metal-organic compounds
Chloridobis(1,2,3,4-tetrahydro-1,4,6,11-tetraazanaphthacene-κN6)copper(I)
aInstitute of Molecular Engineering and Applied Chemistry, Anhui University of Technology, Ma'anshan, Anhui 243002, People's Republic of China, and bDepartment of Applied Chemistry, School of Petrochemical Engineering, Changzhou University, Jiangsu 213164, People's Republic of China
*Correspondence e-mail: zhangqf@ahut.edu.cn
In the title complex, [CuCl(C14H12N4)2], the CuI atom, lying on a twofold rotation axis, is coordinated by two N atoms of two 1,2,3,4-tetrahydro-1,4,6,11-tetraazanaphthacene ligands and one Cl atom, also lying on the twofold rotation axis, in a distorted trigonal-planar geometry. The complex molecules are connected into a one-dimensional structure along [001] via N—H⋯N hydrogen bonds and further into a three-dimensional structure via N—H⋯Cl hydrogen bonds. π–π interactions between the pyrazine and benzene rings and between the benzene rings [centroid–centroid distances = 3.5635 (15) and 3.9128 (16) Å] are present.
Related literature
For transition metal complexes with heterocyclic ligands, see: Dai et al. (2007); Grove et al. (2000, 2001); Näther & Beck (2004); Xu et al. (2011). For a description of the Cambridge Structural Database, see: Allen (2002).
Experimental
Crystal data
|
Refinement
|
Data collection: SMART (Bruker, 2007); cell SAINT (Bruker, 2007); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL.
Supporting information
10.1107/S1600536812005582/hy2514sup1.cif
contains datablocks I, global. DOI:Structure factors: contains datablock I. DOI: 10.1107/S1600536812005582/hy2514Isup2.hkl
CuCl (99 mg, 1 mmol), phenazine (360 mg, 2 mmol) and ethane-1,2-diamine (300 mg, 5 mmol) were mixed in water (ca. 3 g) and placed in a 23 ml Teflon-lined stainless steel autoclave and stirred for 20 min. The vessel was sealed and heated to 140°C for 2 d and then cooled to room temperature. Yellow flake crystals were obtained and air dried (yield: 64% based on CuCl). Analysis, calculated for C28H24ClCuN8: C 58.84, H 4.23, N 19.61%; found: C 58.76, H 4.18, N 19.55%.
H atoms were placed in geometrically idealized positions and refined as riding atoms, with C—H = 0.93 (CH) and 0.97 (CH2) and N—H = 0.86 Å and with Uiso(H) = 1.2Ueq(C, N).
Data collection: SMART (Bruker, 2007); cell
SAINT (Bruker, 2007); data reduction: SAINT (Bruker, 2007); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).[CuCl(C14H12N4)2] | F(000) = 1176 |
Mr = 571.54 | Dx = 1.512 Mg m−3 |
Monoclinic, C2/c | Mo Kα radiation, λ = 0.71073 Å |
Hall symbol: -C 2yc | Cell parameters from 3886 reflections |
a = 16.987 (4) Å | θ = 2.4–27.4° |
b = 11.606 (3) Å | µ = 1.01 mm−1 |
c = 14.487 (4) Å | T = 296 K |
β = 118.492 (3)° | Flake, yellow |
V = 2510 (1) Å3 | 0.29 × 0.24 × 0.06 mm |
Z = 4 |
Bruker APEX CCD diffractometer | 2839 independent reflections |
Radiation source: fine-focus sealed tube | 2476 reflections with I > 2σ(I) |
Graphite monochromator | Rint = 0.032 |
ϕ and ω scans | θmax = 27.4°, θmin = 2.3° |
Absorption correction: multi-scan (SADABS; Sheldrick, 1996) | h = −12→22 |
Tmin = 0.758, Tmax = 0.942 | k = −15→15 |
7571 measured reflections | l = −18→18 |
Refinement on F2 | Primary atom site location: structure-invariant direct methods |
Least-squares matrix: full | Secondary atom site location: difference Fourier map |
R[F2 > 2σ(F2)] = 0.036 | Hydrogen site location: inferred from neighbouring sites |
wR(F2) = 0.105 | H-atom parameters constrained |
S = 1.03 | w = 1/[σ2(Fo2) + (0.0673P)2 + 1.176P] where P = (Fo2 + 2Fc2)/3 |
2839 reflections | (Δ/σ)max < 0.001 |
173 parameters | Δρmax = 0.94 e Å−3 |
0 restraints | Δρmin = −0.34 e Å−3 |
[CuCl(C14H12N4)2] | V = 2510 (1) Å3 |
Mr = 571.54 | Z = 4 |
Monoclinic, C2/c | Mo Kα radiation |
a = 16.987 (4) Å | µ = 1.01 mm−1 |
b = 11.606 (3) Å | T = 296 K |
c = 14.487 (4) Å | 0.29 × 0.24 × 0.06 mm |
β = 118.492 (3)° |
Bruker APEX CCD diffractometer | 2839 independent reflections |
Absorption correction: multi-scan (SADABS; Sheldrick, 1996) | 2476 reflections with I > 2σ(I) |
Tmin = 0.758, Tmax = 0.942 | Rint = 0.032 |
7571 measured reflections |
R[F2 > 2σ(F2)] = 0.036 | 0 restraints |
wR(F2) = 0.105 | H-atom parameters constrained |
S = 1.03 | Δρmax = 0.94 e Å−3 |
2839 reflections | Δρmin = −0.34 e Å−3 |
173 parameters |
Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes. |
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > 2sigma(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger. |
x | y | z | Uiso*/Ueq | ||
Cu1 | 0.5000 | 0.73465 (3) | 0.7500 | 0.03244 (13) | |
Cl1 | 0.5000 | 0.92619 (6) | 0.7500 | 0.0465 (2) | |
N1 | 0.54270 (10) | 0.65395 (13) | 0.66072 (12) | 0.0286 (3) | |
N2 | 0.63130 (11) | 0.57439 (14) | 0.54935 (12) | 0.0320 (3) | |
N3 | 0.75994 (11) | 0.46038 (17) | 0.96600 (13) | 0.0410 (4) | |
H3N | 0.7305 | 0.4785 | 0.9984 | 0.049* | |
N4 | 0.86565 (12) | 0.42484 (17) | 0.87242 (14) | 0.0416 (4) | |
H4N | 0.8924 | 0.3918 | 0.8420 | 0.050* | |
C1 | 0.50582 (13) | 0.66976 (15) | 0.55440 (14) | 0.0290 (4) | |
C2 | 0.42264 (14) | 0.72702 (16) | 0.49896 (16) | 0.0345 (4) | |
H2 | 0.3934 | 0.7547 | 0.5348 | 0.041* | |
C3 | 0.38508 (16) | 0.74169 (17) | 0.39227 (17) | 0.0391 (5) | |
H3 | 0.3300 | 0.7785 | 0.3559 | 0.047* | |
C4 | 0.42941 (16) | 0.7014 (2) | 0.33765 (16) | 0.0425 (5) | |
H4 | 0.4035 | 0.7126 | 0.2655 | 0.051* | |
C5 | 0.50959 (14) | 0.64641 (18) | 0.38897 (15) | 0.0376 (4) | |
H5 | 0.5379 | 0.6205 | 0.3516 | 0.045* | |
C6 | 0.55040 (13) | 0.62826 (16) | 0.49911 (14) | 0.0305 (4) | |
C7 | 0.66554 (13) | 0.55593 (16) | 0.65251 (14) | 0.0301 (4) | |
C8 | 0.61892 (12) | 0.59332 (15) | 0.70931 (14) | 0.0279 (4) | |
C9 | 0.65396 (13) | 0.56262 (16) | 0.81577 (14) | 0.0317 (4) | |
H9 | 0.6237 | 0.5853 | 0.8519 | 0.038* | |
C10 | 0.73143 (12) | 0.50019 (17) | 0.86743 (14) | 0.0309 (4) | |
C11 | 0.78465 (12) | 0.47576 (16) | 0.81447 (14) | 0.0310 (4) | |
C12 | 0.74970 (13) | 0.50098 (17) | 0.70967 (15) | 0.0340 (4) | |
H12 | 0.7821 | 0.4815 | 0.6753 | 0.041* | |
C13 | 0.83878 (14) | 0.38791 (19) | 1.01881 (16) | 0.0398 (4) | |
H13A | 0.8230 | 0.3080 | 0.9992 | 0.048* | |
H13B | 0.8634 | 0.3945 | 1.0943 | 0.048* | |
C14 | 0.90674 (13) | 0.42682 (19) | 0.98672 (16) | 0.0367 (4) | |
H14A | 0.9268 | 0.5042 | 1.0124 | 0.044* | |
H14B | 0.9583 | 0.3760 | 1.0168 | 0.044* |
U11 | U22 | U33 | U12 | U13 | U23 | |
Cu1 | 0.0307 (2) | 0.0395 (2) | 0.0346 (2) | 0.000 | 0.02160 (15) | 0.000 |
Cl1 | 0.0614 (5) | 0.0364 (4) | 0.0555 (4) | 0.000 | 0.0391 (4) | 0.000 |
N1 | 0.0313 (8) | 0.0308 (8) | 0.0322 (7) | 0.0003 (6) | 0.0219 (6) | 0.0012 (6) |
N2 | 0.0361 (8) | 0.0371 (8) | 0.0321 (8) | −0.0009 (6) | 0.0238 (7) | −0.0010 (6) |
N3 | 0.0355 (9) | 0.0627 (12) | 0.0353 (8) | 0.0143 (8) | 0.0255 (8) | 0.0114 (8) |
N4 | 0.0349 (9) | 0.0594 (11) | 0.0394 (9) | 0.0118 (8) | 0.0250 (8) | 0.0033 (8) |
C1 | 0.0332 (9) | 0.0280 (9) | 0.0321 (9) | −0.0029 (7) | 0.0206 (8) | −0.0004 (6) |
C2 | 0.0368 (10) | 0.0321 (10) | 0.0396 (10) | −0.0002 (8) | 0.0221 (9) | 0.0014 (7) |
C3 | 0.0369 (11) | 0.0370 (10) | 0.0390 (11) | 0.0012 (8) | 0.0146 (9) | 0.0017 (8) |
C4 | 0.0499 (12) | 0.0427 (11) | 0.0311 (9) | −0.0009 (10) | 0.0164 (9) | 0.0004 (8) |
C5 | 0.0453 (11) | 0.0395 (10) | 0.0332 (9) | −0.0018 (9) | 0.0230 (9) | −0.0020 (8) |
C6 | 0.0350 (9) | 0.0313 (9) | 0.0322 (9) | −0.0028 (7) | 0.0218 (8) | −0.0015 (7) |
C7 | 0.0332 (9) | 0.0337 (9) | 0.0325 (9) | −0.0025 (7) | 0.0231 (8) | −0.0022 (7) |
C8 | 0.0294 (9) | 0.0300 (9) | 0.0319 (8) | −0.0019 (7) | 0.0208 (7) | −0.0022 (6) |
C9 | 0.0335 (9) | 0.0397 (10) | 0.0323 (9) | 0.0044 (7) | 0.0241 (8) | 0.0011 (7) |
C10 | 0.0319 (9) | 0.0371 (10) | 0.0318 (8) | −0.0011 (7) | 0.0217 (8) | −0.0011 (7) |
C11 | 0.0305 (9) | 0.0343 (9) | 0.0366 (9) | 0.0003 (7) | 0.0229 (8) | −0.0017 (7) |
C12 | 0.0354 (10) | 0.0426 (10) | 0.0362 (9) | 0.0021 (8) | 0.0268 (8) | −0.0019 (8) |
C13 | 0.0374 (11) | 0.0467 (12) | 0.0407 (10) | 0.0080 (9) | 0.0229 (9) | 0.0090 (9) |
C14 | 0.0302 (10) | 0.0432 (11) | 0.0392 (10) | 0.0051 (8) | 0.0185 (8) | 0.0028 (8) |
Cu1—N1 | 1.9927 (15) | C4—C5 | 1.360 (3) |
Cu1—Cl1 | 2.2229 (10) | C4—H4 | 0.9300 |
N1—C8 | 1.341 (2) | C5—C6 | 1.420 (2) |
N1—C1 | 1.370 (2) | C5—H5 | 0.9300 |
N2—C7 | 1.337 (2) | C7—C12 | 1.417 (3) |
N2—C6 | 1.362 (3) | C7—C8 | 1.454 (2) |
N3—C10 | 1.352 (2) | C8—C9 | 1.408 (2) |
N3—C13 | 1.452 (3) | C9—C10 | 1.370 (3) |
N3—H3N | 0.8600 | C9—H9 | 0.9300 |
N4—C11 | 1.358 (3) | C10—C11 | 1.466 (2) |
N4—C14 | 1.458 (3) | C11—C12 | 1.372 (3) |
N4—H4N | 0.8600 | C12—H12 | 0.9300 |
C1—C2 | 1.414 (3) | C13—C14 | 1.505 (3) |
C1—C6 | 1.423 (2) | C13—H13A | 0.9700 |
C2—C3 | 1.373 (3) | C13—H13B | 0.9700 |
C2—H2 | 0.9300 | C14—H14A | 0.9700 |
C3—C4 | 1.407 (3) | C14—H14B | 0.9700 |
C3—H3 | 0.9300 | ||
N1i—Cu1—N1 | 123.94 (9) | N2—C7—C12 | 120.33 (16) |
N1i—Cu1—Cl1 | 118.03 (4) | N2—C7—C8 | 121.38 (17) |
N1—Cu1—Cl1 | 118.03 (4) | C12—C7—C8 | 118.28 (16) |
C8—N1—C1 | 118.01 (15) | N1—C8—C9 | 120.37 (15) |
C8—N1—Cu1 | 117.73 (12) | N1—C8—C7 | 120.65 (16) |
C1—N1—Cu1 | 123.63 (12) | C9—C8—C7 | 118.97 (16) |
C7—N2—C6 | 117.44 (15) | C10—C9—C8 | 121.74 (16) |
C10—N3—C13 | 122.01 (16) | C10—C9—H9 | 119.1 |
C10—N3—H3N | 119.0 | C8—C9—H9 | 119.1 |
C13—N3—H3N | 119.0 | N3—C10—C9 | 121.64 (16) |
C11—N4—C14 | 119.34 (16) | N3—C10—C11 | 119.16 (17) |
C11—N4—H4N | 120.3 | C9—C10—C11 | 119.20 (16) |
C14—N4—H4N | 120.3 | N4—C11—C12 | 123.55 (16) |
N1—C1—C2 | 119.89 (16) | N4—C11—C10 | 117.16 (16) |
N1—C1—C6 | 120.43 (17) | C12—C11—C10 | 119.24 (17) |
C2—C1—C6 | 119.68 (17) | C11—C12—C7 | 121.74 (16) |
C3—C2—C1 | 119.97 (19) | C11—C12—H12 | 119.1 |
C3—C2—H2 | 120.0 | C7—C12—H12 | 119.1 |
C1—C2—H2 | 120.0 | N3—C13—C14 | 108.31 (16) |
C2—C3—C4 | 120.4 (2) | N3—C13—H13A | 110.0 |
C2—C3—H3 | 119.8 | C14—C13—H13A | 110.0 |
C4—C3—H3 | 119.8 | N3—C13—H13B | 110.0 |
C5—C4—C3 | 120.90 (19) | C14—C13—H13B | 110.0 |
C5—C4—H4 | 119.5 | H13A—C13—H13B | 108.4 |
C3—C4—H4 | 119.5 | N4—C14—C13 | 108.89 (17) |
C4—C5—C6 | 120.59 (19) | N4—C14—H14A | 109.9 |
C4—C5—H5 | 119.7 | C13—C14—H14A | 109.9 |
C6—C5—H5 | 119.7 | N4—C14—H14B | 109.9 |
N2—C6—C5 | 119.74 (16) | C13—C14—H14B | 109.9 |
N2—C6—C1 | 121.78 (16) | H14A—C14—H14B | 108.3 |
C5—C6—C1 | 118.47 (18) |
Symmetry code: (i) −x+1, y, −z+3/2. |
D—H···A | D—H | H···A | D···A | D—H···A |
N3—H3N···N2ii | 0.86 | 2.22 | 2.986 (2) | 148 |
N4—H4N···Cl1iii | 0.86 | 2.76 | 3.4952 (18) | 145 |
Symmetry codes: (ii) x, −y+1, z+1/2; (iii) x+1/2, y−1/2, z. |
Experimental details
Crystal data | |
Chemical formula | [CuCl(C14H12N4)2] |
Mr | 571.54 |
Crystal system, space group | Monoclinic, C2/c |
Temperature (K) | 296 |
a, b, c (Å) | 16.987 (4), 11.606 (3), 14.487 (4) |
β (°) | 118.492 (3) |
V (Å3) | 2510 (1) |
Z | 4 |
Radiation type | Mo Kα |
µ (mm−1) | 1.01 |
Crystal size (mm) | 0.29 × 0.24 × 0.06 |
Data collection | |
Diffractometer | Bruker APEX CCD diffractometer |
Absorption correction | Multi-scan (SADABS; Sheldrick, 1996) |
Tmin, Tmax | 0.758, 0.942 |
No. of measured, independent and observed [I > 2σ(I)] reflections | 7571, 2839, 2476 |
Rint | 0.032 |
(sin θ/λ)max (Å−1) | 0.648 |
Refinement | |
R[F2 > 2σ(F2)], wR(F2), S | 0.036, 0.105, 1.03 |
No. of reflections | 2839 |
No. of parameters | 173 |
H-atom treatment | H-atom parameters constrained |
Δρmax, Δρmin (e Å−3) | 0.94, −0.34 |
Computer programs: SMART (Bruker, 2007), SAINT (Bruker, 2007), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), SHELXTL (Sheldrick, 2008).
D—H···A | D—H | H···A | D···A | D—H···A |
N3—H3N···N2i | 0.86 | 2.22 | 2.986 (2) | 148 |
N4—H4N···Cl1ii | 0.86 | 2.76 | 3.4952 (18) | 145 |
Symmetry codes: (i) x, −y+1, z+1/2; (ii) x+1/2, y−1/2, z. |
Acknowledgements
This project was supported by the Program for New Century Excellent Talents in Universities of China (grant No. NCET-08–0618).
References
Allen, F. H. (2002). Acta Cryst. B58, 380–388. Web of Science CrossRef CAS IUCr Journals Google Scholar
Bruker (2007). SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA. Google Scholar
Dai, J.-X., Zhu, H.-L., Rothenberger, A. & Zhang, Q.-F. (2007). Z. Naturforsch. Teil B, 62, 1112–1116. CAS Google Scholar
Grove, H., Sletten, J., Julve, M. & Lloret, F. (2000). J. Chem. Soc. Dalton Trans. pp. 515–526. Web of Science CSD CrossRef Google Scholar
Grove, H., Sletten, J., Julve, M., Lloret, F. & Cano, J. (2001). J. Chem. Soc. Dalton Trans. pp. 259–265. Web of Science CSD CrossRef Google Scholar
Näther, C. & Beck, A. (2004). Acta Cryst. E60, m1008–m1009. Web of Science CSD CrossRef IUCr Journals Google Scholar
Sheldrick, G. M. (1996). SADABS. University of Göttingen, Germany. Google Scholar
Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. Web of Science CrossRef CAS IUCr Journals Google Scholar
Xu, C., Li, Y., Duan, T., Chen, Q. & Zhang, Q.-F. (2011). J. Cluster Sci. 22, 107–119. Web of Science CSD CrossRef CAS Google Scholar
This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.
The heterocyclic compounds involving aromatic system with condensed pyrazine, pyridine and piperidine rings have been shown to occur as a rigid bridge in transition metal complexes, which are expected to be good building blocks for creating coordination polymers due to the flexibility of the heterocyclic ligands (Grove et al., 2000, 2001). We have recently been studying the coordination chemistry of polyamines to transition metal halides (Dai et al., 2007, Xu et al., 2011). In the course of this work, we have synthesized the title copper(I) complex with a new 1,2,3,4-tetrahydro-1,4,6,11-tetraazanaphthacene ligand formed from the condensing reaction of phenazine and ethane-1,2-diamine under hydrothermal conditions. Here we report the crystal structure of the mononuclear copper(I) complex.
The molecular structure of the title complex is depicted in Fig. 1. The CuI atom, lying on a twofold rotation axis, is coordinated by two N atoms of two organic ligands and one Cl atom. The Cu—N bond length of 1.9927 (15) Å and the Cu—Cl bond length of 2.2229 (10) Å are in the range of those found in related structures retrieved from the Cambridge Structural Database (Allen, 2002). The N—Cu—N and N—Cu—Cl angles are 123.94 (9) and 118.03 (4)°. The Cu atom shows a distorted trigonal-planar coordination geometry (Näther & Beck, 2004). In the crystal, the discrete complex molecules are connected by N—H···N and N—H···Cl hydrogen bonds (Table 1) into a three-dimensional structure (Fig. 2). π–π interactions between the pyrazine and benzene rings and between the benzene rings [centroid–centroid distances = 3.5635 (15) and 3.9128 (16) Å] are present.