organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 68| Part 3| March 2012| Pages o619-o620

3,3′-Di­benzoyl-1,1′-di­benzyl-1,1′-(ethane-1,2-di­yl)­di­thio­urea

aDepartment of Inorganic Chemistry, Gdansk University of Technology, 11/12 Narutowicza Street, 80-233 Gdańsk, Poland
*Correspondence e-mail: barbara.becker@pg.gda.pl

(Received 5 January 2012; accepted 23 January 2012; online 4 February 2012)

In the title compound, C32H30N4O2S2, the carbonyl and thio­carbonyl groups are found in a rare synclinal conformation, with an S—C⋯C—O pseudo-torsion angle of 62.6 (2)°. The mol­ecule has Ci = S2 point-group symmetry with a crystallographic center of inversion located in the middle of the ethyl­ene bridge. One of the symmetry-independent phenyl rings is disordered over two orientations, with a site-occupation ratio of 70:30. The distances between the centroids of the nearest phenyl rings are equal to one of the lattice constants [a = 4.7767 (2) Å], so stacking inter­actions are extremely weak. Mol­ecules are joined by bifurcated hydrogen bonds (N—H⋯O and N—H⋯S), forming a ladder-like arrangement along [100]. van der Waals forces combine these ladders into a three-dimensional structure. The dependency between the S⋯O distance and the improper S=C⋯C=O torsion angle based on 739 structures containing the CC(=O)NC(=S)N moiety is discussed.

Related literature

For structures of bis­(N-benzoyl­thio­ureas) derived from aliphatic diamines, see: Ding et al. (2008[Ding, Y.-J., Chang, X.-B., Yang, X.-Q. & Dong, W.-K. (2008). Acta Cryst. E64, o658.]); Dong et al. (2007[Dong, W.-K., Yang, X.-Q., Xu, L., Wang, L., Liu, G.-L. & Feng, J.-H. (2007). Z. Kristallogr. New Cryst. Struct. 222, 279-280.]); Sow et al. (2009[Sow, M. M., Diouf, O., Barry, A. H., Gaye, M. & Sall, A. S. (2009). Acta Cryst. E65, o569.]). For those derived from o-cyclo­hexa­ne­diamine, see: Jumal et al. (2011[Jumal, J., Ibrahim, A. R. & Yamin, B. M. (2011). Acta Cryst. E67, o1256.]). For those derived from aromatic diamines, see: Cao et al. (2007[Cao, C., Xiao, T., Wei, T.-B. & Zhang, Y.-M. (2007). Acta Cryst. E63, o2699-o2701.]); Li et al. (2009[Li, Q., Wang, X., Xie, X. & Yang, Ch. (2009). Chin. J. Org. Chem. 29, 409-413.]); Thiam et al. (2008[Thiam, E. I., Diop, M., Gaye, M., Sall, A. S. & Barry, A. H. (2008). Acta Cryst. E64, o776.]); Woei Hung & Kassim (2010[Woei Hung, W. & Kassim, M. B. (2010). Acta Cryst. E66, o3182.]); Yamin & Osman (2011[Yamin, B. M. & Osman, U. M. (2011). Acta Cryst. E67, o1286.]). For other acyl derivaties obtained from o- and p-phenyl­enediamine (also solvates), see: Dong, Yan et al. (2008[Dong, W.-K., Yan, H.-B., Chai, L.-Q., Lv, Z.-W. & Zhao, C.-Y. (2008). Acta Cryst. E64, o1097.]); Dong, Yang et al. (2008[Dong, W.-K., Yang, X.-Q., Chai, L.-Q., Tian, Y.-Q. & Feng, J.-H. (2008). Phosphorus Sulfur Silicon Relat. Elem. 183, 1181-1187.]); Du & Du (2008[Du, H.-T. & Du, H.-J. (2008). Acta Cryst. E64, o1632-o1633.]); Du et al. (2008[Du, H.-T., Du, H.-J. & Zhou, W. (2008). Acta Cryst. E64, o1780.]). For 1-benzoyl-3-phenyl­urea, see: Okuniewski et al. (2010[Okuniewski, A., Chojnacki, J. & Becker, B. (2010). Acta Cryst. E66, o414.]). For the synthetic procedure, see: Douglass & Dains (1934[Douglass, I. B. & Dains, F. B. (1934). J. Am. Chem. Soc. 56, 719-721.]). For a review on N-aroyl­thio­ureas, see: Aly et al. (2007[Aly, A. A., Ahmed, E. K., El-Mokadem, K. M. & Hegazy, M. E.-A. F. (2007). J. Sulfur Chem. 28, 73-93.]). For a description of the Cambridge Structural Database, see: Allen (2002[Allen, F. H. (2002). Acta Cryst. B58, 380-388.]).

[Scheme 1]

Experimental

Crystal data
  • C32H30N4O2S2

  • Mr = 566.72

  • Monoclinic, P 21 /c

  • a = 4.7767 (2) Å

  • b = 25.1653 (16) Å

  • c = 11.9998 (8) Å

  • β = 91.585 (5)°

  • V = 1441.91 (15) Å3

  • Z = 2

  • Mo Kα radiation

  • μ = 0.22 mm−1

  • T = 298 K

  • 0.61 × 0.18 × 0.08 mm

Data collection
  • Oxford Diffraction Xcalibur diffractometer with a Sapphire2 (large Be window) detector

  • Absorption correction: multi-scan (CrysAlis PRO; Oxford Diffraction, 2010[Oxford Diffraction (2010). CrysAlis PRO. Oxford Diffraction Ltd, Yarnton, Oxfordshire, England.]) Tmin = 0.780, Tmax = 1

  • 7277 measured reflections

  • 2685 independent reflections

  • 2021 reflections with I > 2σ(I)

  • Rint = 0.031

Refinement
  • R[F2 > 2σ(F2)] = 0.05

  • wR(F2) = 0.123

  • S = 1.04

  • 2685 reflections

  • 231 parameters

  • 163 restraints

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.30 e Å−3

  • Δρmin = −0.15 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
N1—H1N⋯O1i 0.86 (1) 2.30 (1) 3.073 (2) 150 (2)
N1—H1N⋯S1i 0.86 (1) 2.98 (2) 3.647 (2) 136 (2)
Symmetry code: (i) x-1, y, z.

Data collection: CrysAlis PRO (Oxford Diffraction, 2010[Oxford Diffraction (2010). CrysAlis PRO. Oxford Diffraction Ltd, Yarnton, Oxfordshire, England.]); cell refinement: CrysAlis PRO; data reduction: CrysAlis PRO; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: OLEX2 (Dolomanov et al., 2009[Dolomanov, O. V., Bourhis, L. J., Gildea, R. J., Howard, J. A. K. & Puschmann, H. (2009). J. Appl. Cryst. 42, 339-341.]); software used to prepare material for publication: WinGX (Farrugia, 1999[Farrugia, L. J. (1999). J. Appl. Cryst. 32, 837-838.]) and PLATON (Spek, 2009[Spek, A. L. (2009). Acta Cryst. D65, 148-155.]).

Supporting information


Comment top

Substituted N-acylthioureas are the subject of extensive research because of their biological activity, metal coordination ability and hydrogen bond formation (Aly et al., 2007). Bis(N-acylthioureas) are a reatively less studied group with respect to their mono-analogues (Yamin & Osman, 2011).

The title compound, [PhCONHCSN(CH2Ph)CH2]2 (Fig.1), has the inversion center located in the middle of the ethylene bridge, so only half of the molecule is symetrically independent. There is no intramolecular N—H···O hydrogen bond that is commonly present in substituted N-acylthioureas and ureas (Okuniewski et al., 2010), because the hydrogen atom on N2 is substituted by a benzyl group. The only specific interactions are weak bifurcative N—H···O and N—H···S intermolecular hydrogen bonds joining molecules into one-dimensional ladders along [100] (Fig. 2). The three-dimensional structure is only stabilized by van der Waals forces (Fig. 3).

Three main geometries of N-acylthioureas based on the S···O distance (dSO) and the S=C···C=O improper torsion angle (ϕSCCO) can be distinguished: synperiplanar type (i) and (iii) with |ϕSCCO | 0° as well as antiperiplanar type (ii) with |ϕSCCO | 180° (Fig. 4). The S···O distance in type (i) is about 3 Å while in type (iii) is about 5 Å. Transition between type (i) and (ii) is smooth and is accomplished by rotation about the thioamide bond. Theoretical relation between dSO and ϕSCCO assuming constant bond lengths and valence angles can be expressed as (see: solid line in Fig. 4):

dSO = (A cos ϕSCCO + B)0.5

where A and B are calculated as:

A = 2 dSC sin αSCN [dCO sin(αNCO + αCNC) – dNC sin αCNC] -6.4657 Å2

B = [–dCN + dCN cos αCNCdCO cos(αNCO + αCNC) + dSC cos αSCN]2 + [–dSC sin αSCN]2 + [dNC sin αCNCdCO sin(αNCO + αCNC)]2 13.666 Å2

Numerical values of bond lengths and angles are the average ones calculated in Vista program on the basis of 739 structures (980 values) containing CC(=O)NC(=S)N moiety found in CSD 5.32 (Allen, 2002)

Type (ii) is generally more stable than type (i) due to the formation of the intramolecular N—H···O hydrogen bond. When there is no suitable hydrogen atom to form hydrogen bonds (N,N-disubstituted derivatives) the anticlinal geometry (|ϕSCCO | 120°) is preferred. Only 58 out of 980 points in Fig. 4 represent type (i) with dSO < 4 Å and |ϕSCCO | < 90°. In this type the S···O distance is slightly greater than theoretical value due to sulfur-oxygen repulsion. Molecules of type (iii) contain covalent six-membered rings (see: structure (iii) in Fig. 4) preventing any rotation, so there is no possibility to transform this type to any other.

Geometric parameters of the title compound's molecule place it near type (i) – rare synclinal conformation with |ϕSCCO| = 62.60 (18)° (see: cross mark in Fig. 4). Large substituents on N2 atom cause type (ii) to be geometrically unfavourable.

Related literature top

For structures of bis(N-benzoylthioureas) derived from aliphatic diamines, see: Ding et al. (2008); Dong et al. (2007); Sow et al. (2009). For those derived from o-cyclohexanediamine, see: Jumal et al. (2011). For those derived from aromatic diamines, see: Cao et al. (2007); Li et al. (2009); Thiam et al. (2008); Woei Hung & Kassim (2010); Yamin & Osman (2011). For other acyl derivaties obtained from o- and p-phenylenediamine (also solvates), see: Dong, Yan et al. (2008); Dong, Yang et al. (2008); Du & Du (2008); Du et al. (2008). For 1-benzoyl-3-phenylurea, see: Okuniewski et al. (2010). For the synthetic procedure, see: Douglass & Dains (1934). For a review on N-aroylthioureas, see: Aly et al. (2007). For a description of the Cambridge Structural Database, see: Allen (2002).

Experimental top

Synthesis was performed according to Douglass & Dains (1934): 2.50 g (33 mmol) of ammonium thiocyanate and 20 ml of acetone were placed in a two-necked flask. Through a dropping funnel 3.49 ml (30 mmol) of benzoyl chloride in 20 ml of acetone was added with stirring. After addition was completed the mixture was refluxed for additional 15 min and then 3.54 ml (15 mmol) of N,N'-dibenzylethane-1,2-diamine in 20 ml of acetone was added through the dropping funnel. The mixture was carefully poured to the 500 ml of water with stirring. The resulting precipitate was filtered on a Büchner funnel. The crude product was recrystallized from acetone. Colorless single crystals suitable for X-ray diffraction analysis were isolated with 72% yield. Melting point: 165 (1)°C.

Refinement top

All C-bonded hydrogen atoms were placed in calculated positions (aromatic: dCH = 0.97 Å, methylene: dCH = 0.93 Å) and were treated as riding on their parent atoms with Uiso (H) = 1.2 Ueq(C). H1N atom was located from difference Fourier map and refined isotropically with dNH restrained to 0.88 (1) Å.

Computing details top

Data collection: CrysAlis PRO (Oxford Diffraction, 2010); cell refinement: CrysAlis PRO (Oxford Diffraction, 2010); data reduction: CrysAlis PRO (Oxford Diffraction, 2010); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: OLEX2 (Dolomanov et al., 2009); software used to prepare material for publication: WinGX (Farrugia, 1999) and PLATON (Spek, 2009).

Figures top
[Figure 1] Fig. 1. The molecular structure of the title compound with displacement ellipsoids drawn at the 50% probability level. Symmetry code: (i) –x + 2, –y + 1, –z + 1.
[Figure 2] Fig. 2. Ladder-like structural motif found in the structure of the title compound. Hydrogen bonds are shown as dashed lines. C-bonded hydrogen atoms have been ommited for clarity.
[Figure 3] Fig. 3. Tiling of ladders seen along [100] direction. Hydrogen atoms have been ommited for clarity.
[Figure 4] Fig. 4. Plot of S···O distance (dSO) against absolute value of S=C···C=O torsion angle (|ϕSCCO|) for 739 structures containing CC(=O)NC(=S)N fragment found in CSD 5.32 (Allen, 2002). Title compound is marked with cross. Solid line represents theoretical relation (see: comment).
3-benzoyl-1-benzyl-1-(2- {benzyl[(phenylformamido)methanethioyl]amino}ethyl)thiourea top
Crystal data top
C32H30N4O2S2F(000) = 596
Mr = 566.72Dx = 1.305 Mg m3
Monoclinic, P21/cMelting point: 438(1) K
Hall symbol: -P 2ybcMo Kα radiation, λ = 0.71073 Å
a = 4.7767 (2) ÅCell parameters from 2955 reflections
b = 25.1653 (16) Åθ = 2.3–28.7°
c = 11.9998 (8) ŵ = 0.22 mm1
β = 91.585 (5)°T = 298 K
V = 1441.91 (15) Å3Needle, colourless
Z = 20.61 × 0.18 × 0.08 mm
Data collection top
Oxford Diffraction Xcalibur Sapphire2 (large Be window)
diffractometer
2685 independent reflections
Graphite monochromator2021 reflections with I > 2σ(I)
Detector resolution: 8.1883 pixels mm-1Rint = 0.031
ω scansθmax = 25.5°, θmin = 2.4°
Absorption correction: multi-scan
(CrysAlis PRO; Oxford Diffraction, 2010)
h = 55
Tmin = 0.780, Tmax = 1k = 2630
7277 measured reflectionsl = 1414
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.05Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.123H atoms treated by a mixture of independent and constrained refinement
S = 1.04 w = 1/[σ2(Fo2) + (0.0551P)2 + 0.2801P]
where P = (Fo2 + 2Fc2)/3
2685 reflections(Δ/σ)max = 0.016
231 parametersΔρmax = 0.30 e Å3
163 restraintsΔρmin = 0.15 e Å3
Crystal data top
C32H30N4O2S2V = 1441.91 (15) Å3
Mr = 566.72Z = 2
Monoclinic, P21/cMo Kα radiation
a = 4.7767 (2) ŵ = 0.22 mm1
b = 25.1653 (16) ÅT = 298 K
c = 11.9998 (8) Å0.61 × 0.18 × 0.08 mm
β = 91.585 (5)°
Data collection top
Oxford Diffraction Xcalibur Sapphire2 (large Be window)
diffractometer
2685 independent reflections
Absorption correction: multi-scan
(CrysAlis PRO; Oxford Diffraction, 2010)
2021 reflections with I > 2σ(I)
Tmin = 0.780, Tmax = 1Rint = 0.031
7277 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.05163 restraints
wR(F2) = 0.123H atoms treated by a mixture of independent and constrained refinement
S = 1.04Δρmax = 0.30 e Å3
2685 reflectionsΔρmin = 0.15 e Å3
231 parameters
Special details top

Experimental. CrysAlisPro, Oxford Diffraction Ltd., Version 1.171.33.66 (Oxford Diffraction, 2010) Empirical absorption correction using spherical harmonics, implemented in SCALE3 ABSPACK scaling algorithm.

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/UeqOcc. (<1)
C11.1371 (4)0.58001 (8)0.64272 (17)0.0356 (5)
C31.0855 (4)0.49446 (8)0.55324 (16)0.0377 (5)
H3A1.04680.45870.57880.045*
H3B1.28350.49670.53790.045*
C101.2067 (5)0.64605 (9)0.7895 (2)0.0458 (5)
C111.0914 (5)0.69614 (9)0.8323 (2)0.0528 (6)
C12A0.882 (3)0.7252 (6)0.7782 (14)0.065 (3)0.71 (3)
H12A0.79810.7130.71210.078*0.71 (3)
C13A0.800 (2)0.7731 (4)0.8256 (11)0.077 (3)0.71 (3)
H13A0.65660.79270.79110.092*0.71 (3)
C14A0.924 (2)0.7922 (3)0.9218 (13)0.078 (3)0.71 (3)
H14A0.86640.82440.95130.093*0.71 (3)
C15A1.138 (3)0.7634 (4)0.9756 (10)0.078 (3)0.71 (3)
H15A1.22140.77621.04130.093*0.71 (3)
C16A1.225 (3)0.7153 (5)0.9299 (9)0.065 (2)0.71 (3)
H16A1.37020.69610.96380.077*0.71 (3)
C12B0.873 (7)0.7181 (15)0.769 (3)0.075 (7)0.29 (3)
H12B0.80080.69680.71180.091*0.29 (3)
C13B0.747 (7)0.7674 (12)0.780 (3)0.097 (6)0.29 (3)
H13B0.61920.78140.72810.116*0.29 (3)
C14B0.831 (7)0.7934 (10)0.875 (2)0.083 (6)0.29 (3)
H14B0.73740.82430.89410.099*0.29 (3)
C15B1.048 (7)0.7760 (10)0.943 (3)0.080 (7)0.29 (3)
H15B1.11110.79641.00350.095*0.29 (3)
C16B1.168 (7)0.7275 (11)0.920 (2)0.075 (7)0.29 (3)
H16B1.31070.71550.96830.09*0.29 (3)
C200.8164 (4)0.51283 (9)0.72178 (18)0.0410 (5)
H20A0.65110.49950.68220.049*
H20B0.75920.54210.76870.049*
C210.9395 (4)0.46935 (9)0.79385 (17)0.0423 (5)
C221.1471 (6)0.48056 (12)0.8727 (2)0.0678 (8)
H221.21590.5150.87980.081*
C231.2529 (6)0.44077 (16)0.9412 (3)0.0881 (10)
H231.3950.44870.99310.106*
C241.1543 (7)0.39089 (16)0.9341 (3)0.0861 (11)
H241.22250.36480.98260.103*
C250.9545 (8)0.37876 (13)0.8557 (3)0.0920 (11)
H250.89060.3440.84870.11*
C260.8446 (6)0.41794 (11)0.7858 (2)0.0704 (8)
H260.70560.40930.7330.085*
N11.0341 (4)0.61630 (7)0.72100 (16)0.0442 (5)
N21.0180 (3)0.53247 (7)0.64038 (13)0.0345 (4)
O11.4457 (3)0.63131 (7)0.81329 (15)0.0619 (5)
S11.38677 (11)0.59942 (2)0.55656 (5)0.0483 (2)
H1N0.855 (2)0.6203 (9)0.7200 (19)0.053 (7)*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
C10.0269 (10)0.0383 (12)0.0413 (12)0.0072 (9)0.0054 (8)0.0019 (9)
C30.0358 (11)0.0373 (12)0.0398 (12)0.0061 (9)0.0028 (9)0.0038 (9)
C100.0430 (13)0.0431 (13)0.0515 (14)0.0053 (10)0.0050 (10)0.0062 (11)
C110.0496 (14)0.0408 (14)0.0692 (17)0.0103 (12)0.0197 (12)0.0113 (12)
C12A0.068 (5)0.037 (6)0.092 (5)0.006 (4)0.017 (4)0.010 (4)
C13A0.081 (5)0.040 (4)0.109 (9)0.008 (4)0.015 (5)0.023 (4)
C14A0.074 (7)0.047 (4)0.114 (9)0.003 (4)0.021 (6)0.036 (5)
C15A0.088 (5)0.063 (5)0.083 (5)0.008 (4)0.018 (4)0.040 (4)
C16A0.068 (4)0.055 (5)0.071 (4)0.005 (3)0.010 (3)0.029 (3)
C12B0.086 (12)0.035 (9)0.108 (14)0.010 (8)0.051 (11)0.003 (9)
C13B0.113 (13)0.068 (9)0.112 (15)0.028 (9)0.029 (11)0.039 (11)
C14B0.094 (13)0.060 (10)0.095 (15)0.015 (10)0.016 (11)0.033 (10)
C15B0.089 (18)0.060 (13)0.090 (12)0.012 (11)0.015 (12)0.014 (11)
C16B0.071 (12)0.053 (11)0.103 (11)0.020 (9)0.024 (8)0.012 (9)
C200.0320 (10)0.0471 (13)0.0437 (12)0.0021 (10)0.0012 (9)0.0005 (10)
C210.0395 (11)0.0475 (13)0.0403 (12)0.0028 (10)0.0078 (9)0.0014 (10)
C220.0624 (16)0.0777 (19)0.0625 (17)0.0047 (14)0.0143 (13)0.0092 (15)
C230.070 (2)0.123 (3)0.071 (2)0.007 (2)0.0164 (15)0.031 (2)
C240.082 (2)0.102 (3)0.076 (2)0.029 (2)0.0143 (18)0.040 (2)
C250.122 (3)0.0551 (19)0.099 (3)0.005 (2)0.015 (2)0.0219 (18)
C260.083 (2)0.0545 (17)0.073 (2)0.0065 (15)0.0062 (16)0.0080 (14)
N10.0290 (9)0.0431 (11)0.0605 (12)0.0037 (8)0.0001 (8)0.0168 (9)
N20.0309 (8)0.0370 (10)0.0355 (9)0.0025 (7)0.0006 (7)0.0037 (7)
O10.0418 (9)0.0742 (12)0.0691 (12)0.0019 (9)0.0104 (8)0.0170 (9)
S10.0406 (3)0.0480 (4)0.0568 (4)0.0003 (3)0.0084 (3)0.0033 (3)
Geometric parameters (Å, º) top
C1—N21.325 (3)C12B—H12B0.93
C1—N11.408 (3)C13B—C14B1.361 (15)
C1—S11.673 (2)C13B—H13B0.93
C3—N21.460 (2)C14B—C15B1.374 (17)
C3—C3i1.523 (4)C14B—H14B0.93
C3—H3A0.97C15B—C16B1.379 (16)
C3—H3B0.97C15B—H15B0.93
C10—O11.227 (3)C16B—H16B0.93
C10—N11.370 (3)C20—N21.476 (3)
C10—C111.474 (3)C20—C211.504 (3)
C11—C16B1.362 (16)C20—H20A0.97
C11—C12A1.386 (7)C20—H20B0.97
C11—C12B1.387 (18)C21—C261.373 (3)
C11—C16A1.403 (8)C21—C221.381 (3)
C12A—C13A1.395 (10)C22—C231.382 (4)
C12A—H12A0.93C22—H220.93
C13A—C14A1.371 (9)C23—C241.343 (5)
C13A—H13A0.93C23—H230.93
C14A—C15A1.394 (9)C24—C251.356 (4)
C14A—H14A0.93C24—H240.93
C15A—C16A1.399 (9)C25—C261.388 (4)
C15A—H15A0.93C25—H250.93
C16A—H16A0.93C26—H260.93
C12B—C13B1.388 (17)N1—H1N0.861 (10)
N2—C1—N1116.24 (18)C13B—C14B—C15B123 (2)
N2—C1—S1124.30 (16)C13B—C14B—H14B118.5
N1—C1—S1119.40 (16)C15B—C14B—H14B118.5
N2—C3—C3i110.9 (2)C14B—C15B—C16B118 (2)
N2—C3—H3A109.5C14B—C15B—H15B120.9
C3i—C3—H3A109.5C16B—C15B—H15B120.9
N2—C3—H3B109.5C11—C16B—C15B124 (2)
C3i—C3—H3B109.5C11—C16B—H16B117.9
H3A—C3—H3B108C15B—C16B—H16B117.9
O1—C10—N1121.0 (2)N2—C20—C21111.86 (16)
O1—C10—C11122.1 (2)N2—C20—H20A109.2
N1—C10—C11116.9 (2)C21—C20—H20A109.2
C16B—C11—C12B112 (2)N2—C20—H20B109.2
C12A—C11—C16A121.1 (8)C21—C20—H20B109.2
C16B—C11—C10132.2 (14)H20A—C20—H20B107.9
C12A—C11—C10124.0 (7)C26—C21—C22118.0 (2)
C12B—C11—C10115.6 (18)C26—C21—C20121.4 (2)
C16A—C11—C10114.7 (6)C22—C21—C20120.5 (2)
C11—C12A—C13A118.2 (10)C21—C22—C23120.2 (3)
C11—C12A—H12A120.9C21—C22—H22119.9
C13A—C12A—H12A120.9C23—C22—H22119.9
C14A—C13A—C12A121.7 (8)C24—C23—C22121.2 (3)
C14A—C13A—H13A119.1C24—C23—H23119.4
C12A—C13A—H13A119.1C22—C23—H23119.4
C13A—C14A—C15A120.3 (7)C23—C24—C25119.5 (3)
C13A—C14A—H14A119.9C23—C24—H24120.2
C15A—C14A—H14A119.9C25—C24—H24120.2
C14A—C15A—C16A119.3 (8)C24—C25—C26120.4 (3)
C14A—C15A—H15A120.3C24—C25—H25119.8
C16A—C15A—H15A120.3C26—C25—H25119.8
C15A—C16A—C11119.4 (8)C21—C26—C25120.5 (3)
C15A—C16A—H16A120.3C21—C26—H26119.7
C11—C16A—H16A120.3C25—C26—H26119.7
C11—C12B—C13B129 (4)C10—N1—C1122.61 (17)
C11—C12B—H12B115.6C10—N1—H1N121.7 (16)
C13B—C12B—H12B115.6C1—N1—H1N115.6 (16)
C14B—C13B—C12B113 (3)C1—N2—C3120.25 (17)
C14B—C13B—H13B123.5C1—N2—C20125.18 (17)
C12B—C13B—H13B123.5C3—N2—C20114.56 (16)
O1—C10—C1—S162.55 (17)S1—C1—N1—C1049.1 (3)
O1—C10—N1—C124.3 (3)
Symmetry code: (i) x+2, y+1, z+1.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1N···O1ii0.86 (1)2.30 (1)3.073 (2)150 (2)
N1—H1N···S1ii0.86 (1)2.98 (2)3.647 (2)136 (2)
Symmetry code: (ii) x1, y, z.

Experimental details

Crystal data
Chemical formulaC32H30N4O2S2
Mr566.72
Crystal system, space groupMonoclinic, P21/c
Temperature (K)298
a, b, c (Å)4.7767 (2), 25.1653 (16), 11.9998 (8)
β (°) 91.585 (5)
V3)1441.91 (15)
Z2
Radiation typeMo Kα
µ (mm1)0.22
Crystal size (mm)0.61 × 0.18 × 0.08
Data collection
DiffractometerOxford Diffraction Xcalibur Sapphire2 (large Be window)
diffractometer
Absorption correctionMulti-scan
(CrysAlis PRO; Oxford Diffraction, 2010)
Tmin, Tmax0.780, 1
No. of measured, independent and
observed [I > 2σ(I)] reflections
7277, 2685, 2021
Rint0.031
(sin θ/λ)max1)0.606
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.05, 0.123, 1.04
No. of reflections2685
No. of parameters231
No. of restraints163
H-atom treatmentH atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å3)0.30, 0.15

Computer programs: CrysAlis PRO (Oxford Diffraction, 2010), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), OLEX2 (Dolomanov et al., 2009), WinGX (Farrugia, 1999) and PLATON (Spek, 2009).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1N···O1i0.86 (1)2.296 (14)3.073 (2)150 (2)
N1—H1N···S1i0.86 (1)2.98 (2)3.647 (2)136 (2)
Symmetry code: (i) x1, y, z.
 

Acknowledgements

Financial support from the Polish Ministry of Science and Higher Education (project No. N N204 543339) is gratefully acknowledged.

References

First citationAllen, F. H. (2002). Acta Cryst. B58, 380–388.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationAly, A. A., Ahmed, E. K., El-Mokadem, K. M. & Hegazy, M. E.-A. F. (2007). J. Sulfur Chem. 28, 73–93.  CrossRef CAS Google Scholar
First citationCao, C., Xiao, T., Wei, T.-B. & Zhang, Y.-M. (2007). Acta Cryst. E63, o2699–o2701.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationDing, Y.-J., Chang, X.-B., Yang, X.-Q. & Dong, W.-K. (2008). Acta Cryst. E64, o658.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationDolomanov, O. V., Bourhis, L. J., Gildea, R. J., Howard, J. A. K. & Puschmann, H. (2009). J. Appl. Cryst. 42, 339–341.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationDong, W.-K., Yan, H.-B., Chai, L.-Q., Lv, Z.-W. & Zhao, C.-Y. (2008). Acta Cryst. E64, o1097.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationDong, W.-K., Yang, X.-Q., Chai, L.-Q., Tian, Y.-Q. & Feng, J.-H. (2008). Phosphorus Sulfur Silicon Relat. Elem. 183, 1181–1187.  Web of Science CSD CrossRef CAS Google Scholar
First citationDong, W.-K., Yang, X.-Q., Xu, L., Wang, L., Liu, G.-L. & Feng, J.-H. (2007). Z. Kristallogr. New Cryst. Struct. 222, 279–280.  CAS Google Scholar
First citationDouglass, I. B. & Dains, F. B. (1934). J. Am. Chem. Soc. 56, 719–721.  CrossRef CAS Google Scholar
First citationDu, H.-T. & Du, H.-J. (2008). Acta Cryst. E64, o1632–o1633.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationDu, H.-T., Du, H.-J. & Zhou, W. (2008). Acta Cryst. E64, o1780.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationFarrugia, L. J. (1999). J. Appl. Cryst. 32, 837–838.  CrossRef CAS IUCr Journals Google Scholar
First citationJumal, J., Ibrahim, A. R. & Yamin, B. M. (2011). Acta Cryst. E67, o1256.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationLi, Q., Wang, X., Xie, X. & Yang, Ch. (2009). Chin. J. Org. Chem. 29, 409–413.  Google Scholar
First citationOkuniewski, A., Chojnacki, J. & Becker, B. (2010). Acta Cryst. E66, o414.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationOxford Diffraction (2010). CrysAlis PRO. Oxford Diffraction Ltd, Yarnton, Oxfordshire, England.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSow, M. M., Diouf, O., Barry, A. H., Gaye, M. & Sall, A. S. (2009). Acta Cryst. E65, o569.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationSpek, A. L. (2009). Acta Cryst. D65, 148–155.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationThiam, E. I., Diop, M., Gaye, M., Sall, A. S. & Barry, A. H. (2008). Acta Cryst. E64, o776.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationWoei Hung, W. & Kassim, M. B. (2010). Acta Cryst. E66, o3182.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationYamin, B. M. & Osman, U. M. (2011). Acta Cryst. E67, o1286.  Web of Science CSD CrossRef IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 68| Part 3| March 2012| Pages o619-o620
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds