metal-organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Tri­aqua­chlorido(18-crown-6)barium chloride

aOrdered Matter Science Research Center, College of Chemistry and Chemical Engineering, Southeast University, Nanjing 210096, People's Republic of China
*Correspondence e-mail: chemcrystal66@yahoo.com.cn

(Received 24 January 2012; accepted 5 February 2012; online 10 February 2012)

In the title compound, [BaCl(C12H24O6)(H2O)3]Cl, the BaII atom, the coordinating and free Cl anions, one coordinating water mol­ecule and two O atoms of an 18-crown-6 mol­ecule lie on a mirror plane. The environment of the ten-coordinate Ba2+ ion is defined by one Cl atom, three water mol­ecules and six O atoms from the macrocyclic ether. The macrocycle adopts a conformation with an approximate D3d symmetry. In the crystal, O—H⋯Cl hydrogen bonds link the complex cations and Cl anions into a two-dimensional network parallel to (010). An intra­molecular O—H⋯Cl hydrogen bond is also present.

Related literature

For the properties and structures of related compounds, see: Fu et al. (2007[Fu, D.-W., Song, Y.-M., Wang, G.-X., Ye, Q., Xiong, R.-G., Akutagawa, T., Nakamura, T., Chan, P. W. H. & Huang, S. P. D. (2007). J. Am. Chem. Soc. 129, 5346-5347.], 2008[Fu, D.-W., Zhang, W. & Xiong, R.-G. (2008). Cryst. Growth Des. 8, 3461-3464.], 2009[Fu, D.-W., Ge, J.-Z., Dai, J., Ye, H.-Y. & Qu, Z.-R. (2009). Inorg. Chem. Commun. 12, 994-997.]); Fu & Xiong (2008[Fu, D.-W. & Xiong, R.-G. (2008). Dalton Trans. pp. 3946-3948.]). For the ferroelectric properties of related derivatives, see: Fu et al. (2011a[Fu, D.-W., Zhang, W., Cai, H.-L., Zhang, Y., Ge, J.-Z., Xiong, R.-G. & Huang, S. P. D. (2011a). J. Am. Chem. Soc. 133, 12780-12786.],b[Fu, D.-W., Zhang, W., Cai, H.-L., Zhang, Y., Ge, J.-Z., Xiong, R.-G., Huang, S. P. D. & Nakamura, T. (2011b). Angew. Chem. Int. Ed. 50, 11947-11951.]); Fu, Zhang, Cai, Ge et al. (2011[Fu, D.-W., Zhang, W., Cai, H.-L., Ge, J.-Z., Zhang, Y. & Xiong, R.-G. (2011). Adv. Mater. 23, 5658-5662.]).

[Scheme 1]

Experimental

Crystal data
  • [BaCl(C12H24O6)(H2O)3]Cl

  • Mr = 526.59

  • Orthorhombic, P n m a

  • a = 14.962 (3) Å

  • b = 13.416 (3) Å

  • c = 10.347 (2) Å

  • V = 2077.0 (7) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 2.21 mm−1

  • T = 293 K

  • 0.30 × 0.25 × 0.15 mm

Data collection
  • Rigaku Mercury2 CCD diffractometer

  • Absorption correction: multi-scan (CrystalClear; Rigaku, 2005[Rigaku (2005). CrystalClear. Rigaku Corporation, Tokyo, Japan.]) Tmin = 0.90, Tmax = 1.00

  • 20436 measured reflections

  • 2478 independent reflections

  • 2284 reflections with I > 2σ(I)

  • Rint = 0.038

Refinement
  • R[F2 > 2σ(F2)] = 0.026

  • wR(F2) = 0.047

  • S = 1.20

  • 2478 reflections

  • 118 parameters

  • 4 restraints

  • H-atom parameters constrained

  • Δρmax = 0.49 e Å−3

  • Δρmin = −0.80 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
O1W—H1WA⋯Cl1i 0.82 2.66 3.450 (3) 161
O1W—H1WB⋯Cl2ii 0.82 2.41 3.216 (3) 168
O2W—H2WA⋯Cl1 0.82 2.38 3.180 (2) 165
O2W—H2WB⋯Cl2 0.82 2.44 3.144 (2) 145
Symmetry codes: (i) [x+{\script{1\over 2}}, y, -z+{\script{3\over 2}}]; (ii) [x+{\script{1\over 2}}, y, -z+{\script{1\over 2}}].

Data collection: CrystalClear (Rigaku, 2005[Rigaku (2005). CrystalClear. Rigaku Corporation, Tokyo, Japan.]); cell refinement: CrystalClear; data reduction: CrystalClear; program(s) used to solve structure: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXTL; molecular graphics: XP in SHELXTL and DIAMOND (Brandenburg, 1999[Brandenburg, K. (1999). DIAMOND. Crystal Impact GbR, Bonn, Germany.]); software used to prepare material for publication: SHELXTL.

Supporting information


Comment top

Coordination compounds have attracted more attention as phase transition dielectric materials for their applications in memory storage (Fu et al., 2007, 2008, 2009; Fu & Xiong 2008). With the purpose of obtaining phase transition crystals, various complexes have been studied and a series of new materials with organic and inorganic molecules have been elaborated (Fu et al., 2011a,b; Fu, Zhang, Cai, Ge et al., 2011). In this study, we describe the crystal structure of the title compound.

The title compound was composed of one macrocyclic 18-crown-6 ether, one BaII cation, three water molecules, one coordinated Cl- anion and one uncoordinated Cl- anion (Fig. 1). Six non-H atoms (Ba1, O1W, O1, O4, Cl1 and Cl2) and two H atoms (H1WA, H1WB) are located on a mirror plane. The ten-coordinated BaII environment is defined by one terminal Cl atom, three water molecules and six O atoms from the macrocyclic ether. The macrocycle adopts a conformation with an approximate D3d symmetry, with all O—C—C—O torsion angles being gauche and alternating in sign and all C—O—C—C torsion angles being trans. The structure is stabilized by intermolecular O—H···Cl hydrogen bonds (Table 1). These hydrogen bonds link the ionic units into a two-dimensional network parallel to (0 1 0) (Fig. 2). O2W is involved in an intramolecular O2W—H2WB···Cl2 hydrogen bond.

Related literature top

For the properties and structures of related compounds, see: Fu et al. (2007, 2008, 2009); Fu & Xiong (2008). For the ferroelectric properties of related derivatives, see: Fu et al. (2011a,b); Fu, Zhang, Cai, Ge et al. (2011).

Experimental top

Commercial 18-crown-6 (6 mmol), HCl (10 mmol) and BaCl2 (6 mmol) were dissolved in a water/EtOH (v/v 1:1) solution. The solvent was slowly evaporated in air, affording colourless block-shaped crystals of the title compound suitable for X-ray analysis.

The dielectric constant of the title compound as a function of temperature indicates that the permittivity is basically temperature-independent, suggesting that this compound should not be a real ferroelectrics or there may be no distinct phase transition occurred within the measured temperature range. Similarly, the dielectric constant as a function of temperature also goes smoothly below 400 K, and there is no dielectric anomaly observed (dielectric constant ranging from 5.5 to 7.1).

Refinement top

H atoms attached to C atoms were positioned geometrically and treated as riding, with C—H = 0.97 Å and with Uiso(H) = 1.2Ueq(C). H atoms of the water molecules were located from a difference Fourier map and refined as riding, with O—H = 0.82 Å and with Uiso(H) = 1.5Ueq(O).

Computing details top

Data collection: CrystalClear (Rigaku, 2005); cell refinement: CrystalClear (Rigaku, 2005); data reduction: CrystalClear (Rigaku, 2005); program(s) used to solve structure: SHELXTL (Sheldrick, 2008); program(s) used to refine structure: SHELXTL (Sheldrick, 2008); molecular graphics: XP in SHELXTL (Sheldrick, 2008) and DIAMOND (Brandenburg, 1999); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. Molecular structure of the title compound. Displacement ellipsoids are drawn at the 30% probability level. H atoms attached to C atoms have been omitted for clarity. [Symmetry code: (A) x, 1/2-y, z.]
[Figure 2] Fig. 2. The crystal packing of the title compound, showing hydrogen-bonding interactions (dashed lines). H atoms not involved in hydrogen bonds have been omitted for clarity.
Triaquachlorido(18-crown-6)barium chloride top
Crystal data top
[BaCl(C12H24O6)(H2O)3]ClF(000) = 1056
Mr = 526.59Dx = 1.684 Mg m3
Orthorhombic, PnmaMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ac 2nCell parameters from 2478 reflections
a = 14.962 (3) Åθ = 3.0–27.5°
b = 13.416 (3) ŵ = 2.21 mm1
c = 10.347 (2) ÅT = 293 K
V = 2077.0 (7) Å3Block, colourless
Z = 40.30 × 0.25 × 0.15 mm
Data collection top
Rigaku Mercury2 CCD
diffractometer
2478 independent reflections
Radiation source: fine-focus sealed tube2284 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.038
Detector resolution: 13.6612 pixels mm-1θmax = 27.5°, θmin = 3.0°
ω scansh = 1919
Absorption correction: multi-scan
(CrystalClear; Rigaku, 2005)
k = 1717
Tmin = 0.90, Tmax = 1.00l = 1313
20436 measured reflections
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.026Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.047H-atom parameters constrained
S = 1.20 w = 1/[σ2(Fo2) + (0.0112P)2 + 1.2653P]
where P = (Fo2 + 2Fc2)/3
2478 reflections(Δ/σ)max < 0.001
118 parametersΔρmax = 0.49 e Å3
4 restraintsΔρmin = 0.80 e Å3
Crystal data top
[BaCl(C12H24O6)(H2O)3]ClV = 2077.0 (7) Å3
Mr = 526.59Z = 4
Orthorhombic, PnmaMo Kα radiation
a = 14.962 (3) ŵ = 2.21 mm1
b = 13.416 (3) ÅT = 293 K
c = 10.347 (2) Å0.30 × 0.25 × 0.15 mm
Data collection top
Rigaku Mercury2 CCD
diffractometer
2478 independent reflections
Absorption correction: multi-scan
(CrystalClear; Rigaku, 2005)
2284 reflections with I > 2σ(I)
Tmin = 0.90, Tmax = 1.00Rint = 0.038
20436 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0264 restraints
wR(F2) = 0.047H-atom parameters constrained
S = 1.20Δρmax = 0.49 e Å3
2478 reflectionsΔρmin = 0.80 e Å3
118 parameters
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > 2sigma(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Ba10.330565 (12)0.25000.419354 (17)0.02669 (6)
Cl20.17702 (6)0.25000.19266 (9)0.0506 (2)
Cl10.07097 (6)0.25000.68085 (10)0.0498 (2)
O20.35766 (12)0.07191 (13)0.56515 (16)0.0417 (4)
O30.38055 (12)0.06918 (14)0.29713 (17)0.0443 (4)
C10.33416 (19)0.1618 (2)0.7592 (2)0.0520 (7)
H1A0.30120.16350.83980.062*
H1B0.39740.15810.77920.062*
C50.4373 (2)0.0747 (3)0.1869 (3)0.0627 (9)
H5A0.43230.01400.13650.075*
H5B0.49900.08190.21420.075*
C30.3403 (2)0.01562 (19)0.4902 (3)0.0542 (7)
H3A0.27850.01620.46210.065*
H3B0.35100.07470.54190.065*
C20.30708 (19)0.0729 (2)0.6825 (3)0.0516 (7)
H2A0.31850.01260.73150.062*
H2B0.24370.07600.66310.062*
C40.4007 (2)0.0152 (2)0.3759 (3)0.0574 (8)
H4A0.46250.01200.40420.069*
H4B0.39260.07600.32660.069*
C60.4108 (2)0.1612 (3)0.1076 (3)0.0597 (9)
H6A0.44620.16330.02910.072*
H6B0.34830.15560.08360.072*
O1W0.50755 (16)0.25000.4986 (3)0.0530 (7)
H1WA0.50900.25000.57780.079*
H1WB0.55570.25000.46060.079*
O40.42471 (17)0.25000.1809 (2)0.0472 (7)
O10.31620 (16)0.25000.6863 (2)0.0402 (6)
O2W0.16525 (13)0.13030 (15)0.45333 (19)0.0556 (5)
H2WA0.13510.15140.51360.083*
H2WB0.14530.15100.38460.083*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Ba10.02774 (10)0.02935 (10)0.02298 (9)0.0000.00053 (8)0.000
Cl20.0459 (5)0.0653 (6)0.0405 (5)0.0000.0125 (4)0.000
Cl10.0445 (5)0.0589 (6)0.0461 (5)0.0000.0038 (4)0.000
O20.0435 (9)0.0375 (10)0.0443 (10)0.0053 (8)0.0036 (8)0.0071 (8)
O30.0418 (10)0.0440 (10)0.0473 (11)0.0074 (9)0.0011 (8)0.0128 (9)
C10.0523 (16)0.075 (2)0.0287 (12)0.0107 (16)0.0043 (13)0.0145 (14)
C50.0509 (17)0.074 (2)0.063 (2)0.0052 (16)0.0121 (15)0.0312 (18)
C30.0643 (19)0.0293 (13)0.0690 (19)0.0036 (14)0.0141 (17)0.0033 (13)
C20.0533 (16)0.0567 (18)0.0450 (16)0.0140 (14)0.0026 (13)0.0209 (14)
C40.0602 (19)0.0411 (16)0.071 (2)0.0181 (14)0.0164 (16)0.0152 (15)
C60.0512 (17)0.094 (3)0.0336 (15)0.0055 (17)0.0081 (13)0.0204 (16)
O1W0.0313 (13)0.079 (2)0.0484 (15)0.0000.0028 (12)0.000
O40.0467 (15)0.0683 (18)0.0267 (13)0.0000.0027 (11)0.000
O10.0423 (14)0.0581 (16)0.0203 (11)0.0000.0024 (10)0.000
O2W0.0542 (12)0.0543 (12)0.0582 (12)0.0080 (10)0.0028 (10)0.0049 (10)
Geometric parameters (Å, º) top
Ba1—O12.770 (2)C5—H5A0.9700
Ba1—O1W2.772 (3)C5—H5B0.9700
Ba1—O32.8360 (18)C3—C41.488 (4)
Ba1—O3i2.8360 (18)C3—H3A0.9700
Ba1—O42.841 (2)C3—H3B0.9700
Ba1—O2i2.8545 (17)C2—H2A0.9700
Ba1—O22.8545 (17)C2—H2B0.9700
Ba1—O2W2.970 (2)C4—H4A0.9700
Ba1—O2Wi2.970 (2)C4—H4B0.9700
Ba1—Cl23.2831 (10)C6—O41.427 (3)
O2—C21.431 (3)C6—H6A0.9700
O2—C31.431 (3)C6—H6B0.9700
O3—C51.424 (3)O1W—H1WA0.8201
O3—C41.427 (3)O1W—H1WB0.8201
C1—O11.429 (3)O4—C6i1.427 (3)
C1—C21.488 (4)O1—C1i1.429 (3)
C1—H1A0.9700O2W—H2WA0.8200
C1—H1B0.9700O2W—H2WB0.8200
C5—C61.476 (4)
O1—Ba1—O1W77.25 (7)C4—O3—Ba1118.64 (15)
O1—Ba1—O3117.71 (4)O1—C1—C2109.3 (2)
O1W—Ba1—O383.10 (5)O1—C1—H1A109.8
O1—Ba1—O3i117.71 (4)C2—C1—H1A109.8
O1W—Ba1—O3i83.10 (5)O1—C1—H1B109.8
O3—Ba1—O3i117.60 (8)C2—C1—H1B109.8
O1—Ba1—O4154.72 (7)H1A—C1—H1B108.3
O1W—Ba1—O477.47 (8)O3—C5—C6109.0 (2)
O3—Ba1—O458.80 (4)O3—C5—H5A109.9
O3i—Ba1—O458.80 (4)C6—C5—H5A109.9
O1—Ba1—O2i58.95 (4)O3—C5—H5B109.9
O1W—Ba1—O2i73.03 (4)C6—C5—H5B109.9
O3—Ba1—O2i156.08 (5)H5A—C5—H5B108.3
O3i—Ba1—O2i58.82 (5)O2—C3—C4108.5 (2)
O4—Ba1—O2i112.86 (4)O2—C3—H3A110.0
O1—Ba1—O258.95 (4)C4—C3—H3A110.0
O1W—Ba1—O273.03 (4)O2—C3—H3B110.0
O3—Ba1—O258.82 (5)C4—C3—H3B110.0
O3i—Ba1—O2156.08 (5)H3A—C3—H3B108.4
O4—Ba1—O2112.86 (4)O2—C2—C1108.4 (2)
O2i—Ba1—O2113.65 (7)O2—C2—H2A110.0
O1—Ba1—O2W79.48 (6)C1—C2—H2A110.0
O1W—Ba1—O2W139.52 (5)O2—C2—H2B110.0
O3—Ba1—O2W79.04 (5)C1—C2—H2B110.0
O3i—Ba1—O2W137.30 (5)H2A—C2—H2B108.4
O4—Ba1—O2W121.05 (6)O3—C4—C3109.2 (2)
O2i—Ba1—O2W120.55 (5)O3—C4—H4A109.8
O2—Ba1—O2W66.62 (5)C3—C4—H4A109.8
O1—Ba1—O2Wi79.48 (5)O3—C4—H4B109.8
O1W—Ba1—O2Wi139.52 (5)C3—C4—H4B109.8
O3—Ba1—O2Wi137.30 (5)H4A—C4—H4B108.3
O3i—Ba1—O2Wi79.04 (5)O4—C6—C5108.7 (2)
O4—Ba1—O2Wi121.05 (6)O4—C6—H6A109.9
O2i—Ba1—O2Wi66.62 (5)C5—C6—H6A109.9
O2—Ba1—O2Wi120.55 (5)O4—C6—H6B109.9
O2W—Ba1—O2Wi65.46 (8)C5—C6—H6B109.9
O1—Ba1—Cl2131.15 (5)H6A—C6—H6B108.3
O1W—Ba1—Cl2151.60 (6)Ba1—O1W—H1WA108.7
O3—Ba1—Cl282.30 (4)Ba1—O1W—H1WB134.1
O3i—Ba1—Cl282.30 (4)H1WA—O1W—H1WB117.1
O4—Ba1—Cl274.13 (6)C6—O4—C6i113.1 (3)
O2i—Ba1—Cl2118.48 (4)C6—O4—Ba1112.90 (16)
O2—Ba1—Cl2118.48 (4)C6i—O4—Ba1112.90 (16)
O2W—Ba1—Cl260.12 (4)C1i—O1—C1111.9 (3)
O2Wi—Ba1—Cl260.12 (4)C1i—O1—Ba1120.76 (14)
C2—O2—C3111.8 (2)C1—O1—Ba1120.76 (14)
C2—O2—Ba1111.42 (15)Ba1—O2W—H2WA111.2
C3—O2—Ba1112.00 (14)Ba1—O2W—H2WB91.0
C5—O3—C4111.9 (2)H2WA—O2W—H2WB110.1
C5—O3—Ba1118.02 (17)
O1—Ba1—O2—C228.83 (15)Ba1—O3—C4—C336.3 (3)
O1W—Ba1—O2—C2113.93 (16)O2—C3—C4—O363.0 (3)
O3—Ba1—O2—C2153.90 (17)O3—C5—C6—O463.5 (3)
O3i—Ba1—O2—C2117.76 (18)C5—C6—O4—C6i173.19 (18)
O4—Ba1—O2—C2178.09 (15)C5—C6—O4—Ba157.1 (3)
O2i—Ba1—O2—C251.76 (17)O1—Ba1—O4—C6115.07 (19)
O2W—Ba1—O2—C262.78 (15)O1W—Ba1—O4—C6115.07 (19)
O2Wi—Ba1—O2—C224.09 (16)O3—Ba1—O4—C625.60 (18)
Cl2—Ba1—O2—C294.34 (15)O3i—Ba1—O4—C6155.5 (2)
O1—Ba1—O2—C3154.96 (19)O2i—Ba1—O4—C6179.65 (18)
O1W—Ba1—O2—C3119.95 (18)O2—Ba1—O4—C649.8 (2)
O3—Ba1—O2—C327.77 (16)O2W—Ba1—O4—C625.8 (2)
O3i—Ba1—O2—C3116.12 (19)O2Wi—Ba1—O4—C6104.06 (19)
O4—Ba1—O2—C351.96 (18)Cl2—Ba1—O4—C664.93 (19)
O2i—Ba1—O2—C3177.88 (14)O1—Ba1—O4—C6i115.07 (19)
O2W—Ba1—O2—C363.35 (17)O1W—Ba1—O4—C6i115.07 (19)
O2Wi—Ba1—O2—C3102.04 (17)O3—Ba1—O4—C6i155.5 (2)
Cl2—Ba1—O2—C331.79 (18)O3i—Ba1—O4—C6i25.60 (18)
O1—Ba1—O3—C5143.25 (18)O2i—Ba1—O4—C6i49.8 (2)
O1W—Ba1—O3—C571.58 (18)O2—Ba1—O4—C6i179.65 (18)
O3i—Ba1—O3—C56.9 (2)O2W—Ba1—O4—C6i104.06 (19)
O4—Ba1—O3—C57.92 (18)O2Wi—Ba1—O4—C6i25.8 (2)
O2i—Ba1—O3—C567.9 (2)Cl2—Ba1—O4—C6i64.93 (19)
O2—Ba1—O3—C5145.89 (19)C2—C1—O1—C1i175.28 (16)
O2W—Ba1—O3—C5144.92 (18)C2—C1—O1—Ba133.0 (3)
O2Wi—Ba1—O3—C5111.38 (18)O1W—Ba1—O1—C1i74.58 (19)
Cl2—Ba1—O3—C583.99 (18)O3—Ba1—O1—C1i149.64 (18)
O1—Ba1—O3—C42.7 (2)O3i—Ba1—O1—C1i0.5 (2)
O1W—Ba1—O3—C468.92 (19)O4—Ba1—O1—C1i74.58 (19)
O3i—Ba1—O3—C4147.40 (16)O2i—Ba1—O1—C1i3.11 (18)
O4—Ba1—O3—C4148.4 (2)O2—Ba1—O1—C1i152.3 (2)
O2i—Ba1—O3—C472.6 (2)O2W—Ba1—O1—C1i138.8 (2)
O2—Ba1—O3—C45.39 (17)O2Wi—Ba1—O1—C1i72.05 (19)
O2W—Ba1—O3—C474.58 (18)Cl2—Ba1—O1—C1i105.42 (19)
O2Wi—Ba1—O3—C4108.12 (18)O1W—Ba1—O1—C174.58 (19)
Cl2—Ba1—O3—C4135.51 (18)O3—Ba1—O1—C10.5 (2)
C4—O3—C5—C6178.0 (2)O3i—Ba1—O1—C1149.64 (18)
Ba1—O3—C5—C639.0 (3)O4—Ba1—O1—C174.58 (19)
C2—O2—C3—C4175.3 (2)O2i—Ba1—O1—C1152.3 (2)
Ba1—O2—C3—C458.8 (2)O2—Ba1—O1—C13.11 (18)
C3—O2—C2—C1175.6 (2)O2W—Ba1—O1—C172.05 (19)
Ba1—O2—C2—C158.2 (2)O2Wi—Ba1—O1—C1138.8 (2)
O1—C1—C2—O260.2 (3)Cl2—Ba1—O1—C1105.42 (19)
C5—O3—C4—C3179.0 (2)
Symmetry code: (i) x, y+1/2, z.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O1W—H1WA···Cl1ii0.822.663.450 (3)161
O1W—H1WB···Cl2iii0.822.413.216 (3)168
O2W—H2WA···Cl10.822.383.180 (2)165
O2W—H2WB···Cl20.822.443.144 (2)145
Symmetry codes: (ii) x+1/2, y, z+3/2; (iii) x+1/2, y, z+1/2.

Experimental details

Crystal data
Chemical formula[BaCl(C12H24O6)(H2O)3]Cl
Mr526.59
Crystal system, space groupOrthorhombic, Pnma
Temperature (K)293
a, b, c (Å)14.962 (3), 13.416 (3), 10.347 (2)
V3)2077.0 (7)
Z4
Radiation typeMo Kα
µ (mm1)2.21
Crystal size (mm)0.30 × 0.25 × 0.15
Data collection
DiffractometerRigaku Mercury2 CCD
diffractometer
Absorption correctionMulti-scan
(CrystalClear; Rigaku, 2005)
Tmin, Tmax0.90, 1.00
No. of measured, independent and
observed [I > 2σ(I)] reflections
20436, 2478, 2284
Rint0.038
(sin θ/λ)max1)0.649
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.026, 0.047, 1.20
No. of reflections2478
No. of parameters118
No. of restraints4
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.49, 0.80

Computer programs: CrystalClear (Rigaku, 2005), XP in SHELXTL (Sheldrick, 2008) and DIAMOND (Brandenburg, 1999).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O1W—H1WA···Cl1i0.822.663.450 (3)161
O1W—H1WB···Cl2ii0.822.413.216 (3)168
O2W—H2WA···Cl10.822.383.180 (2)165
O2W—H2WB···Cl20.822.443.144 (2)145
Symmetry codes: (i) x+1/2, y, z+3/2; (ii) x+1/2, y, z+1/2.
 

Acknowledgements

This work was supported by the Start-Up Grant of Southeast University, China.

References

First citationBrandenburg, K. (1999). DIAMOND. Crystal Impact GbR, Bonn, Germany.  Google Scholar
First citationFu, D.-W., Ge, J.-Z., Dai, J., Ye, H.-Y. & Qu, Z.-R. (2009). Inorg. Chem. Commun. 12, 994–997.  Web of Science CSD CrossRef CAS Google Scholar
First citationFu, D.-W., Song, Y.-M., Wang, G.-X., Ye, Q., Xiong, R.-G., Akutagawa, T., Nakamura, T., Chan, P. W. H. & Huang, S. P. D. (2007). J. Am. Chem. Soc. 129, 5346–5347.  Web of Science CSD CrossRef PubMed CAS Google Scholar
First citationFu, D.-W. & Xiong, R.-G. (2008). Dalton Trans. pp. 3946–3948.  Web of Science CSD CrossRef Google Scholar
First citationFu, D.-W., Zhang, W., Cai, H.-L., Ge, J.-Z., Zhang, Y. & Xiong, R.-G. (2011). Adv. Mater. 23, 5658–5662.  Web of Science CSD CrossRef CAS PubMed Google Scholar
First citationFu, D.-W., Zhang, W., Cai, H.-L., Zhang, Y., Ge, J.-Z., Xiong, R.-G. & Huang, S. P. D. (2011a). J. Am. Chem. Soc. 133, 12780–12786.  Web of Science CSD CrossRef CAS PubMed Google Scholar
First citationFu, D.-W., Zhang, W., Cai, H.-L., Zhang, Y., Ge, J.-Z., Xiong, R.-G., Huang, S. P. D. & Nakamura, T. (2011b). Angew. Chem. Int. Ed. 50, 11947–11951.  Web of Science CSD CrossRef CAS Google Scholar
First citationFu, D.-W., Zhang, W. & Xiong, R.-G. (2008). Cryst. Growth Des. 8, 3461–3464.  Web of Science CSD CrossRef CAS Google Scholar
First citationRigaku (2005). CrystalClear. Rigaku Corporation, Tokyo, Japan.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds