organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

N-(2-Iodo­phen­yl)benzene­carbox­imid­amide

aCollege of Biological and Environmental Engineering, Zhejiang University of Technology, Hangzhou 310014, People's Republic of China, and bZhejiang SiXian Pharmaceutical Co. Ltd, ShaoXing 312065, People's Republic of China
*Correspondence e-mail: yuguangw@zjut.edu.cn

(Received 26 January 2012; accepted 10 February 2012; online 17 February 2012)

The title compound, C13H11IN2, crystallizes with two independent molecules (A and B) in the asymmetric unit. The two aromatic rings are inclined to one another by 73.3 (2)° in molecule A, and by 74.4 (1)° in molecule B. In molecule A, the iodophenyl and the phenyl rings are inlclined to the N=C—N plane by 88.0 (4) and 19.0 (4)°, respectively. In molecule B the corresponding angles are 85.0 (4) and 20.7 (4)°, respectively. In the crystal, the two molecules are not parallel but have a dihedral angle between the iodophenyl rings of 8.6 (1)°, and 44.5 (2)° between the phenyl rings. The A and B molecules are linked vvia N—H⋯N hydrogen bonds to form –ABAB– chains propagating along direction [100].

Related literature

For the application of amidines in the synthesis of heterocyclic compounds, see: Attanasi et al. (2010[Attanasi, O., Bartoccini, S., Giorgi, G., Mantellini, F., Perrulli, F. R. & Santeusanio, S. (2010). Tetrahedron, 66, 5121-5129.]); Bhosale et al. (2010[Bhosale, S. V., Patil, U. D., Kalyankar, M. B., Nalage, S. V., Patil, V. S. & Desale, K. R. (2010). J. Heterocycl. Chem. 47, 691-696.]); Deng & Mani (2010[Deng, X. & Mani, N. S. (2010). Eur. J. Org. Chem. pp. 680-686.]); Wang et al. (2011[Wang, Y., Wang, H., Peng, J. & Zhu, Q. (2011). Org. Lett. 13, 4604-4607.]); Ohta et al. (2010[Ohta, Y., Tokimizu, Y., Oishi, S., Fuji, N. & Ohno, H. (2010). Org. Lett. 12, 3963-3965.]). For details of the synthetic procedure to yield the title compound, see: Ma et al. (2011[Ma, B., Wang, Y., Peng, J. & Zhu, Q. (2011). J. Org. Chem. 76, 6362-6366.]); Cortes-Salva et al. (2011[Cortes-Salva, M., Garvin, C. & Antilla, J. C. (2011). J. Org. Chem. 76, 1456-1459.]).

[Scheme 1]

Experimental

Crystal data
  • C13H11IN2

  • Mr = 322.14

  • Triclinic, [P \overline 1]

  • a = 10.411 (3) Å

  • b = 11.024 (3) Å

  • c = 11.534 (3) Å

  • α = 95.501 (3)°

  • β = 95.065 (3)°

  • γ = 102.986 (3)°

  • V = 1275.7 (6) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 2.49 mm−1

  • T = 296 K

  • 0.49 × 0.44 × 0.30 mm

Data collection
  • CCD area-detector diffractometer

  • Absorption correction: multi-scan (SADABS; Sheldrick, 1996[Sheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.]) Tmin = 0.376, Tmax = 0.523

  • 9707 measured reflections

  • 4716 independent reflections

  • 4076 reflections with I > 2σ(I)

  • Rint = 0.013

Refinement
  • R[F2 > 2σ(F2)] = 0.033

  • wR(F2) = 0.079

  • S = 1.04

  • 4716 reflections

  • 289 parameters

  • H-atom parameters constrained

  • Δρmax = 0.94 e Å−3

  • Δρmin = −1.34 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
N2—H2B⋯N3i 0.86 2.25 3.057 (4) 156
N4—H4B⋯N1ii 0.86 2.24 3.027 (4) 151
Symmetry codes: (i) -x+1, -y+1, -z+1; (ii) -x, -y+1, -z+1.

Data collection: SMART (Bruker, 2004[Bruker (2004). SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2004[Bruker (2004). SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); software used to prepare material for publication: SHELXTL.

Supporting information


Comment top

Benzamidines and their derivatives have attracted our attention because of their application in the synthesis of heterocyclic compounds (Attanasi et al. 2010, Bhosale et al. 2010, Deng & Mani et al. 20109, Wang et al. 2011, Ohta et al. 2010). We report here the crystal structure of the title compound (Fig. 1).

The asymmetric unit of the title compound contains two crystallographically independent molecules (A and B). Concerning the carbon atoms, molecule A is made up from C1 to C13 and molecule B is made up from C14 to C26. In both molecules the bond lengths and angles are generally within normal ranges. The bond lengths N1-C7 (1.293 (4) Å) and N3-C20 (1.293 (3) Å) displays double bond character, while the distances N2-C20 1.350 (5) Å and N4-C20 1.352 (5) Å are indicative of C–N single bonds. The two molecules are not parallel so that torsion angles of 8.6 (1)° between the two iodo-phenyl groups and 44.5 (2)° between both phenyl substituents, respectively, are observed. In molecule A, the planar benzene ring (C8-C13) and the iodine-substituted benzene ring (C1-C6) form a dihedral angle of 73.3 (2)°. The NH2 group is twisted away from the plane of the adjacent benzene ring with a dihedral angle between the N-C bond of the NH2 group and the plane of the adjacent phenyl ring of 18.5 (1)°. The amidine plane and both benzene rings are not coplanar showing dihedral angles of the amidine plane (N1/C7/N2) with respect to the iodine-substituted benzene ring (C1-C6) and the second benzene ring (C8-C13) of 88.2 (2)° and 51.0 (1)°, respectively. In molecule B, the planar benzene ring (C21-C26) and the iodine-substituted benzene ring (C14-C19) form a dihedral angle of 74.4 (1)°. The NH2 group also is twisted away from the plane of the adjacent benzene ring with a dihedral angle between the N-C bond of the NH2 group and the plane of the adjacent phenyl ring of 20.7 (2)°. The amidine plane in molecule B and both benzene rings are not coplanar showing dihedral angles of the amidine plane (N3/C20/N4) with respect to the iodine-substituted benzene ring (C14-C19) and the second benzene ring (C21-C26) of 95.1 (3)° and 20.7 (2)°, respectively. In the crystal structure intramolecular N—H···N (N2—H2B···N3 and N4—H4B···N1) hydrogen bonds exist (Table 1).

Related literature top

For the application of amidines in the synthesis of heterocyclic compounds, see: Attanasi et al. (2010); Bhosale et al. (2010); Deng & Mani (2010); Wang et al. (2011); Ohta et al. (2010). For details of the synthetic procedure to yield the title compound, see: Ma et al. (2011); Cortes-Salva et al. (2011).

Experimental top

The title compound was produced according to a methodology already described in the literature (Ma et al. 2011, Cortes-Salva et al. 2011): A round bottom flask (100 mL in volume) was charged with NaH (60% in mineral oil) (360 mg, 15.0 mmol, 60%, 1.5 equiv). Under a stream of nitrogen, DMSO (10 mL) was added, and the resulting suspension was cooled with an ice-water bath prior to the addition of the 2-iodo-phenylamine (11.0 mmol, 1.1 equiv) and benzonitrile (10.0 mmol). The mixture was kept at 0 ° for 50 min and then stirred at room temperature until the starting material was consumed as monitored by TLC analysis. Ice-water (50 mL) was added while maintaining vigorous stirring. When the amidine precipitated upon addition of water, the solid was filtered off and dissolved in EtOAc (20 mL). The aqueous layer was extracted with EtOAc (3 × 20 mL). The extracts were combined and washed with water (2 × 50 mL). The organic layer was dried over Na2SO4, filtered, and concentrated under reduced pressure. The residue was purified by column chromatography (yield: 75%; m.p. 389-391 K; MS (EI, 70V): 322 (M+); 1H NMR (CDCl3, 400 MHz): δ = 7.88-7.86 (m, 2H), 7.47-7.05 (m, 5H), 7.47-7.05 (m, 2H), 4.86 (s, 2H)). The title compound was recrystallized from CH2Cl2 at room temperature to give the desired crystals suitable for single-crystal X-ray diffraction.

Refinement top

All H atoms were positioned geometrically and constrained to ride on their parent atoms (N—H = 0.86 Å and Uiso(H) = 1.2Ueq(N); C—H = 0.93 and 0.97 Å for aromatic and methylene H atoms with Uiso(H) = 1.2Ueq(C), respectively.

Computing details top

Data collection: SMART (Bruker, 2004); cell refinement: SMART (Bruker, 2004); data reduction: SAINT (Bruker, 2004); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. View of the two symmetry independent molecules of the title compound showing the atom numbering scheme and thermal ellipsoids at the 50% probability level.
N-(2-Iodophenyl)benzenecarboximidamide top
Crystal data top
C13H11IN2Z = 4
Mr = 322.14F(000) = 624
Triclinic, P1Dx = 1.677 Mg m3
Hall symbol: -P 1Melting point = 389–391 K
a = 10.411 (3) ÅMo Kα radiation, λ = 0.71073 Å
b = 11.024 (3) ÅCell parameters from 5918 reflections
c = 11.534 (3) Åθ = 0.0–0.0°
α = 95.501 (3)°µ = 2.49 mm1
β = 95.065 (3)°T = 296 K
γ = 102.986 (3)°Block, colourless
V = 1275.7 (6) Å30.49 × 0.44 × 0.30 mm
Data collection top
CCD area-detector
diffractometer
4716 independent reflections
Radiation source: fine-focus sealed tube4076 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.013
ϕ and ω scansθmax = 25.5°, θmin = 2.4°
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
h = 1212
Tmin = 0.376, Tmax = 0.523k = 1313
9707 measured reflectionsl = 1313
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.033Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.079H-atom parameters constrained
S = 1.04 w = 1/[σ2(Fo2) + (0.0273P)2 + 1.8412P]
where P = (Fo2 + 2Fc2)/3
4716 reflections(Δ/σ)max = 0.001
289 parametersΔρmax = 0.94 e Å3
0 restraintsΔρmin = 1.34 e Å3
Crystal data top
C13H11IN2γ = 102.986 (3)°
Mr = 322.14V = 1275.7 (6) Å3
Triclinic, P1Z = 4
a = 10.411 (3) ÅMo Kα radiation
b = 11.024 (3) ŵ = 2.49 mm1
c = 11.534 (3) ÅT = 296 K
α = 95.501 (3)°0.49 × 0.44 × 0.30 mm
β = 95.065 (3)°
Data collection top
CCD area-detector
diffractometer
4716 independent reflections
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
4076 reflections with I > 2σ(I)
Tmin = 0.376, Tmax = 0.523Rint = 0.013
9707 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0330 restraints
wR(F2) = 0.079H-atom parameters constrained
S = 1.04Δρmax = 0.94 e Å3
4716 reflectionsΔρmin = 1.34 e Å3
289 parameters
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes)

are estimated using the full covariance matrix. The cell esds are taken

into account individually in the estimation of esds in distances, angles

and torsion angles; correlations between esds in cell parameters are only

used when they are defined by crystal symmetry. An approximate (isotropic)

treatment of cell esds is used for estimating esds involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and

goodness of fit S are based on F2, conventional R-factors R are based

on F, with F set to zero for negative F2. The threshold expression of

F2 > 2sigma(F2) is used only for calculating R-factors(gt) etc. and is

not relevant to the choice of reflections for refinement. R-factors based

on F2 are statistically about twice as large as those based on F, and R-

factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
C10.1631 (3)0.3372 (3)0.1714 (3)0.0462 (7)
C20.1131 (3)0.2143 (3)0.1182 (3)0.0409 (7)
C30.0759 (3)0.1972 (3)0.0023 (3)0.0530 (8)
H30.04210.11640.04020.064*
C40.0882 (5)0.2975 (4)0.0663 (4)0.0728 (11)
H40.06390.28380.14690.087*
C50.1365 (5)0.4185 (4)0.0115 (4)0.0751 (12)
H50.14410.48620.05490.090*
C60.1731 (4)0.4381 (4)0.1069 (4)0.0629 (10)
H60.20480.51940.14420.075*
C70.1828 (3)0.0559 (3)0.2085 (3)0.0390 (6)
C80.1576 (3)0.0507 (3)0.2811 (3)0.0397 (6)
C90.0539 (3)0.0646 (3)0.3501 (3)0.0510 (8)
H90.00060.00730.35120.061*
C100.0289 (4)0.1629 (4)0.4170 (3)0.0618 (10)
H100.04160.17150.46220.074*
C110.1071 (4)0.2484 (4)0.4176 (4)0.0633 (10)
H110.09050.31380.46360.076*
C120.2095 (4)0.2359 (4)0.3499 (4)0.0707 (11)
H120.26280.29330.34970.085*
C130.2346 (4)0.1383 (4)0.2812 (4)0.0620 (10)
H130.30390.13150.23470.074*
C140.4353 (3)1.2019 (3)0.7427 (3)0.0515 (8)
C150.4541 (3)1.1218 (3)0.8267 (3)0.0405 (7)
C160.5055 (3)1.1761 (3)0.9409 (3)0.0529 (8)
H160.52011.12500.99780.063*
C170.5348 (4)1.3047 (4)0.9701 (4)0.0737 (12)
H170.56801.33951.04660.088*
C180.5148 (5)1.3808 (4)0.8862 (5)0.0827 (14)
H180.53491.46730.90600.099*
C190.4654 (4)1.3303 (4)0.7728 (5)0.0722 (12)
H190.45221.38260.71640.087*
C200.3135 (3)0.9233 (3)0.7895 (3)0.0398 (7)
C210.2872 (3)0.7878 (3)0.7459 (3)0.0418 (7)
C220.3741 (4)0.7450 (4)0.6769 (3)0.0574 (9)
H220.44840.80120.65860.069*
C230.3509 (4)0.6196 (4)0.6351 (4)0.0738 (12)
H230.41070.59150.59000.089*
C240.2400 (4)0.5355 (4)0.6594 (4)0.0672 (11)
H240.22480.45110.63090.081*
C250.1529 (4)0.5765 (4)0.7255 (4)0.0629 (10)
H250.07720.52020.74110.075*
C260.1762 (4)0.7017 (3)0.7698 (3)0.0550 (8)
H260.11680.72830.81620.066*
I10.22107 (3)0.37212 (3)0.35229 (2)0.07680 (12)
I20.36281 (3)1.12543 (3)0.56938 (2)0.08108 (12)
N10.0885 (2)0.1116 (2)0.1848 (2)0.0423 (6)
N20.3033 (3)0.0867 (3)0.1700 (3)0.0553 (8)
H2A0.32090.14670.12710.066*
H2B0.36240.04640.18840.066*
N30.4332 (2)0.9910 (2)0.7956 (2)0.0410 (6)
N40.2101 (3)0.9688 (3)0.8219 (3)0.0557 (7)
H4A0.22221.04660.84820.067*
H4B0.13230.91980.81610.067*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
C10.0438 (17)0.0485 (18)0.0445 (17)0.0066 (14)0.0000 (14)0.0103 (14)
C20.0277 (14)0.0447 (17)0.0514 (18)0.0095 (12)0.0051 (12)0.0091 (14)
C30.052 (2)0.051 (2)0.054 (2)0.0092 (16)0.0055 (16)0.0035 (16)
C40.087 (3)0.081 (3)0.046 (2)0.011 (2)0.002 (2)0.016 (2)
C50.099 (3)0.062 (3)0.062 (3)0.008 (2)0.002 (2)0.031 (2)
C60.073 (3)0.045 (2)0.064 (2)0.0025 (18)0.0007 (19)0.0133 (17)
C70.0287 (14)0.0407 (16)0.0466 (17)0.0072 (12)0.0035 (12)0.0039 (13)
C80.0328 (15)0.0406 (16)0.0446 (16)0.0085 (12)0.0006 (12)0.0045 (13)
C90.0469 (18)0.058 (2)0.054 (2)0.0196 (16)0.0124 (15)0.0139 (16)
C100.061 (2)0.073 (3)0.059 (2)0.0195 (19)0.0191 (18)0.0226 (19)
C110.065 (2)0.056 (2)0.070 (2)0.0094 (18)0.0055 (19)0.0256 (19)
C120.067 (3)0.059 (2)0.099 (3)0.029 (2)0.018 (2)0.029 (2)
C130.051 (2)0.058 (2)0.089 (3)0.0241 (17)0.025 (2)0.026 (2)
C140.0382 (17)0.061 (2)0.061 (2)0.0172 (15)0.0088 (15)0.0187 (17)
C150.0266 (14)0.0473 (17)0.0510 (18)0.0126 (12)0.0080 (12)0.0098 (14)
C160.0467 (19)0.057 (2)0.056 (2)0.0135 (16)0.0076 (15)0.0082 (16)
C170.072 (3)0.064 (3)0.079 (3)0.013 (2)0.006 (2)0.011 (2)
C180.084 (3)0.048 (2)0.116 (4)0.016 (2)0.018 (3)0.003 (3)
C190.070 (3)0.058 (2)0.101 (4)0.027 (2)0.019 (2)0.035 (2)
C200.0318 (15)0.0501 (17)0.0403 (16)0.0131 (13)0.0038 (12)0.0112 (13)
C210.0349 (15)0.0503 (18)0.0403 (16)0.0104 (13)0.0004 (12)0.0083 (13)
C220.0440 (19)0.061 (2)0.063 (2)0.0069 (16)0.0094 (16)0.0031 (18)
C230.070 (3)0.068 (3)0.080 (3)0.019 (2)0.016 (2)0.015 (2)
C240.078 (3)0.051 (2)0.066 (2)0.012 (2)0.006 (2)0.0013 (18)
C250.065 (2)0.052 (2)0.068 (2)0.0018 (18)0.0057 (19)0.0139 (18)
C260.0496 (19)0.055 (2)0.062 (2)0.0105 (16)0.0150 (16)0.0140 (17)
I10.0951 (2)0.07203 (19)0.05011 (16)0.00014 (15)0.01240 (14)0.00788 (12)
I20.0750 (2)0.1171 (3)0.05523 (17)0.02581 (17)0.00003 (13)0.02980 (16)
N10.0307 (12)0.0415 (14)0.0573 (16)0.0094 (10)0.0078 (11)0.0137 (12)
N20.0334 (14)0.0629 (18)0.079 (2)0.0186 (13)0.0168 (13)0.0303 (16)
N30.0281 (12)0.0465 (15)0.0505 (15)0.0117 (11)0.0052 (11)0.0094 (12)
N40.0317 (14)0.0513 (16)0.084 (2)0.0090 (12)0.0151 (14)0.0037 (15)
Geometric parameters (Å, º) top
C1—C61.386 (5)C14—I22.098 (4)
C1—C21.396 (5)C15—C161.400 (5)
C1—I12.094 (3)C15—N31.415 (4)
C2—C31.392 (5)C16—C171.382 (5)
C2—N11.417 (4)C16—H160.9300
C3—C41.376 (5)C17—C181.373 (7)
C3—H30.9300C17—H170.9300
C4—C51.383 (6)C18—C191.378 (7)
C4—H40.9300C18—H180.9300
C5—C61.368 (6)C19—H190.9300
C5—H50.9300C20—N31.293 (4)
C6—H60.9300C20—N41.352 (4)
C7—N11.294 (4)C20—C211.485 (4)
C7—N21.349 (4)C21—C221.387 (5)
C7—C81.496 (4)C21—C261.388 (5)
C8—C131.387 (5)C22—C231.381 (6)
C8—C91.386 (4)C22—H220.9300
C9—C101.381 (5)C23—C241.378 (6)
C9—H90.9300C23—H230.9300
C10—C111.377 (5)C24—C251.360 (6)
C10—H100.9300C24—H240.9300
C11—C121.367 (6)C25—C261.384 (5)
C11—H110.9300C25—H250.9300
C12—C131.389 (5)C26—H260.9300
C12—H120.9300N2—H2A0.8600
C13—H130.9300N2—H2B0.8600
C14—C191.382 (6)N4—H4A0.8600
C14—C151.401 (5)N4—H4B0.8600
C6—C1—C2121.2 (3)C16—C15—N3120.5 (3)
C6—C1—I1118.7 (3)C14—C15—N3121.4 (3)
C2—C1—I1120.1 (2)C17—C16—C15120.9 (4)
C3—C2—C1117.4 (3)C17—C16—H16119.5
C3—C2—N1120.7 (3)C15—C16—H16119.5
C1—C2—N1121.7 (3)C18—C17—C16119.8 (4)
C4—C3—C2121.2 (3)C18—C17—H17120.1
C4—C3—H3119.4C16—C17—H17120.1
C2—C3—H3119.4C17—C18—C19120.6 (4)
C3—C4—C5120.4 (4)C17—C18—H18119.7
C3—C4—H4119.8C19—C18—H18119.7
C5—C4—H4119.8C18—C19—C14120.0 (4)
C6—C5—C4119.6 (4)C18—C19—H19120.0
C6—C5—H5120.2C14—C19—H19120.0
C4—C5—H5120.2N3—C20—N4123.5 (3)
C5—C6—C1120.2 (4)N3—C20—C21118.8 (3)
C5—C6—H6119.9N4—C20—C21117.7 (3)
C1—C6—H6119.9C22—C21—C26118.2 (3)
N1—C7—N2123.9 (3)C22—C21—C20119.5 (3)
N1—C7—C8118.7 (3)C26—C21—C20122.2 (3)
N2—C7—C8117.4 (3)C23—C22—C21120.4 (4)
C13—C8—C9118.1 (3)C23—C22—H22119.8
C13—C8—C7121.9 (3)C21—C22—H22119.8
C9—C8—C7120.0 (3)C24—C23—C22120.6 (4)
C10—C9—C8120.7 (3)C24—C23—H23119.7
C10—C9—H9119.7C22—C23—H23119.7
C8—C9—H9119.7C25—C24—C23119.6 (4)
C11—C10—C9120.7 (3)C25—C24—H24120.2
C11—C10—H10119.6C23—C24—H24120.2
C9—C10—H10119.6C24—C25—C26120.4 (4)
C12—C11—C10119.2 (4)C24—C25—H25119.8
C12—C11—H11120.4C26—C25—H25119.8
C10—C11—H11120.4C25—C26—C21120.8 (3)
C11—C12—C13120.5 (4)C25—C26—H26119.6
C11—C12—H12119.8C21—C26—H26119.6
C13—C12—H12119.8C7—N1—C2118.8 (2)
C8—C13—C12120.8 (3)C7—N2—H2A120.0
C8—C13—H13119.6C7—N2—H2B120.0
C12—C13—H13119.6H2A—N2—H2B120.0
C19—C14—C15120.7 (4)C20—N3—C15117.9 (2)
C19—C14—I2119.9 (3)C20—N4—H4A120.0
C15—C14—I2119.4 (3)C20—N4—H4B120.0
C16—C15—C14118.0 (3)H4A—N4—H4B120.0
C6—C1—C2—C31.1 (5)C14—C15—C16—C171.0 (5)
I1—C1—C2—C3179.8 (2)N3—C15—C16—C17175.5 (3)
C6—C1—C2—N1172.8 (3)C15—C16—C17—C180.7 (6)
I1—C1—C2—N15.9 (4)C16—C17—C18—C190.2 (7)
C1—C2—C3—C40.1 (5)C17—C18—C19—C140.1 (7)
N1—C2—C3—C4174.0 (3)C15—C14—C19—C180.2 (6)
C2—C3—C4—C50.9 (6)I2—C14—C19—C18179.0 (3)
C3—C4—C5—C60.5 (7)N3—C20—C21—C2222.0 (4)
C4—C5—C6—C10.7 (7)N4—C20—C21—C22158.7 (3)
C2—C1—C6—C51.5 (6)N3—C20—C21—C26159.4 (3)
I1—C1—C6—C5179.8 (3)N4—C20—C21—C2620.0 (5)
N1—C7—C8—C13160.1 (3)C26—C21—C22—C231.0 (5)
N2—C7—C8—C1319.0 (5)C20—C21—C22—C23179.7 (4)
N1—C7—C8—C919.3 (4)C21—C22—C23—C241.2 (7)
N2—C7—C8—C9161.7 (3)C22—C23—C24—C250.2 (7)
C13—C8—C9—C100.2 (5)C23—C24—C25—C261.0 (6)
C7—C8—C9—C10179.6 (3)C24—C25—C26—C211.3 (6)
C8—C9—C10—C110.6 (6)C22—C21—C26—C250.2 (5)
C9—C10—C11—C120.8 (6)C20—C21—C26—C25178.4 (3)
C10—C11—C12—C130.0 (7)N2—C7—N1—C22.4 (5)
C9—C8—C13—C121.0 (6)C8—C7—N1—C2178.6 (3)
C7—C8—C13—C12179.7 (4)C3—C2—N1—C796.8 (4)
C11—C12—C13—C80.9 (7)C1—C2—N1—C789.5 (4)
C19—C14—C15—C160.7 (5)N4—C20—N3—C156.6 (5)
I2—C14—C15—C16178.6 (2)C21—C20—N3—C15174.1 (3)
C19—C14—C15—N3175.2 (3)C16—C15—N3—C20101.4 (3)
I2—C14—C15—N34.0 (4)C14—C15—N3—C2084.2 (4)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N2—H2B···N3i0.862.253.057 (4)156
N4—H4B···N1ii0.862.243.027 (4)151
Symmetry codes: (i) x+1, y+1, z+1; (ii) x, y+1, z+1.

Experimental details

Crystal data
Chemical formulaC13H11IN2
Mr322.14
Crystal system, space groupTriclinic, P1
Temperature (K)296
a, b, c (Å)10.411 (3), 11.024 (3), 11.534 (3)
α, β, γ (°)95.501 (3), 95.065 (3), 102.986 (3)
V3)1275.7 (6)
Z4
Radiation typeMo Kα
µ (mm1)2.49
Crystal size (mm)0.49 × 0.44 × 0.30
Data collection
DiffractometerCCD area-detector
diffractometer
Absorption correctionMulti-scan
(SADABS; Sheldrick, 1996)
Tmin, Tmax0.376, 0.523
No. of measured, independent and
observed [I > 2σ(I)] reflections
9707, 4716, 4076
Rint0.013
(sin θ/λ)max1)0.606
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.033, 0.079, 1.04
No. of reflections4716
No. of parameters289
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.94, 1.34

Computer programs: SMART (Bruker, 2004), SAINT (Bruker, 2004), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), SHELXTL (Sheldrick, 2008).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N2—H2B···N3i0.862.253.057 (4)156.0
N4—H4B···N1ii0.862.243.027 (4)151.3
Symmetry codes: (i) x+1, y+1, z+1; (ii) x, y+1, z+1.
 

Acknowledgements

The authors are grateful for the financial support of the Science and Technology Department of Zhejiang Province Foundation of China (project No. 2010 C32022) and the Zhejiang Province Natural Science Foundation of China (project No. Y4090410).

References

First citationAttanasi, O., Bartoccini, S., Giorgi, G., Mantellini, F., Perrulli, F. R. & Santeusanio, S. (2010). Tetrahedron, 66, 5121–5129.  Web of Science CSD CrossRef CAS Google Scholar
First citationBhosale, S. V., Patil, U. D., Kalyankar, M. B., Nalage, S. V., Patil, V. S. & Desale, K. R. (2010). J. Heterocycl. Chem. 47, 691–696.  CAS Google Scholar
First citationBruker (2004). SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationCortes-Salva, M., Garvin, C. & Antilla, J. C. (2011). J. Org. Chem. 76, 1456–1459.  Web of Science CAS PubMed Google Scholar
First citationDeng, X. & Mani, N. S. (2010). Eur. J. Org. Chem. pp. 680–686.  Web of Science CrossRef Google Scholar
First citationMa, B., Wang, Y., Peng, J. & Zhu, Q. (2011). J. Org. Chem. 76, 6362–6366.  Web of Science CrossRef CAS PubMed Google Scholar
First citationOhta, Y., Tokimizu, Y., Oishi, S., Fuji, N. & Ohno, H. (2010). Org. Lett. 12, 3963–3965.  Web of Science CrossRef CAS PubMed Google Scholar
First citationSheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationWang, Y., Wang, H., Peng, J. & Zhu, Q. (2011). Org. Lett. 13, 4604–4607.  Web of Science CrossRef CAS PubMed Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds