metal-organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Chloridobis(1,2,3,4-tetra­hydro-1,4,6,11-tetra­aza­naphthacene-κN6)copper(I)

aInstitute of Molecular Engineering and Applied Chemistry, Anhui University of Technology, Ma'anshan, Anhui 243002, People's Republic of China, and bDepartment of Applied Chemistry, School of Petrochemical Engineering, Changzhou University, Jiangsu 213164, People's Republic of China
*Correspondence e-mail: zhangqf@ahut.edu.cn

(Received 1 February 2012; accepted 8 February 2012; online 17 February 2012)

In the title complex, [CuCl(C14H12N4)2], the CuI atom, lying on a twofold rotation axis, is coordinated by two N atoms of two 1,2,3,4-tetra­hydro-1,4,6,11-tetra­aza­naphthacene ligands and one Cl atom, also lying on the twofold rotation axis, in a distorted trigonal-planar geometry. The complex mol­ecules are connected into a one-dimensional structure along [001] via N—H⋯N hydrogen bonds and further into a three-dimensional structure via N—H⋯Cl hydrogen bonds. ππ inter­actions between the pyrazine and benzene rings and between the benzene rings [centroid–centroid distances = 3.5635 (15) and 3.9128 (16) Å] are present.

Related literature

For transition metal complexes with heterocyclic ligands, see: Dai et al. (2007[Dai, J.-X., Zhu, H.-L., Rothenberger, A. & Zhang, Q.-F. (2007). Z. Naturforsch. Teil B, 62, 1112-1116.]); Grove et al. (2000[Grove, H., Sletten, J., Julve, M. & Lloret, F. (2000). J. Chem. Soc. Dalton Trans. pp. 515-526.], 2001[Grove, H., Sletten, J., Julve, M., Lloret, F. & Cano, J. (2001). J. Chem. Soc. Dalton Trans. pp. 259-265.]); Näther & Beck (2004[Näther, C. & Beck, A. (2004). Acta Cryst. E60, m1008-m1009.]); Xu et al. (2011[Xu, C., Li, Y., Duan, T., Chen, Q. & Zhang, Q.-F. (2011). J. Cluster Sci. 22, 107-119.]). For a description of the Cambridge Structural Database, see: Allen (2002[Allen, F. H. (2002). Acta Cryst. B58, 380-388.]).

[Scheme 1]

Experimental

Crystal data
  • [CuCl(C14H12N4)2]

  • Mr = 571.54

  • Monoclinic, C 2/c

  • a = 16.987 (4) Å

  • b = 11.606 (3) Å

  • c = 14.487 (4) Å

  • β = 118.492 (3)°

  • V = 2510 (1) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 1.01 mm−1

  • T = 296 K

  • 0.29 × 0.24 × 0.06 mm

Data collection
  • Bruker APEX CCD diffractometer

  • Absorption correction: multi-scan (SADABS; Sheldrick, 1996[Sheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.]) Tmin = 0.758, Tmax = 0.942

  • 7571 measured reflections

  • 2839 independent reflections

  • 2476 reflections with I > 2σ(I)

  • Rint = 0.032

Refinement
  • R[F2 > 2σ(F2)] = 0.036

  • wR(F2) = 0.105

  • S = 1.03

  • 2839 reflections

  • 173 parameters

  • H-atom parameters constrained

  • Δρmax = 0.94 e Å−3

  • Δρmin = −0.34 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
N3—H3N⋯N2i 0.86 2.22 2.986 (2) 148
N4—H4N⋯Cl1ii 0.86 2.76 3.4952 (18) 145
Symmetry codes: (i) [x, -y+1, z+{\script{1\over 2}}]; (ii) [x+{\script{1\over 2}}, y-{\script{1\over 2}}, z].

Data collection: SMART (Bruker, 2007[Bruker (2007). SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2007[Bruker (2007). SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); software used to prepare material for publication: SHELXTL.

Supporting information


Comment top

The heterocyclic compounds involving aromatic system with condensed pyrazine, pyridine and piperidine rings have been shown to occur as a rigid bridge in transition metal complexes, which are expected to be good building blocks for creating coordination polymers due to the flexibility of the heterocyclic ligands (Grove et al., 2000, 2001). We have recently been studying the coordination chemistry of polyamines to transition metal halides (Dai et al., 2007, Xu et al., 2011). In the course of this work, we have synthesized the title copper(I) complex with a new 1,2,3,4-tetrahydro-1,4,6,11-tetraazanaphthacene ligand formed from the condensing reaction of phenazine and ethane-1,2-diamine under hydrothermal conditions. Here we report the crystal structure of the mononuclear copper(I) complex.

The molecular structure of the title complex is depicted in Fig. 1. The CuI atom, lying on a twofold rotation axis, is coordinated by two N atoms of two organic ligands and one Cl atom. The Cu—N bond length of 1.9927 (15) Å and the Cu—Cl bond length of 2.2229 (10) Å are in the range of those found in related structures retrieved from the Cambridge Structural Database (Allen, 2002). The N—Cu—N and N—Cu—Cl angles are 123.94 (9) and 118.03 (4)°. The Cu atom shows a distorted trigonal-planar coordination geometry (Näther & Beck, 2004). In the crystal, the discrete complex molecules are connected by N—H···N and N—H···Cl hydrogen bonds (Table 1) into a three-dimensional structure (Fig. 2). ππ interactions between the pyrazine and benzene rings and between the benzene rings [centroid–centroid distances = 3.5635 (15) and 3.9128 (16) Å] are present.

Related literature top

For transition metal complexes with heterocyclic ligands, see: Dai et al. (2007); Grove et al. (2000, 2001); Näther & Beck (2004); Xu et al. (2011). For a description of the Cambridge Structural Database, see: Allen (2002).

Experimental top

CuCl (99 mg, 1 mmol), phenazine (360 mg, 2 mmol) and ethane-1,2-diamine (300 mg, 5 mmol) were mixed in water (ca. 3 g) and placed in a 23 ml Teflon-lined stainless steel autoclave and stirred for 20 min. The vessel was sealed and heated to 140°C for 2 d and then cooled to room temperature. Yellow flake crystals were obtained and air dried (yield: 64% based on CuCl). Analysis, calculated for C28H24ClCuN8: C 58.84, H 4.23, N 19.61%; found: C 58.76, H 4.18, N 19.55%.

Refinement top

H atoms were placed in geometrically idealized positions and refined as riding atoms, with C—H = 0.93 (CH) and 0.97 (CH2) and N—H = 0.86 Å and with Uiso(H) = 1.2Ueq(C, N).

Computing details top

Data collection: SMART (Bruker, 2007); cell refinement: SAINT (Bruker, 2007); data reduction: SAINT (Bruker, 2007); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. The molecular structure of the title compound, showing displacement ellipsoids at the 50% probability level. [Symmetry code: (A) 1-x, y, 3/2-z.]
[Figure 2] Fig. 2. Packing diagram of the title compound viewed along the c axis. N—H···N and N—H···Cl hydrogen bonds are shown as dashed lines.
Chloridobis(1,2,3,4-tetrahydro-1,4,6,11-tetraazanaphthacene- κN6)copper(I) top
Crystal data top
[CuCl(C14H12N4)2]F(000) = 1176
Mr = 571.54Dx = 1.512 Mg m3
Monoclinic, C2/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -C 2ycCell parameters from 3886 reflections
a = 16.987 (4) Åθ = 2.4–27.4°
b = 11.606 (3) ŵ = 1.01 mm1
c = 14.487 (4) ÅT = 296 K
β = 118.492 (3)°Flake, yellow
V = 2510 (1) Å30.29 × 0.24 × 0.06 mm
Z = 4
Data collection top
Bruker APEX CCD
diffractometer
2839 independent reflections
Radiation source: fine-focus sealed tube2476 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.032
ϕ and ω scansθmax = 27.4°, θmin = 2.3°
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
h = 1222
Tmin = 0.758, Tmax = 0.942k = 1515
7571 measured reflectionsl = 1818
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.036Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.105H-atom parameters constrained
S = 1.03 w = 1/[σ2(Fo2) + (0.0673P)2 + 1.176P]
where P = (Fo2 + 2Fc2)/3
2839 reflections(Δ/σ)max < 0.001
173 parametersΔρmax = 0.94 e Å3
0 restraintsΔρmin = 0.34 e Å3
Crystal data top
[CuCl(C14H12N4)2]V = 2510 (1) Å3
Mr = 571.54Z = 4
Monoclinic, C2/cMo Kα radiation
a = 16.987 (4) ŵ = 1.01 mm1
b = 11.606 (3) ÅT = 296 K
c = 14.487 (4) Å0.29 × 0.24 × 0.06 mm
β = 118.492 (3)°
Data collection top
Bruker APEX CCD
diffractometer
2839 independent reflections
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
2476 reflections with I > 2σ(I)
Tmin = 0.758, Tmax = 0.942Rint = 0.032
7571 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0360 restraints
wR(F2) = 0.105H-atom parameters constrained
S = 1.03Δρmax = 0.94 e Å3
2839 reflectionsΔρmin = 0.34 e Å3
173 parameters
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > 2sigma(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Cu10.50000.73465 (3)0.75000.03244 (13)
Cl10.50000.92619 (6)0.75000.0465 (2)
N10.54270 (10)0.65395 (13)0.66072 (12)0.0286 (3)
N20.63130 (11)0.57439 (14)0.54935 (12)0.0320 (3)
N30.75994 (11)0.46038 (17)0.96600 (13)0.0410 (4)
H3N0.73050.47850.99840.049*
N40.86565 (12)0.42484 (17)0.87242 (14)0.0416 (4)
H4N0.89240.39180.84200.050*
C10.50582 (13)0.66976 (15)0.55440 (14)0.0290 (4)
C20.42264 (14)0.72702 (16)0.49896 (16)0.0345 (4)
H20.39340.75470.53480.041*
C30.38508 (16)0.74169 (17)0.39227 (17)0.0391 (5)
H30.33000.77850.35590.047*
C40.42941 (16)0.7014 (2)0.33765 (16)0.0425 (5)
H40.40350.71260.26550.051*
C50.50959 (14)0.64641 (18)0.38897 (15)0.0376 (4)
H50.53790.62050.35160.045*
C60.55040 (13)0.62826 (16)0.49911 (14)0.0305 (4)
C70.66554 (13)0.55593 (16)0.65251 (14)0.0301 (4)
C80.61892 (12)0.59332 (15)0.70931 (14)0.0279 (4)
C90.65396 (13)0.56262 (16)0.81577 (14)0.0317 (4)
H90.62370.58530.85190.038*
C100.73143 (12)0.50019 (17)0.86743 (14)0.0309 (4)
C110.78465 (12)0.47576 (16)0.81447 (14)0.0310 (4)
C120.74970 (13)0.50098 (17)0.70967 (15)0.0340 (4)
H120.78210.48150.67530.041*
C130.83878 (14)0.38791 (19)1.01881 (16)0.0398 (4)
H13A0.82300.30800.99920.048*
H13B0.86340.39451.09430.048*
C140.90674 (13)0.42682 (19)0.98672 (16)0.0367 (4)
H14A0.92680.50421.01240.044*
H14B0.95830.37601.01680.044*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Cu10.0307 (2)0.0395 (2)0.0346 (2)0.0000.02160 (15)0.000
Cl10.0614 (5)0.0364 (4)0.0555 (4)0.0000.0391 (4)0.000
N10.0313 (8)0.0308 (8)0.0322 (7)0.0003 (6)0.0219 (6)0.0012 (6)
N20.0361 (8)0.0371 (8)0.0321 (8)0.0009 (6)0.0238 (7)0.0010 (6)
N30.0355 (9)0.0627 (12)0.0353 (8)0.0143 (8)0.0255 (8)0.0114 (8)
N40.0349 (9)0.0594 (11)0.0394 (9)0.0118 (8)0.0250 (8)0.0033 (8)
C10.0332 (9)0.0280 (9)0.0321 (9)0.0029 (7)0.0206 (8)0.0004 (6)
C20.0368 (10)0.0321 (10)0.0396 (10)0.0002 (8)0.0221 (9)0.0014 (7)
C30.0369 (11)0.0370 (10)0.0390 (11)0.0012 (8)0.0146 (9)0.0017 (8)
C40.0499 (12)0.0427 (11)0.0311 (9)0.0009 (10)0.0164 (9)0.0004 (8)
C50.0453 (11)0.0395 (10)0.0332 (9)0.0018 (9)0.0230 (9)0.0020 (8)
C60.0350 (9)0.0313 (9)0.0322 (9)0.0028 (7)0.0218 (8)0.0015 (7)
C70.0332 (9)0.0337 (9)0.0325 (9)0.0025 (7)0.0231 (8)0.0022 (7)
C80.0294 (9)0.0300 (9)0.0319 (8)0.0019 (7)0.0208 (7)0.0022 (6)
C90.0335 (9)0.0397 (10)0.0323 (9)0.0044 (7)0.0241 (8)0.0011 (7)
C100.0319 (9)0.0371 (10)0.0318 (8)0.0011 (7)0.0217 (8)0.0011 (7)
C110.0305 (9)0.0343 (9)0.0366 (9)0.0003 (7)0.0229 (8)0.0017 (7)
C120.0354 (10)0.0426 (10)0.0362 (9)0.0021 (8)0.0268 (8)0.0019 (8)
C130.0374 (11)0.0467 (12)0.0407 (10)0.0080 (9)0.0229 (9)0.0090 (9)
C140.0302 (10)0.0432 (11)0.0392 (10)0.0051 (8)0.0185 (8)0.0028 (8)
Geometric parameters (Å, º) top
Cu1—N11.9927 (15)C4—C51.360 (3)
Cu1—Cl12.2229 (10)C4—H40.9300
N1—C81.341 (2)C5—C61.420 (2)
N1—C11.370 (2)C5—H50.9300
N2—C71.337 (2)C7—C121.417 (3)
N2—C61.362 (3)C7—C81.454 (2)
N3—C101.352 (2)C8—C91.408 (2)
N3—C131.452 (3)C9—C101.370 (3)
N3—H3N0.8600C9—H90.9300
N4—C111.358 (3)C10—C111.466 (2)
N4—C141.458 (3)C11—C121.372 (3)
N4—H4N0.8600C12—H120.9300
C1—C21.414 (3)C13—C141.505 (3)
C1—C61.423 (2)C13—H13A0.9700
C2—C31.373 (3)C13—H13B0.9700
C2—H20.9300C14—H14A0.9700
C3—C41.407 (3)C14—H14B0.9700
C3—H30.9300
N1i—Cu1—N1123.94 (9)N2—C7—C12120.33 (16)
N1i—Cu1—Cl1118.03 (4)N2—C7—C8121.38 (17)
N1—Cu1—Cl1118.03 (4)C12—C7—C8118.28 (16)
C8—N1—C1118.01 (15)N1—C8—C9120.37 (15)
C8—N1—Cu1117.73 (12)N1—C8—C7120.65 (16)
C1—N1—Cu1123.63 (12)C9—C8—C7118.97 (16)
C7—N2—C6117.44 (15)C10—C9—C8121.74 (16)
C10—N3—C13122.01 (16)C10—C9—H9119.1
C10—N3—H3N119.0C8—C9—H9119.1
C13—N3—H3N119.0N3—C10—C9121.64 (16)
C11—N4—C14119.34 (16)N3—C10—C11119.16 (17)
C11—N4—H4N120.3C9—C10—C11119.20 (16)
C14—N4—H4N120.3N4—C11—C12123.55 (16)
N1—C1—C2119.89 (16)N4—C11—C10117.16 (16)
N1—C1—C6120.43 (17)C12—C11—C10119.24 (17)
C2—C1—C6119.68 (17)C11—C12—C7121.74 (16)
C3—C2—C1119.97 (19)C11—C12—H12119.1
C3—C2—H2120.0C7—C12—H12119.1
C1—C2—H2120.0N3—C13—C14108.31 (16)
C2—C3—C4120.4 (2)N3—C13—H13A110.0
C2—C3—H3119.8C14—C13—H13A110.0
C4—C3—H3119.8N3—C13—H13B110.0
C5—C4—C3120.90 (19)C14—C13—H13B110.0
C5—C4—H4119.5H13A—C13—H13B108.4
C3—C4—H4119.5N4—C14—C13108.89 (17)
C4—C5—C6120.59 (19)N4—C14—H14A109.9
C4—C5—H5119.7C13—C14—H14A109.9
C6—C5—H5119.7N4—C14—H14B109.9
N2—C6—C5119.74 (16)C13—C14—H14B109.9
N2—C6—C1121.78 (16)H14A—C14—H14B108.3
C5—C6—C1118.47 (18)
Symmetry code: (i) x+1, y, z+3/2.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N3—H3N···N2ii0.862.222.986 (2)148
N4—H4N···Cl1iii0.862.763.4952 (18)145
Symmetry codes: (ii) x, y+1, z+1/2; (iii) x+1/2, y1/2, z.

Experimental details

Crystal data
Chemical formula[CuCl(C14H12N4)2]
Mr571.54
Crystal system, space groupMonoclinic, C2/c
Temperature (K)296
a, b, c (Å)16.987 (4), 11.606 (3), 14.487 (4)
β (°) 118.492 (3)
V3)2510 (1)
Z4
Radiation typeMo Kα
µ (mm1)1.01
Crystal size (mm)0.29 × 0.24 × 0.06
Data collection
DiffractometerBruker APEX CCD
diffractometer
Absorption correctionMulti-scan
(SADABS; Sheldrick, 1996)
Tmin, Tmax0.758, 0.942
No. of measured, independent and
observed [I > 2σ(I)] reflections
7571, 2839, 2476
Rint0.032
(sin θ/λ)max1)0.648
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.036, 0.105, 1.03
No. of reflections2839
No. of parameters173
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.94, 0.34

Computer programs: SMART (Bruker, 2007), SAINT (Bruker, 2007), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), SHELXTL (Sheldrick, 2008).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N3—H3N···N2i0.862.222.986 (2)148
N4—H4N···Cl1ii0.862.763.4952 (18)145
Symmetry codes: (i) x, y+1, z+1/2; (ii) x+1/2, y1/2, z.
 

Acknowledgements

This project was supported by the Program for New Century Excellent Talents in Universities of China (grant No. NCET-08–0618).

References

First citationAllen, F. H. (2002). Acta Cryst. B58, 380–388.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationBruker (2007). SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationDai, J.-X., Zhu, H.-L., Rothenberger, A. & Zhang, Q.-F. (2007). Z. Naturforsch. Teil B, 62, 1112–1116.  CAS Google Scholar
First citationGrove, H., Sletten, J., Julve, M. & Lloret, F. (2000). J. Chem. Soc. Dalton Trans. pp. 515–526.  Web of Science CSD CrossRef Google Scholar
First citationGrove, H., Sletten, J., Julve, M., Lloret, F. & Cano, J. (2001). J. Chem. Soc. Dalton Trans. pp. 259–265.  Web of Science CSD CrossRef Google Scholar
First citationNäther, C. & Beck, A. (2004). Acta Cryst. E60, m1008–m1009.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationSheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationXu, C., Li, Y., Duan, T., Chen, Q. & Zhang, Q.-F. (2011). J. Cluster Sci. 22, 107–119.  Web of Science CSD CrossRef CAS Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds