metal-organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Bis[[aqua­(1H-imidazo[4,5-f][1,10]phenanthroline-κ2N6,N7)cadmium]bis­­(μ-pyridine-2,3-di­carboxyl­ato)-κ3N,O2:O3;κ3O3:N,O2]

aCollege of Chemistry and Materials Science, Fujian Normal University, Fuzhou, Fujian 350007, People's Republic of China
*Correspondence e-mail: shenlin@fjnu.edu.cn

(Received 30 January 2012; accepted 9 February 2012; online 17 February 2012)

In the title compound, [Cd2(C7H3NO4)2(C13H8N4)2(H2O)2], the CdII ion is six-coordinated by two N atoms from a 1H-imidazo[4,5-f][1,10]phenanthroline (IP) ligand, one N atom and one O atom from a pyridine-2,3-dicarboxyl­ate (pdc) ligand, one O atom from another pdc ligand and one water mol­ecule in a distorted octa­hedral geometry. Two CdII ions are bridged by a pair of pdc ligands, forming a centrosymmetric dinuclear structure. Neighboring dinuclear units are linked by the coordinated water mol­ecules through O—H⋯N and O—H⋯O hydrogen bonds, forming a layer parallel to (011). The layers are further linked into a three-dimensional network through N—H⋯O hydrogen bonds. ππ inter­actions between the IP ligands further stabilize the supra­molecular structure [centroid–centroid distances = 3.579 (3), 3.686 (3), 3.710 (3), 3.766 (3) and 3.841 (3) Å].

Related literature

For general background to metal–organic coordination polymers, see: Wang, Chen, Gao et al. (2010[Wang, X.-L., Chen, Y.-Q., Gao, Q., Lin, H.-Y., Liu, G.-C., Zhang, J.-X. & Tian, A.-X. (2010). Cryst. Growth Des. 10, 2174-2184.]); Wang et al. (2011[Wang, X.-L., Chen, Y.-Q., Liu, G.-C., Zhang, J.-X., Lin, H.-Y. & Chen, B.-K. (2011). Inorg. Chim. Acta, 363, 773-778.]). For related structures, see: Liu et al. (2009[Liu, J.-Q., Zhang, Y.-N., Wang, Y.-Y., Jin, J.-C., Lermontova, E. Kh. & Shi, Q.-Z. (2009). Dalton Trans. pp. 5365-5378.], 2011[Liu, J.-Q., Jia, Z.-B. & Wang, Y.-Y. (2011). J. Mol. Struct. 987, 126-131.]); Wang, Chen, Wang et al. (2010[Wang, X.-C., Chen, J., Wang, C.-J. & Li, C.-X. (2010). Acta Cryst. E66, m751-m752.]).

[Scheme 1]

Experimental

Crystal data
  • [Cd2(C7H3NO4)2(C13H8N4)2(H2O)2]

  • Mr = 1031.51

  • Triclinic, [P \overline 1]

  • a = 7.474 (4) Å

  • b = 10.214 (5) Å

  • c = 12.641 (7) Å

  • α = 80.333 (6)°

  • β = 72.974 (5)°

  • γ = 80.170 (5)°

  • V = 902.0 (8) Å3

  • Z = 1

  • Mo Kα radiation

  • μ = 1.26 mm−1

  • T = 293 K

  • 0.20 × 0.20 × 0.15 mm

Data collection
  • Rigaku Mercury CCD diffractometer

  • Absorption correction: multi-scan (CrystalClear; Rigaku, 2002[Rigaku (2002). CrystalClear. Rigaku Corporation, Tokyo, Japan.]) Tmin = 0.710, Tmax = 1.000

  • 5733 measured reflections

  • 3028 independent reflections

  • 2814 reflections with I > 2σ(I)

  • Rint = 0.022

Refinement
  • R[F2 > 2σ(F2)] = 0.032

  • wR(F2) = 0.084

  • S = 1.06

  • 3028 reflections

  • 280 parameters

  • H-atom parameters constrained

  • Δρmax = 0.51 e Å−3

  • Δρmin = −0.47 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
N3—H3A⋯O4i 0.86 1.86 2.691 (5) 164
O5—H5B⋯O2ii 0.84 1.80 2.633 (5) 174
O5—H5C⋯N4iii 0.84 1.99 2.799 (5) 161
Symmetry codes: (i) -x, -y, -z; (ii) x+1, y, z; (iii) -x+1, -y+1, -z.

Data collection: CrystalClear (Rigaku, 2002[Rigaku (2002). CrystalClear. Rigaku Corporation, Tokyo, Japan.]); cell refinement: CrystalClear; data reduction: CrystalClear; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: DIAMOND (Brandenburg, 1999[Brandenburg, K. (1999). DIAMOND. Crystal Impact GbR, Bonn, Germany.]); software used to prepare material for publication: SHELXL97.

Supporting information


Comment top

Metal organic frameworks (MOFs) have received much attention due to their intriguing structural diversity and tremendous potential applications in catalysis, optics, electrics, magnetism, and so on (Wang, Chen, Gao et al., 2010; Wang et al., 2011). When used to build supramolecular architectures, 1H-imidazol(4,5-f)(1,10-phenanthroline) (IP) may have profound influence on the final structrues of MOFs, owing to its excellent coordinating ability, large conjugated system and the presence of the N—H group (Liu et al., 2009, 2011; Wang, Chen, Wang et al., 2010). The title compound was prepared based on IP and pyridine-2,3-dicarboxylic acid (H2pdc) ligands.

The asymmetric unit of the title compound consists of one half of the dimeric complex, which lies about an inversion center. The CdII atom is six-coordinated by two N atoms from an IP ligand, one N atom and one O atom from a pdc ligand, one O atom from another pdc ligand and one O atom from an aqua group (Fig. 1). The two CdII atoms are bridged by a pair of pdc ligands, forming a centrosymmetric dinuclear structure.

It is noteworthy that various hydrogen bonds are observed in the title compound. (a) O—H···N and O—H···O hydrogen bonds involve the coordinated water molecule O5, the imidazole N4 and carboxylate O2 atoms (Table 1). These two hydrogen bonds connect neighboring dinuclear units, forming a layer. (b) An N—H···O hydrogen bond between the imine group N3—H3A and the carboxylate O4 atom (Table 1) extends the layers into a three-dimensional network (Fig. 2). The offset ππ interactions between the IP ligands, with centroid–centroid distances ranging from 3.579 (3) to 3.841 (3) Å, further stabilize the supramolecular structure.

Related literature top

For general background to metal–organic coordination polymers, see: Wang, Chen, Gao et al. (2010); Wang et al. (2011). For related structures, see: Liu et al. (2009, 2011); Wang, Chen, Wang et al. (2010).

Experimental top

A mixture of CdCl2.2.5H2O (0.3 mmol), H2pdc (0.3 mmol) and IP(0.3 mmol) in 8 ml distilled water was placed in a 18 ml Teflon-lined Parr acid digestion bomb and heated for 3 d at 433 K under autogenous pressure. Slow cooling of the reaction mixture to room temperature gave colorless prism crystals (yield: 30% based on Cd).

Refinement top

The water H atoms were located in a difference Fourier map and fixed in refinement with O—H = 0.84 Å and Uiso(H) = 1.2Ueq(O). Other H atoms were placed geometrically and refined as riding, with C—H = 0.93 and N—H = 0.86 Å and with Uiso(H) = 1.2Ueq(C, N).

Computing details top

Data collection: CrystalClear (Rigaku, 2002); cell refinement: CrystalClear (Rigaku, 2002); data reduction: CrystalClear (Rigaku, 2002); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: DIAMOND (Brandenburg, 1999); software used to prepare material for publication: SHELXL97 (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. Molecular structure of the title complex, showing 50% probability displacement ellipsoids. H atoms bonded to C atoms are omitted. [Symmetry code: (i) -x, -y, 1-z.]
[Figure 2] Fig. 2. The three-dimensional structure formed through hydrogen bonds and ππ stacking interactions.
Bis[[aqua(1H-imidazol[4,5-f][1,10]phenanthroline- κ2N6,N7)cadmium]bis(µ-pyridine-2,3-dicarboxylato)- κ3N,O2:O3;κ3O3:N,O2] top
Crystal data top
[Cd2(C7H3NO4)2(C13H8N4)2(H2O)2]Z = 1
Mr = 1031.51F(000) = 512
Triclinic, P1Dx = 1.899 Mg m3
Hall symbol: -P 1Mo Kα radiation, λ = 0.71073 Å
a = 7.474 (4) ÅCell parameters from 2480 reflections
b = 10.214 (5) Åθ = 3.2–27.5°
c = 12.641 (7) ŵ = 1.26 mm1
α = 80.333 (6)°T = 293 K
β = 72.974 (5)°Prism, colorless
γ = 80.170 (5)°0.20 × 0.20 × 0.15 mm
V = 902.0 (8) Å3
Data collection top
Rigaku Mercury CCD
diffractometer
3028 independent reflections
Radiation source: fine-focus sealed tube2814 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.022
Detector resolution: 14.6306 pixels mm-1θmax = 25.0°, θmin = 2.0°
ω scansh = 88
Absorption correction: multi-scan
(CrystalClear; Rigaku, 2002)
k = 1212
Tmin = 0.710, Tmax = 1.000l = 1513
5733 measured reflections
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.032Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.084H-atom parameters constrained
S = 1.06 w = 1/[σ2(Fo2) + (0.0501P)2 + 0.6574P]
where P = (Fo2 + 2Fc2)/3
3028 reflections(Δ/σ)max < 0.001
280 parametersΔρmax = 0.51 e Å3
0 restraintsΔρmin = 0.47 e Å3
Crystal data top
[Cd2(C7H3NO4)2(C13H8N4)2(H2O)2]γ = 80.170 (5)°
Mr = 1031.51V = 902.0 (8) Å3
Triclinic, P1Z = 1
a = 7.474 (4) ÅMo Kα radiation
b = 10.214 (5) ŵ = 1.26 mm1
c = 12.641 (7) ÅT = 293 K
α = 80.333 (6)°0.20 × 0.20 × 0.15 mm
β = 72.974 (5)°
Data collection top
Rigaku Mercury CCD
diffractometer
3028 independent reflections
Absorption correction: multi-scan
(CrystalClear; Rigaku, 2002)
2814 reflections with I > 2σ(I)
Tmin = 0.710, Tmax = 1.000Rint = 0.022
5733 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0320 restraints
wR(F2) = 0.084H-atom parameters constrained
S = 1.06Δρmax = 0.51 e Å3
3028 reflectionsΔρmin = 0.47 e Å3
280 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Cd10.26858 (4)0.16248 (2)0.30239 (2)0.02641 (12)
N10.2719 (4)0.3800 (3)0.2016 (2)0.0242 (6)
N20.2600 (4)0.1574 (3)0.1127 (3)0.0294 (7)
N30.2066 (5)0.4622 (3)0.2285 (3)0.0344 (8)
H3A0.19590.41510.27610.041*
N40.2306 (5)0.6433 (3)0.1566 (3)0.0322 (7)
N50.2571 (4)0.0638 (3)0.3757 (3)0.0268 (7)
O10.0331 (3)0.1178 (2)0.3352 (2)0.0305 (6)
O20.1954 (4)0.0475 (3)0.3424 (3)0.0467 (8)
O30.2560 (4)0.2618 (3)0.5495 (2)0.0339 (6)
O40.1475 (4)0.3605 (3)0.3967 (2)0.0416 (7)
O50.5869 (4)0.1286 (3)0.2421 (2)0.0368 (7)
H5B0.65240.07460.27810.044*
H5C0.62300.20470.22850.044*
C10.2593 (5)0.3962 (3)0.0950 (3)0.0213 (7)
C20.2494 (5)0.2759 (4)0.0488 (3)0.0246 (8)
C30.2495 (7)0.0489 (4)0.0717 (4)0.0420 (10)
H3B0.25600.03310.11620.050*
C40.2294 (7)0.0509 (5)0.0348 (4)0.0483 (12)
H4A0.22270.02810.06000.058*
C50.2197 (6)0.1693 (4)0.1011 (3)0.0379 (10)
H5A0.20650.17210.17230.045*
C60.2298 (5)0.2876 (4)0.0618 (3)0.0255 (8)
C70.2241 (5)0.4174 (4)0.1214 (3)0.0266 (8)
C80.2397 (5)0.5300 (4)0.0796 (3)0.0251 (8)
C90.2572 (5)0.5218 (4)0.0316 (3)0.0241 (8)
C100.2717 (5)0.6327 (4)0.0795 (3)0.0291 (8)
H10A0.27110.71760.03890.035*
C110.2865 (6)0.6147 (4)0.1857 (3)0.0338 (9)
H11A0.29740.68670.21860.041*
C120.2849 (5)0.4865 (4)0.2443 (3)0.0304 (8)
H12A0.29350.47520.31730.036*
C130.2101 (6)0.5969 (4)0.2415 (4)0.0382 (10)
H13A0.19870.65170.30640.046*
C140.0898 (5)0.1061 (3)0.3911 (3)0.0223 (7)
C150.0544 (5)0.2352 (3)0.4378 (3)0.0231 (7)
C160.2012 (5)0.3232 (4)0.4680 (3)0.0270 (8)
H16A0.18300.41080.49900.032*
C170.3719 (5)0.2801 (4)0.4519 (3)0.0346 (9)
H17A0.47060.33790.47170.042*
C180.3952 (5)0.1499 (4)0.4060 (3)0.0342 (9)
H18A0.51110.12070.39570.041*
C190.0594 (5)0.0030 (4)0.3535 (3)0.0248 (8)
C200.1331 (5)0.2867 (3)0.4612 (3)0.0251 (8)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Cd10.03043 (17)0.02316 (17)0.02730 (19)0.00802 (11)0.01124 (12)0.00299 (12)
N10.0313 (16)0.0207 (15)0.0204 (16)0.0054 (13)0.0088 (13)0.0032 (13)
N20.0404 (18)0.0206 (15)0.0279 (18)0.0083 (14)0.0117 (14)0.0034 (14)
N30.0405 (19)0.041 (2)0.0244 (17)0.0069 (15)0.0158 (15)0.0023 (15)
N40.0382 (18)0.0333 (18)0.0243 (18)0.0107 (15)0.0082 (14)0.0041 (15)
N50.0254 (15)0.0240 (16)0.0310 (18)0.0077 (13)0.0098 (13)0.0053 (14)
O10.0305 (14)0.0234 (14)0.0375 (16)0.0064 (11)0.0130 (12)0.0063 (12)
O20.0381 (16)0.0333 (16)0.076 (2)0.0140 (13)0.0342 (16)0.0161 (16)
O30.0323 (14)0.0474 (17)0.0247 (15)0.0164 (12)0.0064 (12)0.0027 (13)
O40.0490 (17)0.0441 (17)0.0419 (18)0.0124 (14)0.0175 (14)0.0179 (15)
O50.0304 (14)0.0301 (14)0.0506 (18)0.0043 (12)0.0175 (13)0.0048 (13)
C10.0225 (17)0.0208 (17)0.0184 (18)0.0057 (14)0.0036 (13)0.0032 (14)
C20.0218 (17)0.0294 (19)0.0225 (19)0.0063 (15)0.0048 (14)0.0023 (16)
C30.066 (3)0.023 (2)0.039 (3)0.010 (2)0.015 (2)0.0001 (19)
C40.078 (3)0.035 (2)0.039 (3)0.015 (2)0.018 (2)0.012 (2)
C50.048 (2)0.042 (2)0.028 (2)0.011 (2)0.0103 (18)0.0083 (19)
C60.0297 (19)0.031 (2)0.0188 (19)0.0092 (16)0.0079 (15)0.0032 (16)
C70.0263 (18)0.037 (2)0.0177 (19)0.0069 (16)0.0080 (15)0.0006 (17)
C80.0274 (18)0.0268 (19)0.0191 (19)0.0081 (15)0.0055 (14)0.0061 (16)
C90.0230 (17)0.0259 (18)0.024 (2)0.0058 (14)0.0084 (15)0.0010 (16)
C100.037 (2)0.0213 (18)0.028 (2)0.0056 (16)0.0095 (17)0.0016 (16)
C110.048 (2)0.027 (2)0.028 (2)0.0107 (18)0.0090 (18)0.0086 (18)
C120.043 (2)0.0273 (19)0.024 (2)0.0056 (17)0.0148 (17)0.0013 (16)
C130.042 (2)0.041 (2)0.030 (2)0.0084 (19)0.0175 (19)0.0169 (19)
C140.0243 (17)0.0233 (17)0.0188 (18)0.0049 (14)0.0054 (14)0.0001 (15)
C150.0287 (18)0.0220 (17)0.0210 (19)0.0059 (14)0.0090 (15)0.0028 (15)
C160.034 (2)0.0204 (18)0.027 (2)0.0039 (15)0.0114 (16)0.0024 (16)
C170.028 (2)0.032 (2)0.042 (2)0.0004 (17)0.0141 (17)0.0034 (19)
C180.0234 (19)0.037 (2)0.042 (2)0.0077 (16)0.0137 (17)0.0089 (19)
C190.0256 (18)0.0250 (19)0.0243 (19)0.0073 (15)0.0087 (15)0.0029 (16)
C200.0299 (19)0.0200 (17)0.028 (2)0.0065 (15)0.0141 (16)0.0035 (16)
Geometric parameters (Å, º) top
Cd1—O3i2.246 (3)C3—C41.394 (6)
Cd1—O52.260 (3)C3—H3B0.9300
Cd1—O12.281 (3)C4—C51.355 (6)
Cd1—N52.347 (3)C4—H4A0.9300
Cd1—N12.369 (3)C5—C61.402 (5)
Cd1—N22.427 (3)C5—H5A0.9300
N1—C121.322 (5)C6—C71.411 (5)
N1—C11.359 (4)C7—C81.378 (5)
N2—C31.323 (5)C8—C91.437 (5)
N2—C21.342 (5)C9—C101.404 (5)
N3—C131.361 (5)C10—C111.358 (5)
N3—C71.391 (5)C10—H10A0.9300
N3—H3A0.8600C11—C121.392 (6)
N4—C131.300 (5)C11—H11A0.9300
N4—C81.387 (5)C12—H12A0.9300
N5—C181.340 (5)C13—H13A0.9300
N5—C141.342 (4)C14—C151.387 (5)
O1—C191.255 (4)C14—C191.523 (5)
O2—C191.234 (4)C15—C161.397 (5)
O3—C201.253 (5)C15—C201.512 (5)
O4—C201.237 (4)C16—C171.368 (5)
O5—H5B0.8400C16—H16A0.9300
O5—H5C0.8400C17—C181.377 (6)
C1—C91.394 (5)C17—H17A0.9300
C1—C21.466 (5)C18—H18A0.9300
C2—C61.432 (5)
O3i—Cd1—O595.63 (10)C6—C5—H5A120.1
O3i—Cd1—O1103.29 (9)C5—C6—C7126.2 (3)
O5—Cd1—O1157.08 (10)C5—C6—C2117.1 (4)
O3i—Cd1—N5103.40 (11)C7—C6—C2116.7 (3)
O5—Cd1—N591.49 (10)C8—C7—N3105.3 (3)
O1—Cd1—N571.77 (9)C8—C7—C6123.7 (3)
O3i—Cd1—N186.07 (11)N3—C7—C6130.9 (3)
O5—Cd1—N189.37 (10)C7—C8—N4111.1 (3)
O1—Cd1—N1104.56 (10)C7—C8—C9120.9 (3)
N5—Cd1—N1170.36 (10)N4—C8—C9127.9 (3)
O3i—Cd1—N2154.99 (11)C1—C9—C10118.6 (3)
O5—Cd1—N288.28 (11)C1—C9—C8117.7 (3)
O1—Cd1—N280.06 (10)C10—C9—C8123.7 (3)
N5—Cd1—N2101.17 (10)C11—C10—C9119.3 (4)
N1—Cd1—N269.25 (10)C11—C10—H10A120.4
C12—N1—C1118.5 (3)C9—C10—H10A120.4
C12—N1—Cd1123.0 (2)C10—C11—C12118.9 (3)
C1—N1—Cd1118.4 (2)C10—C11—H11A120.6
C3—N2—C2118.3 (3)C12—C11—H11A120.6
C3—N2—Cd1124.9 (3)N1—C12—C11123.3 (3)
C2—N2—Cd1116.6 (2)N1—C12—H12A118.3
C13—N3—C7105.0 (3)C11—C12—H12A118.3
C13—N3—H3A127.5N4—C13—N3115.2 (4)
C7—N3—H3A127.5N4—C13—H13A122.4
C13—N4—C8103.3 (3)N3—C13—H13A122.4
C18—N5—C14118.7 (3)N5—C14—C15122.5 (3)
C18—N5—Cd1126.9 (2)N5—C14—C19115.6 (3)
C14—N5—Cd1114.3 (2)C15—C14—C19121.9 (3)
C19—O1—Cd1117.3 (2)C14—C15—C16117.7 (3)
C20—O3—Cd1i135.5 (2)C14—C15—C20124.8 (3)
Cd1—O5—H5B122.1C16—C15—C20117.5 (3)
Cd1—O5—H5C106.4C17—C16—C15119.8 (3)
H5B—O5—H5C110.6C17—C16—H16A120.1
N1—C1—C9121.4 (3)C15—C16—H16A120.1
N1—C1—C2117.3 (3)C16—C17—C18119.0 (4)
C9—C1—C2121.2 (3)C16—C17—H17A120.5
N2—C2—C6122.1 (3)C18—C17—H17A120.5
N2—C2—C1118.2 (3)N5—C18—C17122.4 (3)
C6—C2—C1119.7 (3)N5—C18—H18A118.8
N2—C3—C4123.5 (4)C17—C18—H18A118.8
N2—C3—H3B118.2O2—C19—O1125.9 (3)
C4—C3—H3B118.2O2—C19—C14116.0 (3)
C5—C4—C3119.2 (4)O1—C19—C14118.0 (3)
C5—C4—H4A120.4O4—C20—O3124.7 (3)
C3—C4—H4A120.4O4—C20—C15117.2 (3)
C4—C5—C6119.8 (4)O3—C20—C15117.7 (3)
C4—C5—H5A120.1
Symmetry code: (i) x, y, z+1.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N3—H3A···O4ii0.861.862.691 (5)164
O5—H5B···O2iii0.841.802.633 (5)174
O5—H5C···N4iv0.841.992.799 (5)161
Symmetry codes: (ii) x, y, z; (iii) x+1, y, z; (iv) x+1, y+1, z.

Experimental details

Crystal data
Chemical formula[Cd2(C7H3NO4)2(C13H8N4)2(H2O)2]
Mr1031.51
Crystal system, space groupTriclinic, P1
Temperature (K)293
a, b, c (Å)7.474 (4), 10.214 (5), 12.641 (7)
α, β, γ (°)80.333 (6), 72.974 (5), 80.170 (5)
V3)902.0 (8)
Z1
Radiation typeMo Kα
µ (mm1)1.26
Crystal size (mm)0.20 × 0.20 × 0.15
Data collection
DiffractometerRigaku Mercury CCD
diffractometer
Absorption correctionMulti-scan
(CrystalClear; Rigaku, 2002)
Tmin, Tmax0.710, 1.000
No. of measured, independent and
observed [I > 2σ(I)] reflections
5733, 3028, 2814
Rint0.022
(sin θ/λ)max1)0.595
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.032, 0.084, 1.06
No. of reflections3028
No. of parameters280
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.51, 0.47

Computer programs: CrystalClear (Rigaku, 2002), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), DIAMOND (Brandenburg, 1999).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N3—H3A···O4i0.861.862.691 (5)164
O5—H5B···O2ii0.841.802.633 (5)174
O5—H5C···N4iii0.841.992.799 (5)161
Symmetry codes: (i) x, y, z; (ii) x+1, y, z; (iii) x+1, y+1, z.
 

Acknowledgements

This project was supported financially by the National Natural Science Foundation of China (grant No. 21171037) and the Natural Science Foundation of Fujian Province (grant No. 2008I0013).

References

First citationBrandenburg, K. (1999). DIAMOND. Crystal Impact GbR, Bonn, Germany.  Google Scholar
First citationLiu, J.-Q., Jia, Z.-B. & Wang, Y.-Y. (2011). J. Mol. Struct. 987, 126–131.  Web of Science CSD CrossRef CAS Google Scholar
First citationLiu, J.-Q., Zhang, Y.-N., Wang, Y.-Y., Jin, J.-C., Lermontova, E. Kh. & Shi, Q.-Z. (2009). Dalton Trans. pp. 5365–5378.  Web of Science CSD CrossRef Google Scholar
First citationRigaku (2002). CrystalClear. Rigaku Corporation, Tokyo, Japan.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationWang, X.-L., Chen, Y.-Q., Gao, Q., Lin, H.-Y., Liu, G.-C., Zhang, J.-X. & Tian, A.-X. (2010). Cryst. Growth Des. 10, 2174–2184.  Web of Science CSD CrossRef CAS Google Scholar
First citationWang, X.-L., Chen, Y.-Q., Liu, G.-C., Zhang, J.-X., Lin, H.-Y. & Chen, B.-K. (2011). Inorg. Chim. Acta, 363, 773–778.  Web of Science CSD CrossRef Google Scholar
First citationWang, X.-C., Chen, J., Wang, C.-J. & Li, C.-X. (2010). Acta Cryst. E66, m751–m752.  Web of Science CSD CrossRef IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds