1—C2 | 1.362 (5) | C16—C17 | 1.387 (5) |
N2—C28 | 1.146 (4) | C17—C18 | 1.389 (6) |
C1—C5 | 1.435 (6) | C17—H17 | 0.9300 |
C1—H1 | 0.9300 | C18—C19 | 1.361 (6) |
C2—C3 | 1.352 (6) | C18—H18 | 0.9300 |
C2—H2 | 0.9300 | C19—C20 | 1.366 (6) |
C3—C4 | 1.385 (5) | C19—H19 | 0.9300 |
C3—H3 | 0.9300 | C20—C21 | 1.376 (6) |
C4—C5 | 1.395 (5) | C20—H20 | 0.9300 |
C4—C9 | 1.438 (6) | C21—H21 | 0.9300 |
C5—C6 | 1.384 (6) | C22—C27 | 1.378 (5) |
C6—C7 | 1.355 (6) | C22—C23 | 1.383 (5) |
C6—H6 | 0.9300 | C23—C24 | 1.378 (6) |
C7—C8 | 1.394 (6) | C23—H23 | 0.9300 |
C7—H7 | 0.9300 | C24—C25 | 1.361 (6) |
C8—C9 | 1.340 (6) | C24—H24 | 0.9300 |
C8—H8 | 0.9300 | C25—C26 | 1.361 (6) |
C9—H9 | 0.9300 | C25—H25 | 0.9300 |
C10—C15 | 1.382 (5) | C26—C27 | 1.385 (6) |
C10—C11 | 1.390 (5) | C26—H26 | 0.9300 |
C11—C12 | 1.376 (6) | C27—H27 | 0.9300 |
N2i—Cu1—N1 | 103.75 (14) | C13—C12—C11 | 120.2 (4) |
N2i—Cu1—P1 | 116.93 (11) | C13—C12—H12 | 119.9 |
N1—Cu1—P1 | 110.38 (9) | C11—C12—H12 | 119.9 |
N2i—Cu1—S1 | 101.00 (11) | C12—C13—C14 | 120.1 (4) |
N1—Cu1—S1 | 110.14 (10) | C12—C13—H13 | 120.0 |
P1—Cu1—S1 | 113.85 (4) | C14—C13—H13 | 120.0 |
C22—P1—C16 | 102.65 (18) | C13—C14—C15 | 119.8 (4) |
C22—P1—C10 | 103.35 (17) | C13—C14—H14 | 120.1 |
C16—P1—C10 | 102.60 (17) | C15—C14—H14 | 120.1 |
C22—P1—Cu1 | 117.32 (13) | C14—C15—C10 | 121.6 (4) |
C16—P1—Cu1 | 114.77 (13) | C14—C15—H15 | 119.2 |
C10—P1—Cu1 | 114.27 (13) | C10—C15—H15 | 119.2 |
C28—S1—Cu1 | 106.87 (14) | C21—C16—C17 | 118.2 (4) |
C1—N1—C2 | 116.9 (4) | C21—C16—P1 | 118.2 (3) |
C1—N1—Cu1 | 120.3 (3) | C17—C16—P1 | 123.7 (3) |
C2—N1—Cu1 | 122.8 (3) | C16—C17—C18 | 120.0 (4) |
N1—C1—C5 | 124.3 (4) | C16—C17—H17 | 120.0 |
N1—C1—H1 | 117.8 | C18—C17—H17 | 120.0 |
C5—C1—H1 | 117.8 | C19—C18—C17 | 120.5 (4) |
C3—C2—N1 | 123.6 (4) | C19—C18—H18 | 119.7 |
C3—C2—H2 | 118.2 | C17—C18—H18 | 119.7 |
N1—C2—H2 | 118.2 | C18—C19—C20 | 120.3 (4) |
C2—C3—C4 | 119.9 (4) | C18—C19—H19 | 119.8 |
C2—C3—H3 | 120.0 | C20—C19—H19 | 119.8 |
C4—C3—H3 | 120.0 | C19—C20—C21 | 119.7 (5) |
C3—C4—C5 | 118.6 (4) | C19—C20—H20 | 120.1 |
C3—C4—C9 | 123.4 (4) | C21—C20—H20 | 120.1 |
C5—C4—C9 | 117.9 (4) | C20—C21—C16 | 121.3 (4) |
C6—C5—C4 | 121.3 (4) | C20—C21—H21 | 119.3 |
C6—C5—C1 | 122.2 (4) | C16—C21—H21 | 119.3 |
C4—C5—C1 | 116.5 (4) | C27—C22—C23 | 117.8 (4) |
C7—C6—C5 | 119.7 (5) | C27—C22—P1 | 118.3 (3) |
C7—C6—H6 | 120.1 | C23—C22—P1 | 123.9 (3) |
C5—C6—H6 | 120.1 | C24—C23—C22 | 120.9 (4) |
C6—C7—C8 | 119.9 (5) | C24—C23—H23 | 119.6 |
C6—C7—H7 | 120.1 | C22—C23—H23 | 119.6 |
C8—C7—H7 | 120.1 | C25—C24—C23 | 120.5 (5) |
C9—C8—C7 | 122.4 (5) | C25—C24—H24 | 119.8 |
C9—C8—H8 | 118.8 | C23—C24—H24 | 119.8 |
C7—C8—H8 | 118.8 | C26—C25—C24 | 119.7 (5) |
C8—C9—C4 | 118.7 (4) | C26—C25—H25 | 120.2 |
C8—C9—H9 | 120.6 | C24—C25—H25 | 120.2 |
C4—C9—H9 | 120.6 | C25—C26—C27 | 120.3 (5) |
C15—C10—C11 | 117.5 (4) | C25—C26—H26 | 119.9 |
C15—C10—P1 | 124.6 (3) | C27—C26—H26 | 119.9 |
C11—C10—P1 | 117.9 (3) | C22—C27—C26 | 120.9 (4) |
C12—C11—C10 | 120.8 (4) | C22—C27—H27 | 119.6 |
C12—C11—H11 | 119.6 | C26—C27—H27 | 119.6 |
C10—C11—H11 | 119.6 | N2—C28—S1 | 178.8 (4) |
N2i—Cu1—P1—C22 | −106.25 (18) | Cu1—P1—C10—C15 | −132.9 (3) |
N1—Cu1—P1—C22 | 135.50 (18) | C22—P1—C10—C11 | −82.6 (3) |
S1—Cu1—P1—C22 | 11.04 (15) | C16—P1—C10—C11 | 170.9 (3) |
N2i—Cu1—P1—C16 | 14.40 (19) | Cu1—P1—C10—C11 | 46.0 (3) |
N1—Cu1—P1—C16 | −103.84 (18) | C15—C10—C11—C12 | −1.2 (6) |
S1—Cu1—P1—C16 | 131.69 (14) | P1—C10—C11—C12 | 179.8 (3) |
N2i—Cu1—P1—C10 | 132.54 (18) | C10—C11—C12—C13 | 1.7 (7) |
N1—Cu1—P1—C10 | 14.30 (17) | C11—C12—C13—C14 | −1.5 (7) |
S1—Cu1—P1—C10 | −110.16 (14) | C12—C13—C14—C15 | 1.0 (7) |
N2i—Cu1—S1—C28 | −158.11 (19) | C13—C14—C15—C10 | −0.6 (7) |
N1—Cu1—S1—C28 | −48.89 (18) | C11—C10—C15—C14 | 0.7 (6) |
P1—Cu1—S1—C28 | 75.70 (15) | P1—C10—C15—C14 | 179.6 (3) |
N2i—Cu1—N1—C1 | −41.4 (3) | C22—P1—C16—C21 | 163.7 (3) |
P1—Cu1—N1—C1 | 84.6 (3) | C10—P1—C16—C21 | −89.3 (3) |
S1—Cu1—N1—C1 | −148.8 (3) | Cu1—P1—C16—C21 | 35.3 (4) |
N2i—Cu1—N1—C2 | 138.9 (3) | C22—P1—C16—C17 | −16.5 (4) |
P1—Cu1—N1—C2 | −95.0 (3) | C10—P1—C16—C17 | 90.5 (4) |
S1—Cu1—N1—C2 | 31.5 (3) | Cu1—P1—C16—C17 | −145.0 (3) |
C2—N1—C1—C5 | 0.2 (6) | C21—C16—C17—C18 | 0.7 (6) |
Cu1—N1—C1—C5 | −179.5 (3) | P1—C16—C17—C18 | −179.1 (3) |
C1—N1—C2—C3 | −0.5 (6) | C16—C17—C18—C19 | 0.2 (6) |
Cu1—N1—C2—C3 | 179.1 (3) | C17—C18—C19—C20 | −0.8 (7) |
N1—C2—C3—C4 | 1.4 (7) | C18—C19—C20—C21 | 0.5 (8) |
C2—C3—C4—C5 | −1.9 (6) | C19—C20—C21—C16 | 0.4 (7) |
C2—C3—C4—C9 | 176.6 (4) | C17—C16—C21—C20 | −0.9 (6) |
C3—C4—C5—C6 | −179.9 (4) | P1—C16—C21—C20 | 178.8 (4) |
C9—C4—C5—C6 | 1.6 (6) | C16—P1—C22—C27 | −87.1 (3) |
C3—C4—C5—C1 | 1.5 (5) | C10—P1—C22—C27 | 166.4 (3) |
C9—C4—C5—C1 | −177.0 (3) | Cu1—P1—C22—C27 | 39.7 (4) |
N1—C1—C5—C6 | −179.3 (4) | C16—P1—C22—C23 | 92.0 (3) |
N1—C1—C5—C4 | −0.7 (6) | C10—P1—C22—C23 | −14.5 (4) |
C4—C5—C6—C7 | −1.2 (7) | Cu1—P1—C22—C23 | −141.2 (3) |
C1—C5—C6—C7 | 177.4 (4) | C27—C22—C23—C24 | 1.1 (6) |
C5—C6—C7—C8 | 0.0 (7) | P1—C22—C23—C24 | −178.0 (3) |
C6—C7—C8—C9 | 0.6 (8) | C22—C23—C24—C25 | −0.1 (7) |
C7—C8—C9—C4 | −0.2 (7) | C23—C24—C25—C26 | 0.0 (7) |
C3—C4—C9—C8 | −179.4 (4) | C24—C25—C26—C27 | −0.9 (8) |
C5—C4—C9—C8 | −1.0 (6) | C23—C22—C27—C26 | −2.0 (6) |
C22—P1—C10—C15 | 98.4 (4) | P1—C22—C27—C26 | 177.2 (4) |
C16—P1—C10—C15 | −8.1 (4) | C25—C26—C27—C22 | 1.9 (8) |
Symmetry code: (i) −x+1, y−1/2, −z+1/2. |
Experimental details
Crystal data | |
Chemical formula | [Cu(NCS)(C9H7N)(C18H15P)] |
Mr | 513.05 |
Crystal system, space group | Monoclinic, P21/c |
Temperature (K) | 298 |
a, b, c (Å) | 12.9573 (13), 10.5506 (11), 18.9241 (18) |
β (°) | 108.961 (1) |
V (Å3) | 2446.7 (4) |
Z | 4 |
Radiation type | Mo Kα |
µ (mm−1) | 1.06 |
Crystal size (mm) | 0.32 × 0.21 × 0.19 |
Data collection | |
Diffractometer | Bruker SMART 1000 CCD diffractometer |
Absorption correction | Multi-scan (SADABS; Bruker, 2001) |
Tmin, Tmax | 0.727, 0.824 |
No. of measured, independent and observed [I > 2σ(I)] reflections | 12067, 4313, 2656 |
Rint | 0.042 |
(sin θ/λ)max (Å−1) | 0.595 |
Refinement | |
R[F2 > 2σ(F2)], wR(F2), S | 0.041, 0.108, 1.05 |
No. of reflections | 4313 |
No. of parameters | 298 |
H-atom treatment | H-atom parameters constrained |
Δρmax, Δρmin (e Å−3) | 0.41, −0.25 |
Computer programs: SMART (Bruker, 2007), SAINT-Plus (Bruker, 2007), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), DIAMOND (Brandenburg, 1999), SHELXTL (Sheldrick, 2008).
Cu1—N1 | 2.087 (3) | Cu1—P1 | 2.2282 (11) |
Cu1—N2i | 1.991 (4) | Cu1—S1 | 2.3781 (12) |
Symmetry code: (i) −x+1, y−1/2, −z+1/2. |
Acknowledgements
This work was supported by the National Natural Science Foundation of China (grant No. 21171119), the CAIQ Basic Research Program (No. 2010JK022), the National Keystone Basic Research Program (973 Program) under grant Nos. 2007CB310408 and 2006CB302901, and the Funding Project for Academic Human Resources Development in Institutions of Higher Learning under the Jurisdiction of Beijing Municipality. It was also supported by the State Key Laboratory of Functional Materials for Informatics, Shanghai Institute of Microsystem and Information Technology, Chinese Academy of Sciences.
References
Brandenburg, K. (1999). DIAMOND. Crystal Impact GbR, Bonn, Germany. Google Scholar
Bruker (2001). SADABS. Bruker AXS Inc., Madison, Wisconsin, USA. Google Scholar
Bruker (2007). SMART and SAINT-Plus. Bruker AXS Inc., Madison, Wisconsin, USA. Google Scholar
Dai, Y.-C., Jin, Q.-H., Cui, L.-N., Xu, L.-J. & Zhang, C.-L. (2010). Acta Cryst. E66, m1124–m1125. Web of Science CSD CrossRef IUCr Journals Google Scholar
Jin, Q.-H., Hu, K.-Y., Song, L.-L., Wang, R., Zhang, C.-L., Zuo, X. & Lu, X.-M. (2010). Polyhedron, 29, 441–445. Web of Science CSD CrossRef CAS Google Scholar
Jin, Q.-H., Wang, Y.-X. & Xin, X.-L. (1999). Acta Cryst. C55, 341–343. Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
Li, J.-B., Wu, M.-H., Wen, J., Jiang, Y.-H., Jin, Q.-H. & Gong, H.-L. (2011). Z. Kristallogr. New Cryst. Struct. 226, 109–111. CAS Google Scholar
Li, J.-B., Xiao, Y.-L., Wu, M.-H., Jiang, Y.-H., Jin, Q.-H. & Zhang, C.-L. (2011). Z. Kristallogr. New Cryst. Struct. 226, 97–98. CAS Google Scholar
Lu, J., Crisci, G., Niu, T. Y. & Jacobson, A. J. (1997). Inorg. Chem. 36, 5140–5141. CSD CrossRef CAS Web of Science Google Scholar
Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. Web of Science CrossRef CAS IUCr Journals Google Scholar
Song, L.-L., Cui, L.-N., Jin, Q.-H. & Zhang, C.-L. (2010). Acta Cryst. E66, m1237–m1238. Web of Science CSD CrossRef IUCr Journals Google Scholar
This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.
Many research efforts have been devoted to copper(I) complexes due to their interesting coordination chemistry and potential applications in photography, electrochemical processes, antimicrobial and antitumor activities (Dai et al., 2010; Jin et al., 2010; Lu et al., 1997; Song et al., 2010). Recently, we obtained some copper(I) complexes containing phosphine and isoquinoline (iq) ligands and coordinated anions (Li, Wu et al., 2011; Li, Xiao et al., 2011). Continuing these efforts, we report here the title compound, (I).
The compound was synthesized by the reaction of copper(I) salt with triphenylphospane (PPh3) and iq in a mixed solution of dichloromethane and methanol. The molar ratio of Cu(I):PPh3 (1:1) and the excess of iq are very important for the generation of this compound. The excess of iq facilitates its coordination to Cu(I) atom because the coordination ability of iq is weaker than that of PPh3 and SCN- anion.
The CuI atom is bonded to one N atom from an iq ligand, one P atom from a PPh3 ligand, one S and one N atom from two SCN- anions (Fig. 1). The SCN- anion behaves as a bridging ligand. The structure of the title compound is similar to that of [CuBr(PPh3)2(iq)] (II) (Li, Wu et al., 2011), [CuCl(PPh3)(iq)]2, (III) (Li, Xiao et al., 2011), and [CuI(PPh3)(quinoline)]2 (IV) (Jin et al., 1999). The bond length Cu1—P1 [2.2282 (11) Å] (Table 1) is shorter than the corresponding distances in (II) [2.2789 (14) Å] and (IV) [2.2466 (11) Å]. The Cu1—N1 bond length [2.087 (3) Å] is also shorter than the corresponding values in (II) [2.097 (3) Å] and (IV) [2.135 (4) Å]. The Cu1—P1 [2.1945 (8) Å] and Cu1—N1 [2.066 (2) Å] in (III) are shorter than the corresponding values in (I), (II) and (IV). The bond angle N1—Cu1—P1 [110.38 (9)°] in (I) is smaller than those in (III) [120.23 (7)°] and (IV) [117.20 (8)°] but larger than that in (II) [101.51 (12)°], while the bond angle P1—Cu1—S1 [113.85 (4)°] is smaller than those in (II) [115.88 (4)°], (III) [116.34 (3)°] and (IV) [114.70 (3)°]. The thiocyanide anions bridge the CuI atoms into a chain along [100] (Fig. 2). π–π interactions between the pyridine and benzene rings of the iq ligands connect the chains [centroid–centroid distance = 3.722 (3) Å].