metal-organic compounds
(2,2′-Bipyridine-κ2N,N′)bis(4-chlorobenzoato-κO)zinc
aCollege of Materials Science and Chemical Engineering, Jinhua College of Profession and Technology, Jinhua, Zhejiang 321017, People's Republic of China, and bState Key Laboratory Base of Novel Functional Materials and Preparation, Science Center of Applied Solid State Chemistry Research, Ningbo University, Ningbo, Zhejiang 315211, People's Republic of China
*Correspondence e-mail: zbs_jy@163.com
In the title compound, [Zn(C7H4ClO2)2(C10H8N2)], the ZnII atom is coordinated by two O atoms from two 4-chlorobenzoate ligands and two N atoms from a chelating 2,2′-bipyridine (bpy) molecule in a distorted N2O2 tetrahedral geometry. The ZnII atom is located on a twofold rotation axis, which also passes through the mid-point of the central C—C bond of the bpy ligand. In the crystal, weak C—H⋯O hydrogen bonds and π–π stacking interactions between the pyridine rings of the bpy ligands [centroid–centroid distance = 3.642 (3) Å] link the complex molecules into a two-dimensional supramolecular structure parallel to (100). An intramolecular C—H⋯O hydrogen bond is also observed.
Related literature
For zinc(II) complexes with substituted benzoate ligands, see: Aghabozorg et al. (2005); Chen et al. (2006); Hökelek et al. (2008); Lemoine et al. (2004); Liu et al. (1998); Wei et al. (2002, 2004); Xu et al. (2004); Ye & Zhang (2010); Zhang et al. (2009, 2010); Zhou et al. (2005).
Experimental
Crystal data
|
Refinement
|
Data collection: RAPID-AUTO (Rigaku, 1998); cell RAPID-AUTO; data reduction: CrystalStructure (Rigaku/MSC, 2002); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: XP in SHELXTL (Sheldrick, 2008) and DIAMOND (Brandenburg, 1999); software used to prepare material for publication: SHELXTL.
Supporting information
10.1107/S160053681200699X/hy2516sup1.cif
contains datablocks I, global. DOI:Structure factors: contains datablock I. DOI: 10.1107/S160053681200699X/hy2516Isup2.hkl
ZnCl2 (0.0687 g, 0.504 mmol) was dissolved in appropriate amount of water and then 1M Na2CO3 solution was added. ZnCO3 was obtained by filtration, which was then washed with distilled water for 5 times. The freshly prepared ZnCO3, 2,2'-bipyridine (0.0388 g, 0.273 mmol) and 4-chlorobenzoic acid (0.0396 g, 0.255 mmol), CH3OH/H2O (v/v = 1:2, 15 ml) were mixed and stirred for 2 h. The resulting cream suspension was heated in a 23 ml Teflon-lined stainless steel autoclave at 433 K for 97 h. After the autoclave was cooled to room temperature within 43 h, the solid was filtered off. The resulting filtrate was allowed to stand at room temperature and slow evaporation for 6 weeks afforded colorless block single crystals.
H atoms were placed in calculated positions and refined as riding atoms, with C—H = 0.93 Å and Uiso(H) = 1.2Ueq(C).
Data collection: RAPID-AUTO (Rigaku, 1998); cell
RAPID-AUTO (Rigaku, 1998); data reduction: CrystalStructure (Rigaku/MSC, 2002); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: XP in SHELXTL (Sheldrick, 2008) and DIAMOND (Brandenburg, 1999); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).[Zn(C7H4ClO2)2(C10H8N2)] | F(000) = 540 |
Mr = 532.68 | Dx = 1.543 Mg m−3 |
Monoclinic, P2/c | Mo Kα radiation, λ = 0.71073 Å |
Hall symbol: -P 2yc | Cell parameters from 6683 reflections |
a = 11.453 (2) Å | θ = 3.0–25.0° |
b = 8.4896 (17) Å | µ = 1.34 mm−1 |
c = 12.337 (3) Å | T = 290 K |
β = 107.12 (3)° | Block, colorless |
V = 1146.4 (5) Å3 | 0.32 × 0.25 × 0.18 mm |
Z = 2 |
Rigaku R-AXIS RAPID diffractometer | 2012 independent reflections |
Radiation source: rotation anode | 1560 reflections with I > 2σ(I) |
Graphite monochromator | Rint = 0.058 |
ω scans | θmax = 25.0°, θmin = 3.0° |
Absorption correction: multi-scan (ABSCOR; Higashi, 1995) | h = −13→13 |
Tmin = 0.675, Tmax = 0.787 | k = −9→10 |
8641 measured reflections | l = −14→14 |
Refinement on F2 | Primary atom site location: structure-invariant direct methods |
Least-squares matrix: full | Secondary atom site location: difference Fourier map |
R[F2 > 2σ(F2)] = 0.041 | Hydrogen site location: inferred from neighbouring sites |
wR(F2) = 0.121 | H-atom parameters constrained |
S = 1.17 | w = 1/[σ2(Fo2) + (0.051P)2 + 0.432P] where P = (Fo2 + 2Fc2)/3 |
2012 reflections | (Δ/σ)max < 0.001 |
150 parameters | Δρmax = 0.53 e Å−3 |
48 restraints | Δρmin = −0.36 e Å−3 |
[Zn(C7H4ClO2)2(C10H8N2)] | V = 1146.4 (5) Å3 |
Mr = 532.68 | Z = 2 |
Monoclinic, P2/c | Mo Kα radiation |
a = 11.453 (2) Å | µ = 1.34 mm−1 |
b = 8.4896 (17) Å | T = 290 K |
c = 12.337 (3) Å | 0.32 × 0.25 × 0.18 mm |
β = 107.12 (3)° |
Rigaku R-AXIS RAPID diffractometer | 2012 independent reflections |
Absorption correction: multi-scan (ABSCOR; Higashi, 1995) | 1560 reflections with I > 2σ(I) |
Tmin = 0.675, Tmax = 0.787 | Rint = 0.058 |
8641 measured reflections |
R[F2 > 2σ(F2)] = 0.041 | 48 restraints |
wR(F2) = 0.121 | H-atom parameters constrained |
S = 1.17 | Δρmax = 0.53 e Å−3 |
2012 reflections | Δρmin = −0.36 e Å−3 |
150 parameters |
Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes. |
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > 2sigma(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger. |
x | y | z | Uiso*/Ueq | ||
Zn1 | 0.0000 | 0.78102 (6) | 0.2500 | 0.0564 (2) | |
Cl2 | 0.59680 (10) | 1.35611 (14) | 0.61254 (11) | 0.0912 (4) | |
O1 | 0.1788 (3) | 0.9459 (3) | 0.2186 (2) | 0.0738 (7) | |
O2 | 0.1206 (2) | 0.8948 (3) | 0.3696 (2) | 0.0650 (7) | |
C1 | −0.1402 (4) | 0.6021 (6) | 0.3867 (4) | 0.0889 (13) | |
H1 | −0.1636 | 0.7013 | 0.4048 | 0.107* | |
C2 | −0.1780 (5) | 0.4710 (8) | 0.4330 (5) | 0.122 (2) | |
H2 | −0.2269 | 0.4814 | 0.4808 | 0.146* | |
C3 | −0.1427 (7) | 0.3267 (9) | 0.4076 (6) | 0.144 (3) | |
H3 | −0.1657 | 0.2369 | 0.4394 | 0.172* | |
C4 | −0.0731 (6) | 0.3138 (6) | 0.3351 (5) | 0.121 (2) | |
H4 | −0.0493 | 0.2150 | 0.3168 | 0.145* | |
C5 | −0.0377 (4) | 0.4489 (4) | 0.2888 (3) | 0.0827 (13) | |
N1 | −0.0713 (3) | 0.5916 (3) | 0.3171 (3) | 0.0686 (8) | |
C6 | 0.2915 (3) | 1.0622 (4) | 0.3941 (3) | 0.0512 (8) | |
C7 | 0.3756 (4) | 1.1328 (5) | 0.3489 (3) | 0.0679 (10) | |
H7 | 0.3691 | 1.1184 | 0.2726 | 0.082* | |
C8 | 0.4688 (4) | 1.2242 (5) | 0.4152 (4) | 0.0741 (11) | |
H8 | 0.5246 | 1.2720 | 0.3842 | 0.089* | |
C9 | 0.4779 (3) | 1.2436 (4) | 0.5275 (4) | 0.0629 (10) | |
C10 | 0.3952 (4) | 1.1763 (5) | 0.5739 (3) | 0.0690 (10) | |
H10 | 0.4017 | 1.1915 | 0.6501 | 0.083* | |
C11 | 0.3019 (3) | 1.0853 (4) | 0.5063 (3) | 0.0614 (9) | |
H11 | 0.2455 | 1.0391 | 0.5375 | 0.074* | |
C12 | 0.1909 (3) | 0.9613 (4) | 0.3207 (3) | 0.0553 (8) |
U11 | U22 | U33 | U12 | U13 | U23 | |
Zn1 | 0.0659 (4) | 0.0427 (3) | 0.0618 (4) | 0.000 | 0.0206 (3) | 0.000 |
Cl2 | 0.0755 (7) | 0.0805 (7) | 0.1037 (9) | −0.0151 (6) | 0.0048 (6) | −0.0030 (6) |
O1 | 0.097 (2) | 0.0728 (16) | 0.0544 (16) | −0.0092 (15) | 0.0258 (14) | −0.0083 (13) |
O2 | 0.0722 (16) | 0.0637 (15) | 0.0639 (16) | −0.0123 (13) | 0.0275 (13) | −0.0042 (12) |
C1 | 0.080 (3) | 0.105 (3) | 0.081 (3) | −0.019 (2) | 0.021 (2) | 0.025 (2) |
C2 | 0.104 (4) | 0.151 (4) | 0.097 (4) | −0.054 (4) | 0.009 (3) | 0.050 (4) |
C3 | 0.165 (6) | 0.116 (4) | 0.110 (5) | −0.073 (4) | −0.021 (4) | 0.058 (4) |
C4 | 0.161 (5) | 0.059 (3) | 0.103 (4) | −0.040 (3) | −0.023 (3) | 0.024 (3) |
C5 | 0.104 (3) | 0.0480 (18) | 0.069 (3) | −0.013 (2) | −0.018 (2) | 0.0074 (17) |
N1 | 0.073 (2) | 0.0545 (17) | 0.070 (2) | −0.0075 (15) | 0.0080 (16) | 0.0108 (14) |
C6 | 0.0590 (19) | 0.0428 (16) | 0.055 (2) | 0.0036 (15) | 0.0216 (15) | 0.0031 (14) |
C7 | 0.077 (3) | 0.072 (2) | 0.064 (2) | −0.006 (2) | 0.035 (2) | −0.0049 (19) |
C8 | 0.070 (3) | 0.075 (3) | 0.086 (3) | −0.012 (2) | 0.038 (2) | 0.002 (2) |
C9 | 0.061 (2) | 0.0511 (19) | 0.074 (3) | 0.0037 (17) | 0.0154 (19) | 0.0019 (17) |
C10 | 0.079 (3) | 0.072 (2) | 0.054 (2) | −0.007 (2) | 0.0172 (19) | −0.0008 (18) |
C11 | 0.068 (2) | 0.064 (2) | 0.056 (2) | −0.0094 (18) | 0.0234 (17) | 0.0027 (17) |
C12 | 0.065 (2) | 0.0435 (17) | 0.058 (2) | 0.0065 (16) | 0.0180 (17) | −0.0001 (15) |
Zn1—O2 | 1.954 (2) | C4—H4 | 0.9300 |
Zn1—N1 | 2.082 (3) | C5—N1 | 1.347 (5) |
Zn1—O1 | 2.602 (3) | C5—C5i | 1.466 (10) |
Cl2—C9 | 1.740 (4) | C6—C11 | 1.368 (5) |
O1—C12 | 1.233 (4) | C6—C7 | 1.384 (5) |
O2—C12 | 1.272 (4) | C6—C12 | 1.506 (5) |
C1—N1 | 1.329 (6) | C7—C8 | 1.377 (6) |
C1—C2 | 1.377 (6) | C7—H7 | 0.9300 |
C1—H1 | 0.9300 | C8—C9 | 1.368 (6) |
C2—C3 | 1.356 (10) | C8—H8 | 0.9300 |
C2—H2 | 0.9300 | C9—C10 | 1.368 (5) |
C3—C4 | 1.366 (11) | C10—C11 | 1.382 (5) |
C3—H3 | 0.9300 | C10—H10 | 0.9300 |
C4—C5 | 1.394 (6) | C11—H11 | 0.9300 |
O2—Zn1—O2i | 120.76 (15) | C2—C3—C4 | 119.6 (5) |
O2—Zn1—N1 | 110.75 (11) | C2—C3—H3 | 120.2 |
O2i—Zn1—N1 | 114.15 (11) | C4—C3—H3 | 120.2 |
O2—Zn1—N1i | 114.15 (11) | C3—C4—C5 | 119.9 (6) |
O2i—Zn1—N1i | 110.75 (11) | C3—C4—H4 | 120.1 |
N1—Zn1—N1i | 78.9 (2) | C5—C4—H4 | 120.1 |
O2—Zn1—C12 | 28.13 (10) | N1—C5—C4 | 119.6 (5) |
O2i—Zn1—C12 | 107.47 (11) | N1—C5—C5i | 115.9 (2) |
N1—Zn1—C12 | 135.29 (12) | C4—C5—C5i | 124.5 (4) |
N1i—Zn1—C12 | 101.44 (12) | C1—N1—C5 | 119.8 (4) |
O2—Zn1—C12i | 107.47 (11) | C1—N1—Zn1 | 125.5 (3) |
O2i—Zn1—C12i | 28.13 (10) | C5—N1—Zn1 | 114.6 (3) |
N1—Zn1—C12i | 101.44 (12) | C11—C6—C7 | 118.8 (3) |
N1i—Zn1—C12i | 135.29 (12) | C11—C6—C12 | 120.9 (3) |
C12—Zn1—C12i | 107.90 (14) | C7—C6—C12 | 120.3 (3) |
O2—Zn1—O1 | 55.55 (9) | C8—C7—C6 | 120.9 (4) |
O2i—Zn1—O1 | 91.94 (10) | C8—C7—H7 | 119.6 |
N1—Zn1—O1 | 153.21 (11) | C6—C7—H7 | 119.6 |
N1i—Zn1—O1 | 86.47 (11) | C9—C8—C7 | 119.0 (4) |
C12—Zn1—O1 | 27.42 (9) | C9—C8—H8 | 120.5 |
C12i—Zn1—O1 | 104.74 (10) | C7—C8—H8 | 120.5 |
O2—Zn1—O1i | 91.94 (10) | C10—C9—C8 | 121.2 (4) |
O2i—Zn1—O1i | 55.55 (9) | C10—C9—Cl2 | 119.5 (3) |
N1—Zn1—O1i | 86.47 (11) | C8—C9—Cl2 | 119.3 (3) |
N1i—Zn1—O1i | 153.21 (11) | C9—C10—C11 | 119.3 (4) |
C12—Zn1—O1i | 104.74 (10) | C9—C10—H10 | 120.4 |
C12i—Zn1—O1i | 27.42 (9) | C11—C10—H10 | 120.4 |
O1—Zn1—O1i | 114.90 (12) | C6—C11—C10 | 120.8 (4) |
C12—O1—Zn1 | 76.2 (2) | C6—C11—H11 | 119.6 |
C12—O2—Zn1 | 105.5 (2) | C10—C11—H11 | 119.6 |
N1—C1—C2 | 122.1 (5) | O1—C12—O2 | 122.8 (3) |
N1—C1—H1 | 118.9 | O1—C12—C6 | 120.7 (3) |
C2—C1—H1 | 118.9 | O2—C12—C6 | 116.5 (3) |
C3—C2—C1 | 118.9 (6) | O1—C12—Zn1 | 76.4 (2) |
C3—C2—H2 | 120.5 | O2—C12—Zn1 | 46.41 (16) |
C1—C2—H2 | 120.5 | C6—C12—Zn1 | 162.9 (3) |
Symmetry code: (i) −x, y, −z+1/2. |
D—H···A | D—H | H···A | D···A | D—H···A |
C1—H1···O1i | 0.93 | 2.55 | 3.172 (6) | 125 |
C3—H3···O2ii | 0.93 | 2.52 | 3.278 (5) | 139 |
C11—H11···O1iii | 0.93 | 2.57 | 3.330 (5) | 139 |
Symmetry codes: (i) −x, y, −z+1/2; (ii) −x, −y+1, −z+1; (iii) x, −y+2, z+1/2. |
Experimental details
Crystal data | |
Chemical formula | [Zn(C7H4ClO2)2(C10H8N2)] |
Mr | 532.68 |
Crystal system, space group | Monoclinic, P2/c |
Temperature (K) | 290 |
a, b, c (Å) | 11.453 (2), 8.4896 (17), 12.337 (3) |
β (°) | 107.12 (3) |
V (Å3) | 1146.4 (5) |
Z | 2 |
Radiation type | Mo Kα |
µ (mm−1) | 1.34 |
Crystal size (mm) | 0.32 × 0.25 × 0.18 |
Data collection | |
Diffractometer | Rigaku R-AXIS RAPID diffractometer |
Absorption correction | Multi-scan (ABSCOR; Higashi, 1995) |
Tmin, Tmax | 0.675, 0.787 |
No. of measured, independent and observed [I > 2σ(I)] reflections | 8641, 2012, 1560 |
Rint | 0.058 |
(sin θ/λ)max (Å−1) | 0.595 |
Refinement | |
R[F2 > 2σ(F2)], wR(F2), S | 0.041, 0.121, 1.17 |
No. of reflections | 2012 |
No. of parameters | 150 |
No. of restraints | 48 |
H-atom treatment | H-atom parameters constrained |
Δρmax, Δρmin (e Å−3) | 0.53, −0.36 |
Computer programs: RAPID-AUTO (Rigaku, 1998), CrystalStructure (Rigaku/MSC, 2002), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), XP in SHELXTL (Sheldrick, 2008) and DIAMOND (Brandenburg, 1999), SHELXTL (Sheldrick, 2008).
D—H···A | D—H | H···A | D···A | D—H···A |
C1—H1···O1i | 0.930 | 2.550 | 3.172 (6) | 125 |
C3—H3···O2ii | 0.930 | 2.520 | 3.278 (5) | 139 |
C11—H11···O1iii | 0.930 | 2.570 | 3.330 (5) | 139 |
Symmetry codes: (i) −x, y, −z+1/2; (ii) −x, −y+1, −z+1; (iii) x, −y+2, z+1/2. |
Acknowledgements
The authors gratefully acknowledge the financial support of the Education Office of Zhejiang Province (grant No. 20051316).
References
Aghabozorg, H., Nakhjavan, B., Zabihi, F., Ramezanipour, F. & Aghabozorg, H. R. (2005). Acta Cryst. E61, m2664–m2666. Web of Science CSD CrossRef IUCr Journals Google Scholar
Brandenburg, K. (1999). DIAMOND. Crystal Impact GbR, Bonn, Germany. Google Scholar
Chen, H., Xu, X.-Y., Gao, J., Yang, X.-J., Lu, L.-D. & Wang, X. (2006). Huaxue Shiji (Chem. React.), 28, 478–480. CAS Google Scholar
Higashi, T. (1995). ABSCOR. Rigaku Corporation, Tokyo, Japan. Google Scholar
Hökelek, T., Çaylak, N. & Necefoğlu, H. (2008). Acta Cryst. E64, m458–m459. Web of Science CSD CrossRef IUCr Journals Google Scholar
Lemoine, P., Bendada, K. & Viossat, B. (2004). Acta Cryst. C60, m489–m491. Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
Liu, C.-M., You, X.-Z. & Chen, W. (1998). J. Coord. Chem. 46, 233–243. Web of Science CrossRef CAS Google Scholar
Rigaku (1998). RAPID-AUTO. Rigaku Corporation, Tokyo, Japan. Google Scholar
Rigaku/MSC (2002). CrystalStructure. Rigaku/MSC Inc., The Woodlands, Texas, USA. Google Scholar
Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. Web of Science CrossRef CAS IUCr Journals Google Scholar
Wei, Y., Yuan, C. & Yang, P. (2004). Acta Cryst. E60, m1686–m1688. Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
Wei, D.-Y., Zheng, Y.-Q. & Lin, J.-L. (2002). Z. Anorg. Allg. Chem. 628, 2005–2012. CrossRef CAS Google Scholar
Xu, H., Liang, Y., Su, Z., Zhao, Y., Shao, K., Zhang, H. & Yue, S. (2004). Acta Cryst. E60, m142–m144. Web of Science CSD CrossRef IUCr Journals Google Scholar
Ye, S.-F. & Zhang, B.-S. (2010). Acta Cryst. E66, m474. Web of Science CrossRef IUCr Journals Google Scholar
Zhang, B.-Y., Nie, J.-J. & Xu, D.-J. (2009). Acta Cryst. E65, m880. Web of Science CSD CrossRef IUCr Journals Google Scholar
Zhang, B.-S., Ye, S.-F., Li, Y.-X. & Xu, W. (2010). Acta Cryst. E66, m1357–m1358. Web of Science CSD CrossRef IUCr Journals Google Scholar
Zhou, Y.-F., Lin, W.-J., Huang, Y.-G. & Hong, M.-C. (2005). Acta Cryst. E61, m177–m179. Web of Science CSD CrossRef IUCr Journals Google Scholar
This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.
Transition metal complexes with biochemical molecules show interesting physical and/or chemical properties, which may find applications in biological systems. The structure–function–coordination relationships of arylcarboxylates in ZnII complexes of benzoic acid derivatives may alos be changed depending on the nature and positions of the substituted groups on the benzene ring. Zinc(II) complexes with substituted benzoic acid ligands have been reported (Aghabozorg et al., 2005; Chen et al., 2006; Hökelek et al., 2008; Lemoine et al., 2004; Liu et al., 1998; Wei et al., 2002, 2004; Xu et al., 2004; Ye & Zhang, 2010; Zhang et al., 2009, 2010). In this paper, we report the synthesis and structure of the title complex.
In the title compound, the ZnII atom is coordinated by two O atoms and two N atoms from two 4-chlorobenzoate ligands and one 2,2'-bipyridine (bpy) molecule in a distorted ZnN2O2 tetrahedral geometry. The O1 atom of the 4-chlorobenzoate ligand has a weak interaction with the ZnII atom [Zn1···O1 = 2.602 (3) Å]. A similar distance has been observed [Zn1···O2 = 2.653 (7)Å] (Zhou et al., 2005). The ZnII atom is located on a twofold rotation axis, which also passes through the mid-point of the C5—C5i bond [symmetry code: (i) -x, y, -z+1/2] of the bpy ligand. The bpy ligand exhibits nearly perfect coplanarity (r.m.s. deviation = 0.049 Å). In the crystal, weak C—H···O hydrogen bonds (Table 1) and π–π stacking interactions [centroid–centroid distance = 3.642 (3) Å] between adjacent bpy ligands link the complex molecules into a two-dimensional supramolecular structure parallel to (100).