metal-organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 68| Part 3| March 2012| Pages m337-m338

Bis(μ-propan-2-olato-κ2O:O)bis­­[chlor­ido(propan-2-ol-κO)bis­­(pro­pan-1-ol­ato-κO)tin(IV)]

aKiev National Taras Shevchenko University, Department of Chemistry, Volodymyrska Street 64, 01601 Kiev, Ukraine, and bInstitute of Organic Chemistry, National Academy of Sciences of Ukraine, Chervonatkatska Street 60, 02660 Kiev, Ukraine
*Correspondence e-mail: nikolai.klishin@gmail.com

(Received 13 February 2012; accepted 21 February 2012; online 24 February 2012)

The binuclear centrosymmetric title compound, [Sn2(C3H7O)6Cl2(C3H8O)2], exhibits an edge-shared double octahedral exhibits an edge-shared octa­hedral structure, which is distorted owing to the presence of asymmetric intra­molecular hydrogen bonds between the axially coordinated isopropanol and isopropoxide ligands. The H atom of the hy­droxy group is located nearer to an isoprop­oxy group with the longest Sn—O bond [2.1789 (17) Å].

Related literature

For the synthesis of the title compound, see: Mehrotra & Gupta (1966[Mehrotra, R. C. & Gupta, V. D. (1966). J. Indian Chem. Soc. 43, 155-160.]). For related structures, see: Chandler et al. (1995[Chandler, C. D., Caruso, J., Hampden-Smith, M. J. & Rheingold, A. (1995). Polyhedron, 14, 2491-2497.]); Genge et al. (1996[Genge, A. R. J., Levason, W. & Reid, G. (1996). Acta Cryst. C52, 1666-1668.]); Hampden-Smith et al. (1991[Hampden-Smith, M. J., Wark, T. A., Rheingold, A. & Huffman, J. C. (1991). Can. J. Chem. 69, 121-129.]); Reuter & Kremser (1991[Reuter, H. & Kremser, M. (1991). Z. Anorg. Allg. Chem. 599-600, 271-280.], 1993[Reuter, H. & Kremser, M. (1993). Z. Kristallogr. 203, 158-160.]); Reuter & Schröder (1992[Reuter, H. & Schröder, D. (1992). Acta Cryst. C48, 1112-1114.]); Sterr & Mattes (1963[Sterr, G. & Mattes, R. (1963). Z. Anorg. Allg. Chem. 322, 319-325.]); Webster & Collins (1974[Webster, M. & Collins, P. H. (1974). Inorg. Chim. Acta, 9, 157-160.]); Zhang et al. (2011[Zhang, Q., Yin, H. & Wang, D. (2011). Acta Cryst. E67, m146.]). For alcohol adducts of alkoxides, see: Vaartstra et al. (1990[Vaartstra, B. A., Huffman, J. C., Gradeff, P. S., Hubert-Pfalzgraf, L. G., Daran, J. C., Parraud, S., Yunlu, K. & Caulton, K. G. (1990). Inorg. Chem. 29, 3126-3131.]).

[Scheme 1]

Experimental

Crystal data
  • [Sn2(C3H7O)6Cl2(C3H8O)2]

  • Mr = 783.02

  • Monoclinic, P 21 /n

  • a = 11.184 (2) Å

  • b = 10.354 (2) Å

  • c = 15.426 (3) Å

  • β = 102.19 (3)°

  • V = 1746.0 (6) Å3

  • Z = 2

  • Mo Kα radiation

  • μ = 1.62 mm−1

  • T = 173 K

  • 0.50 × 0.35 × 0.29 mm

Data collection
  • Nonius KappaCCD diffractometer

  • Absorption correction: multi-scan (DENZO/SCALEPACK; Otwinowski & Minor, 1997[Otwinowski, Z. & Minor, W. (1997). Methods in Enzymology, Vol. 276, Macromolecular Crystallography, Part A, edited by C. W. Carter Jr & R. M. Sweet, pp. 307-326. New York: Academic Press.]) Tmin = 0.498, Tmax = 0.651

  • 16149 measured reflections

  • 3539 independent reflections

  • 3075 reflections with I > 2σ(I)

  • Rint = 0.029

Refinement
  • R[F2 > 2σ(F2)] = 0.021

  • wR(F2) = 0.045

  • S = 1.03

  • 3539 reflections

  • 175 parameters

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.45 e Å−3

  • Δρmin = −0.32 e Å−3

Table 1
Selected bond lengths (Å)

Sn1—O1 2.0965 (15)
Sn1—O1i 2.0866 (16)
Sn1—O2 2.0085 (15)
Sn1—O3 1.9934 (17)
Sn1—O4 2.1789 (17)
Sn1—Cl1 2.3930 (10)
Symmetry code: (i) -x, -y+1, -z.

Table 2
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
O4—H13⋯O2i 0.78 (3) 1.94 (3) 2.696 (2) 164 (3)
Symmetry code: (i) -x, -y+1, -z.

Data collection: COLLECT (Nonius, 1998[Nonius (1998). COLLECT. Nonius BV, Delft, The Netherlands.]); cell refinement: DENZO/SCALEPACK (Otwinowski & Minor, 1997[Otwinowski, Z. & Minor, W. (1997). Methods in Enzymology, Vol. 276, Macromolecular Crystallography, Part A, edited by C. W. Carter Jr & R. M. Sweet, pp. 307-326. New York: Academic Press.]); data reduction: DENZO/SCALEPACK; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); software used to prepare material for publication: SHELXTL and publCIF (Westrip, 2010[Westrip, S. P. (2010). J. Appl. Cryst. 43, 920-925.]).

Supporting information


Comment top

The structural features of the title compound are consistent with those of other dimeric tin(IV) alkoxides, such as SnCl3(OR).ROH [R = Me (Sterr & Mattes, 1963) and Et (Genge et al., 1996; Webster & Collins, 1974)], SnCl3(OCH3).2CH3OH (Reuter & Schröder, 1992), Sn(OiPr)4.iPrOH (Hampden-Smith et al., 1991; Reuter & Kremser, 1991), SnCl(OiBu)3.HOiBu (Reuter & Kremser, 1993), Sn(OiBu)4.HOiBu (Chandler et al., 1995) and Sn2(CH3O)2Cl6(C3H7NO)2 (Zhang et al., 2011). In all these cases, two octahedrally coordinated Sn atoms are bridged by two µ-OR groups. The molecular structure of the title compound (Fig. 1), [Sn2Cl2(µ-OiPr)2(OiPr)4(iPrOH)2], can be described as distorted edge-shared bi-octahedral, containing two doubly bridging isopropoxide ligands, with two terminal alkoxide ligands (one bonded to each tin) and two terminal chloride ligands in the same plane and four other ligands perpendicular to this plane (two on each metal) that are involved in hydrogen bonding. The molecule has a crystallographically imposed inversion centre. In the (RO)2Sn(µ-OR)2Sn(OR)2 plane, the terminal Sn—O [1.9934 (17) Å] and Sn—Cl [2.3930 (10) Å] distances are longer (Table 1), but comparable to those observed in SnCl(OiBu)3.HOiBu (Reuter & Kremser, 1993) [1.961 and 2.363 Å], while the Sn—(µ-OR) distance [2.0866 (16) Å] is analogous to those of SnCl(OiBu)3.HOiBu (2.092 Å). Perpendicular to the (RO)2Sn(µ-OR)2Sn(OR)2 plane, there are two isopropoxide ligands and two coordinated propan-2-ol ligands that are involved in hydrogen bonding (Table 2). The hydrogen atom was located in the final difference map. The OH-proton is located nearer to the isopropoxo group with the longest Sn—O bond [2.1789 (17) Å].

Related literature top

For the synthesis of the title compound, see: Mehrotra & Gupta (1966). For related structures, see: Chandler et al. (1995); Genge et al. (1996); Hampden-Smith et al. (1991); Reuter & Kremser (1991, 1993); Reuter & Schröder (1992); Sterr & Mattes (1963); Webster & Collins (1974); Zhang et al. (2011). For alcohol adducts of alkoxides, see: Vaartstra et al. (1990).

Experimental top

Acetyl chloride (0.38 g, 4.8 mmol) was added dropwise to a stirred solution of stannic alkoxide Sn(OiPr)4.HOiPr (1.99 g, 4.8 mmol) in 16 ml of anhydrous benzene at room temperature under argon using Schlenk techniques. The reaction was slightly exothermic. The reaction mixture was refluxed under stirring for one hour at 90–95°C and then allowed to reach room temperature. After three weeks, a great deal of colourless crystals were obtained (yield: about 0.76 g, 40% on tin).

Refinement top

H atom of the hydroxy group was found from a difference Fourier map and refined isotropically. H atoms on all C atoms were included in calculated positions and constrained to an ideal geometry, with C—H = 1.00 (CH) and 0.98 (CH3) Å and with Uiso(H) = 1.2(1.5 for methyl)Ueq(C). The highest residual electron density was found at 0.66 Å from O3 atom and the deepest hole at 0.91 Å from Sn1 atom.

Computing details top

Data collection: COLLECT (Nonius, 1998); cell refinement: DENZO/SCALEPACK (Otwinowski & Minor, 1997); data reduction: DENZO/SCALEPACK (Otwinowski & Minor, 1997); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008) and publCIF (Westrip, 2010).

Figures top
[Figure 1] Fig. 1. Molecular structure of the title compound. Displacement ellipsoids are shown at the 30% probability level. H atoms (except the hydroxy H atoms) have been omitted for clarity. Dotted lines denote hydrogen bonds. [Symmetry code: (A) -x, 1-y, -z.]
Bis(µ-propan-2-olato-κ2O:O)bis[chlorido(propan-2-ol- κO)bis(propan-2-olato-κO)tin(IV)] top
Crystal data top
[Sn2(C3H7O)6Cl2(C3H8O)2]F(000) = 800
Mr = 783.02Dx = 1.489 Mg m3
Monoclinic, P21/nMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ynCell parameters from 9138 reflections
a = 11.184 (2) Åθ = 2.4–26.3°
b = 10.354 (2) ŵ = 1.62 mm1
c = 15.426 (3) ÅT = 173 K
β = 102.19 (3)°Prism, colourless
V = 1746.0 (6) Å30.50 × 0.35 × 0.29 mm
Z = 2
Data collection top
Nonius KappaCCD
diffractometer
3539 independent reflections
Radiation source: sealed tube3075 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.029
Detector resolution: 9 pixels mm-1θmax = 26.4°, θmin = 2.1°
phi and ω scansh = 1312
Absorption correction: multi-scan
(DENZO/SCALEPACK; Otwinowski & Minor, 1997)
k = 1212
Tmin = 0.498, Tmax = 0.651l = 1919
16149 measured reflections
Refinement top
Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.021H atoms treated by a mixture of independent and constrained refinement
wR(F2) = 0.045 w = 1/[σ2(Fo2) + (0.0098P)2 + 1.9079P]
where P = (Fo2 + 2Fc2)/3
S = 1.03(Δ/σ)max < 0.001
3539 reflectionsΔρmax = 0.45 e Å3
175 parametersΔρmin = 0.32 e Å3
Primary atom site location: structure-invariant direct methods
Crystal data top
[Sn2(C3H7O)6Cl2(C3H8O)2]V = 1746.0 (6) Å3
Mr = 783.02Z = 2
Monoclinic, P21/nMo Kα radiation
a = 11.184 (2) ŵ = 1.62 mm1
b = 10.354 (2) ÅT = 173 K
c = 15.426 (3) Å0.50 × 0.35 × 0.29 mm
β = 102.19 (3)°
Data collection top
Nonius KappaCCD
diffractometer
3539 independent reflections
Absorption correction: multi-scan
(DENZO/SCALEPACK; Otwinowski & Minor, 1997)
3075 reflections with I > 2σ(I)
Tmin = 0.498, Tmax = 0.651Rint = 0.029
16149 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.021175 parameters
wR(F2) = 0.045H atoms treated by a mixture of independent and constrained refinement
S = 1.03Δρmax = 0.45 e Å3
3539 reflectionsΔρmin = 0.32 e Å3
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Sn10.132953 (13)0.420782 (15)0.027075 (9)0.02103 (5)
Cl10.30397 (5)0.44293 (6)0.14894 (4)0.03425 (14)
O10.03597 (13)0.57912 (14)0.06175 (9)0.0217 (3)
O20.18898 (14)0.53857 (16)0.05988 (10)0.0292 (4)
O30.17710 (15)0.24347 (16)0.00562 (11)0.0332 (4)
O40.02365 (17)0.33292 (18)0.11269 (11)0.0335 (4)
C10.0799 (2)0.6650 (2)0.13774 (15)0.0303 (5)
H10.15770.62710.17230.036*
C20.3120 (2)0.5517 (3)0.07082 (17)0.0377 (6)
H20.36270.48130.03700.045*
C30.2933 (2)0.1919 (3)0.00686 (17)0.0379 (6)
H30.35430.25780.03550.045*
C40.0516 (2)0.2316 (2)0.17833 (15)0.0314 (6)
H40.13840.20440.18220.038*
C50.0091 (3)0.6699 (3)0.19870 (16)0.0439 (7)
H5A0.08550.71010.16770.066*
H5B0.02620.72070.25150.066*
H5C0.02580.58200.21650.066*
C60.1106 (3)0.7943 (3)0.10514 (19)0.0458 (7)
H6A0.16890.78360.06640.069*
H6B0.14710.84870.15580.069*
H6C0.03590.83530.07190.069*
C70.3629 (3)0.6785 (4)0.0357 (3)0.0776 (12)
H7A0.31490.74830.06930.116*
H7B0.44820.68520.04170.116*
H7C0.35910.68570.02700.116*
C80.3140 (3)0.5378 (4)0.1677 (2)0.0755 (12)
H8A0.27760.45470.18950.113*
H8B0.39870.54130.17540.113*
H8C0.26700.60810.20120.113*
C90.3193 (3)0.1546 (4)0.0820 (2)0.0693 (10)
H9A0.25900.09080.11050.104*
H9B0.40160.11750.07340.104*
H9C0.31420.23150.11970.104*
C100.3020 (3)0.0748 (3)0.0657 (2)0.0683 (10)
H10A0.28610.10000.12340.102*
H10B0.38420.03760.07380.102*
H10C0.24140.01070.03810.102*
C110.0289 (3)0.1175 (3)0.1493 (2)0.0602 (9)
H11A0.11430.14110.14750.090*
H11B0.00510.04640.19140.090*
H11C0.02010.09030.09020.090*
C120.0411 (3)0.2839 (3)0.26696 (18)0.0586 (9)
H12A0.09520.35870.28170.088*
H12B0.06490.21690.31220.088*
H12C0.04360.31010.26500.088*
H130.042 (3)0.361 (3)0.104 (2)0.051 (10)*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Sn10.01826 (9)0.02480 (9)0.01929 (8)0.00085 (7)0.00231 (5)0.00071 (6)
Cl10.0261 (3)0.0421 (4)0.0292 (3)0.0027 (3)0.0064 (2)0.0005 (3)
O10.0191 (8)0.0245 (8)0.0198 (7)0.0002 (7)0.0002 (6)0.0041 (6)
O20.0200 (8)0.0389 (10)0.0293 (8)0.0023 (7)0.0064 (7)0.0099 (7)
O30.0311 (9)0.0295 (9)0.0367 (9)0.0017 (8)0.0020 (7)0.0051 (7)
O40.0251 (10)0.0405 (11)0.0371 (10)0.0094 (9)0.0120 (8)0.0186 (8)
C10.0300 (13)0.0345 (14)0.0236 (11)0.0015 (11)0.0009 (10)0.0105 (10)
C20.0233 (13)0.0475 (17)0.0444 (15)0.0028 (12)0.0120 (11)0.0140 (12)
C30.0367 (15)0.0325 (14)0.0452 (15)0.0021 (12)0.0101 (12)0.0062 (12)
C40.0317 (13)0.0345 (14)0.0291 (12)0.0057 (11)0.0091 (10)0.0131 (10)
C50.0553 (18)0.0507 (18)0.0262 (13)0.0021 (15)0.0098 (12)0.0120 (12)
C60.0498 (18)0.0380 (16)0.0489 (16)0.0137 (14)0.0089 (14)0.0153 (13)
C70.050 (2)0.090 (3)0.096 (3)0.036 (2)0.024 (2)0.016 (2)
C80.068 (2)0.107 (3)0.066 (2)0.020 (2)0.046 (2)0.015 (2)
C90.071 (2)0.084 (3)0.062 (2)0.031 (2)0.0336 (18)0.0088 (19)
C100.072 (2)0.067 (2)0.071 (2)0.032 (2)0.0261 (19)0.0242 (19)
C110.073 (2)0.0398 (17)0.062 (2)0.0063 (16)0.0021 (17)0.0145 (15)
C120.075 (2)0.070 (2)0.0316 (15)0.0147 (19)0.0118 (15)0.0076 (14)
Geometric parameters (Å, º) top
Sn1—O12.0965 (15)C5—H5B0.9800
Sn1—O1i2.0866 (16)C5—H5C0.9800
Sn1—O22.0085 (15)C6—H6A0.9800
Sn1—O31.9934 (17)C6—H6B0.9800
Sn1—O42.1789 (17)C6—H6C0.9800
Sn1—Cl12.3930 (10)C7—H7A0.9800
O1—C11.471 (3)C7—H7B0.9800
O2—C21.428 (3)C7—H7C0.9800
O3—C31.380 (3)C8—H8A0.9800
O4—C41.445 (3)C8—H8B0.9800
O4—H130.78 (3)C8—H8C0.9800
C1—C61.496 (4)C9—H9A0.9800
C1—C51.508 (3)C9—H9B0.9800
C1—H11.0000C9—H9C0.9800
C2—C71.487 (4)C10—H10A0.9800
C2—C81.506 (4)C10—H10B0.9800
C2—H21.0000C10—H10C0.9800
C3—C101.505 (4)C11—H11A0.9800
C3—C91.510 (4)C11—H11B0.9800
C3—H31.0000C11—H11C0.9800
C4—C111.495 (4)C12—H12A0.9800
C4—C121.498 (4)C12—H12B0.9800
C4—H41.0000C12—H12C0.9800
C5—H5A0.9800
O3—Sn1—O2105.15 (7)C1—C5—H5B109.5
O3—Sn1—O1i94.16 (6)H5A—C5—H5B109.5
O2—Sn1—O1i85.87 (6)C1—C5—H5C109.5
O3—Sn1—O1162.53 (6)H5A—C5—H5C109.5
O2—Sn1—O186.94 (6)H5B—C5—H5C109.5
O1i—Sn1—O173.84 (6)C1—C6—H6A109.5
O3—Sn1—O488.25 (7)C1—C6—H6B109.5
O2—Sn1—O4162.24 (7)H6A—C6—H6B109.5
O1i—Sn1—O481.50 (6)C1—C6—H6C109.5
O1—Sn1—O477.60 (7)H6A—C6—H6C109.5
O3—Sn1—Cl195.02 (5)H6B—C6—H6C109.5
O2—Sn1—Cl198.98 (5)C2—C7—H7A109.5
O1i—Sn1—Cl1168.11 (4)C2—C7—H7B109.5
O1—Sn1—Cl195.47 (4)H7A—C7—H7B109.5
O4—Sn1—Cl191.23 (5)C2—C7—H7C109.5
C1—O1—Sn1i128.84 (13)H7A—C7—H7C109.5
C1—O1—Sn1124.90 (13)H7B—C7—H7C109.5
Sn1i—O1—Sn1106.16 (6)C2—C8—H8A109.5
C2—O2—Sn1125.52 (14)C2—C8—H8B109.5
C3—O3—Sn1126.66 (15)H8A—C8—H8B109.5
C4—O4—Sn1131.40 (15)C2—C8—H8C109.5
C4—O4—H13116 (2)H8A—C8—H8C109.5
Sn1—O4—H13112 (2)H8B—C8—H8C109.5
O1—C1—C6109.58 (19)C3—C9—H9A109.5
O1—C1—C5111.34 (19)C3—C9—H9B109.5
C6—C1—C5114.1 (2)H9A—C9—H9B109.5
O1—C1—H1107.2C3—C9—H9C109.5
C6—C1—H1107.2H9A—C9—H9C109.5
C5—C1—H1107.2H9B—C9—H9C109.5
O2—C2—C7110.2 (2)C3—C10—H10A109.5
O2—C2—C8108.9 (2)C3—C10—H10B109.5
C7—C2—C8111.2 (3)H10A—C10—H10B109.5
O2—C2—H2108.8C3—C10—H10C109.5
C7—C2—H2108.8H10A—C10—H10C109.5
C8—C2—H2108.8H10B—C10—H10C109.5
O3—C3—C10109.6 (2)C4—C11—H11A109.5
O3—C3—C9109.2 (2)C4—C11—H11B109.5
C10—C3—C9109.9 (3)H11A—C11—H11B109.5
O3—C3—H3109.4C4—C11—H11C109.5
C10—C3—H3109.4H11A—C11—H11C109.5
C9—C3—H3109.4H11B—C11—H11C109.5
O4—C4—C11109.6 (2)C4—C12—H12A109.5
O4—C4—C12109.3 (2)C4—C12—H12B109.5
C11—C4—C12113.6 (2)H12A—C12—H12B109.5
O4—C4—H4108.1C4—C12—H12C109.5
C11—C4—H4108.1H12A—C12—H12C109.5
C12—C4—H4108.1H12B—C12—H12C109.5
C1—C5—H5A109.5
O3—Sn1—O1—C1128.6 (2)O4—Sn1—O3—C3120.29 (19)
O2—Sn1—O1—C196.80 (16)Cl1—Sn1—O3—C329.20 (19)
O1i—Sn1—O1—C1176.62 (19)O3—Sn1—O4—C448.2 (2)
O4—Sn1—O1—C192.01 (16)O2—Sn1—O4—C4172.1 (2)
Cl1—Sn1—O1—C11.94 (16)O1i—Sn1—O4—C4142.7 (2)
O3—Sn1—O1—Sn1i48.0 (2)O1—Sn1—O4—C4142.1 (2)
O2—Sn1—O1—Sn1i86.58 (7)Cl1—Sn1—O4—C446.7 (2)
O1i—Sn1—O1—Sn1i0.0Sn1i—O1—C1—C674.9 (2)
O4—Sn1—O1—Sn1i84.61 (7)Sn1—O1—C1—C6109.3 (2)
Cl1—Sn1—O1—Sn1i174.67 (5)Sn1i—O1—C1—C552.2 (3)
O3—Sn1—O2—C260.20 (19)Sn1—O1—C1—C5123.58 (19)
O1i—Sn1—O2—C2153.40 (19)Sn1—O2—C2—C7108.4 (3)
O1—Sn1—O2—C2132.60 (19)Sn1—O2—C2—C8129.3 (2)
O4—Sn1—O2—C2161.9 (2)Sn1—O3—C3—C10119.9 (2)
Cl1—Sn1—O2—C237.53 (19)Sn1—O3—C3—C9119.6 (2)
O2—Sn1—O3—C371.53 (19)Sn1—O4—C4—C11115.7 (2)
O1i—Sn1—O3—C3158.37 (19)Sn1—O4—C4—C12119.3 (2)
O1—Sn1—O3—C3155.9 (2)
Symmetry code: (i) x, y+1, z.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O4—H13···O2i0.78 (3)1.94 (3)2.696 (2)164 (3)
Symmetry code: (i) x, y+1, z.

Experimental details

Crystal data
Chemical formula[Sn2(C3H7O)6Cl2(C3H8O)2]
Mr783.02
Crystal system, space groupMonoclinic, P21/n
Temperature (K)173
a, b, c (Å)11.184 (2), 10.354 (2), 15.426 (3)
β (°) 102.19 (3)
V3)1746.0 (6)
Z2
Radiation typeMo Kα
µ (mm1)1.62
Crystal size (mm)0.50 × 0.35 × 0.29
Data collection
DiffractometerNonius KappaCCD
diffractometer
Absorption correctionMulti-scan
(DENZO/SCALEPACK; Otwinowski & Minor, 1997)
Tmin, Tmax0.498, 0.651
No. of measured, independent and
observed [I > 2σ(I)] reflections
16149, 3539, 3075
Rint0.029
(sin θ/λ)max1)0.625
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.021, 0.045, 1.03
No. of reflections3539
No. of parameters175
No. of restraints?
H-atom treatmentH atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å3)0.45, 0.32

Computer programs: COLLECT (Nonius, 1998), DENZO/SCALEPACK (Otwinowski & Minor, 1997), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), SHELXTL (Sheldrick, 2008) and publCIF (Westrip, 2010).

Selected bond lengths (Å) top
Sn1—O12.0965 (15)Sn1—O31.9934 (17)
Sn1—O1i2.0866 (16)Sn1—O42.1789 (17)
Sn1—O22.0085 (15)Sn1—Cl12.3930 (10)
Symmetry code: (i) x, y+1, z.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O4—H13···O2i0.78 (3)1.94 (3)2.696 (2)164 (3)
Symmetry code: (i) x, y+1, z.
 

Acknowledgements

Financial support from the Ministry of Education, Science, Youth and Sport of Ukraine is gratefully acknowledged.

References

First citationChandler, C. D., Caruso, J., Hampden-Smith, M. J. & Rheingold, A. (1995). Polyhedron, 14, 2491–2497.  CSD CrossRef CAS Web of Science Google Scholar
First citationGenge, A. R. J., Levason, W. & Reid, G. (1996). Acta Cryst. C52, 1666–1668.  CSD CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationHampden-Smith, M. J., Wark, T. A., Rheingold, A. & Huffman, J. C. (1991). Can. J. Chem. 69, 121–129.  CAS Google Scholar
First citationMehrotra, R. C. & Gupta, V. D. (1966). J. Indian Chem. Soc. 43, 155–160.  CAS Google Scholar
First citationNonius (1998). COLLECT. Nonius BV, Delft, The Netherlands.  Google Scholar
First citationOtwinowski, Z. & Minor, W. (1997). Methods in Enzymology, Vol. 276, Macromolecular Crystallography, Part A, edited by C. W. Carter Jr & R. M. Sweet, pp. 307–326. New York: Academic Press.  Google Scholar
First citationReuter, H. & Kremser, M. (1991). Z. Anorg. Allg. Chem. 599–600, 271–280.  Google Scholar
First citationReuter, H. & Kremser, M. (1993). Z. Kristallogr. 203, 158–160.  CrossRef CAS Web of Science Google Scholar
First citationReuter, H. & Schröder, D. (1992). Acta Cryst. C48, 1112–1114.  CSD CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSterr, G. & Mattes, R. (1963). Z. Anorg. Allg. Chem. 322, 319–325.  CSD CrossRef CAS Web of Science Google Scholar
First citationVaartstra, B. A., Huffman, J. C., Gradeff, P. S., Hubert-Pfalzgraf, L. G., Daran, J. C., Parraud, S., Yunlu, K. & Caulton, K. G. (1990). Inorg. Chem. 29, 3126–3131.  CSD CrossRef CAS Web of Science Google Scholar
First citationWebster, M. & Collins, P. H. (1974). Inorg. Chim. Acta, 9, 157–160.  CSD CrossRef CAS Web of Science Google Scholar
First citationWestrip, S. P. (2010). J. Appl. Cryst. 43, 920–925.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationZhang, Q., Yin, H. & Wang, D. (2011). Acta Cryst. E67, m146.  Web of Science CSD CrossRef IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 68| Part 3| March 2012| Pages m337-m338
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds