organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 68| Part 3| March 2012| Pages o715-o716

10α-Hy­dr­oxy-13-{[4-(4-meth­­oxy­phen­yl)piperazin-1-yl]meth­yl}-4,9-di­methyl-3,8,15-trioxa­tetra­cyclo­[10.3.0.02,4.07,9]penta­decan-14-one

aLaboratoire de Chimie Bioorganique et Analytique, URAC 22, BP 146, FSTM, Universite' Hassan II, Mohammedia–Casablanca 20810 Mohammedia, Morocco, bLaboratoire de Chimie Biomoléculaire, Substances Naturelles et Réactivité, URAC 16, Faculté des Sciences Semlalia, BP 2390, Boulevard My Abdellah, 40000 Marrakech, Morocco, and cLaboratoire de Chimie de Coordination, 205 Route de Narbonne, 31077 Toulouse Cedex 04, France
*Correspondence e-mail: mberraho@yahoo.fr

(Received 3 February 2012; accepted 9 February 2012; online 17 February 2012)

The title compound, C26H36N2O6, was synthesized from 9α-hy­droxy­parthenolide (9α-hy­droxy-4,8-dimethyl-12-methylen-3,14-dioxa-tricyclo­[9.3.0.02,4]tetra­dec-7-en-13-one), which was isolated from the chloro­form extract of the aerial parts of Anvillea radiata. The mol­ecule is built up from fused five- and ten-membered rings with two additional ep­oxy ring systems and a meth­oxy­phenyl­piperazine group as a substituent. The ten-membered ring adopts an approximate chair–chair conformation, while the piperazine ring displays a chair conformation and the five-membered ring shows an envelope conformation with the C atom closest to the hy­droxy group forming the flap. The mol­ecular conformation is determined by an O—H⋯N hydrogen bond between the hy­droxy group and a piperazine N atom. The crystal structure is built up by weak C—H⋯O inter­actions.

Related literature

For background to the medicinal uses of the plant Anvillea adiata, see: Abdel Sattar et al. (1996[Abdel Sattar, E., Galal, A. M. & Mossa, J. S. (1996). J. Nat. Prod. 59, 403-405.]); El Hassany et al. (2004[El Hassany, B., El Hanbali, F., Akssira, M., Mellouki, F., Haidou, A. & Barero, A. F. (2004). Fitoterapia, 75, 573-576.]); Qureshi et al. (1990[Qureshi, S., Ageel, A. M., Al-Yahya, M. A., Tariq, M., Mossa, J. S. & Shah, A. H. (1990). J. Ethnopharmacol. 28, 157-162.]). For the reactivity of this sesquiterpene, see: Hwang et al. (2006[Hwang, D.-R., Wu, Y.-S., Chang, C.-W., Lien, T.-W., Chen, W.-C., Tan, U.-K., Hsu, J. T. A. & Hsieh, H.-P. (2006). Bioorg. Med. Chem. 14, 83—91.]); Neukirch et al. (2003[Neukirch, H., Kaneider, N. C., Wiedermann, C. J., Guerriero, A. & D'Ambrosio, M. (2003). Bioorg. Med. Chem. 11, 1503-1510.]); Neelakantan et al. (2009[Neelakantan, S., Nasim, Sh., Guzman, M. L., Jordan, C. T. & Crooks, P. A. (2009). Bioorg. Med. Chem. Lett. 19, 4346-4349.]). For ring puckering parameters, see: Cremer & Pople (1975[Cremer, D. & Pople, J. A. (1975). J. Am. Chem. Soc. 97, 1354-1358.]). For the synthetic procedure, see: Moumou et al. (2010[Moumou, M., Akssira, M., El Ammari, L., Benharref, A. & Berraho, M. (2010). Acta Cryst. E66, o2395.]).

[Scheme 1]

Experimental

Crystal data
  • C26H36N2O6

  • Mr = 472.57

  • Orthorhombic, P 21 21 21

  • a = 8.0770 (7) Å

  • b = 10.2667 (10) Å

  • c = 28.937 (3) Å

  • V = 2399.5 (4) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.09 mm−1

  • T = 180 K

  • 0.27 × 0.21 × 0.06 mm

Data collection
  • Agilent Xcalibur Sapphire1 long nozzle diffractometer

  • Absorption correction: multi-scan (CrysAlis PRO; Agilent, 2010[Agilent (2010). CrysAlis PRO. Agilent Technologies Ltd, Yarnton, Oxfordshire, England.]) Tmin = 0.732, Tmax = 1.000

  • 14543 measured reflections

  • 2810 independent reflections

  • 1704 reflections with I > 2σ(I)

  • Rint = 0.091

Refinement
  • R[F2 > 2σ(F2)] = 0.072

  • wR(F2) = 0.188

  • S = 1.04

  • 2810 reflections

  • 312 parameters

  • H-atom parameters constrained

  • Δρmax = 0.29 e Å−3

  • Δρmin = −0.32 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
O1—H1⋯N1 0.82 2.10 2.901 (6) 165
C9—H9B⋯O1i 0.97 2.50 3.345 (7) 145
C14—H14⋯O5ii 0.98 2.49 3.447 (7) 165
C15—H15⋯O2i 0.98 2.51 3.342 (7) 142
C24—H24⋯O2i 0.98 2.33 3.185 (7) 146
C33—H33⋯O3iii 0.93 2.53 3.335 (10) 145
Symmetry codes: (i) [x-{\script{1\over 2}}, -y+{\script{3\over 2}}, -z]; (ii) [x+{\script{1\over 2}}, -y+{\script{1\over 2}}, -z]; (iii) [-x+{\script{5\over 2}}, -y+1, z-{\script{1\over 2}}].

Data collection: CrysAlis PRO (Agilent, 2010[Agilent (2010). CrysAlis PRO. Agilent Technologies Ltd, Yarnton, Oxfordshire, England.]); cell refinement: CrysAlis PRO; data reduction: CrysAlis PRO; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: ORTEP-3 for Windows (Farrugia, 1997[Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.]) and PLATON (Spek, 2009[Spek, A. L. (2009). Acta Cryst. D65, 148-155.]); software used to prepare material for publication: WinGX (Farrugia, 1999[Farrugia, L. J. (1999). J. Appl. Cryst. 32, 837-838.]).

Supporting information


Comment top

The natural sesquiterpene lactone, 9α -hydroxypartenolide is the main constituent of the chloroform extract of the aerial parts of Anvillea radiata (El Hassany et al., 2004) and of Anvillea garcini (Abdel Sattar et al. (1996). The reactivity of this sesquiterpene lactone and its derivatives have been the subject of several studies (Neukirch et al., 2003; Hwang et al., 2006; Neelakantan et al., 2009), in order to prepare products with high value which can be used in the pharmacological industry. In this context, we have synthesed, from 9α-hydroxyparthenolide, the 1β,10α-epoxy-9α-hydoxypartenolide (10α-hydroxy-4,9-dimethyl-13-methylen-3,8,15-dioxa-tetracyclo [10.3.0.02,4.07,9] pentadecan-14-one) (Moumou et al., 2010). This epoxy-hydroxypartenolide treated with one equivalent of 1-(4-methoxyphenyl)-piperazine gives the title compound (I). The crystal structure of (I) is reported herein. The molecule contains a fused ring system and the methoxyphenyl-piperazine group as a substituent to the lactone ring. The molecular structure of (I), Fig.1, shows the lactone ring to adopt an envelope conformation, as indicated by the puckering parameters Q = 0.297 (3) Å and ϕ =101.7 (8)° (Cremer & Pople, 1975). The ten-membered ring displays an approximate chair-chair conformation, while the piperazine ring has a perfect chair conformation with QT = 0.579 (3) Å, θ = 2.0 (4)° and ϕ2 =359 (10)°. In the crystal, C—H···O hydrogen bonding links the molecules into sheets lying parallel to the bc plane (Table 1, Fig.2). In addition, an intramolecular O1—H1···N1 hydrogen bond is also observed.

Related literature top

For background to the medicinal uses of the plant Anvillea adiata, see: Abdel Sattar et al. (1996); El Hassany et al. (2004); Qureshi et al.(1990). For the reactivity of this sesquiterpene, see: Hwang et al. (2006); Neukirch et al. (2003); Neelakantan et al. (2009). For ring puckering parameters, see: Cremer & Pople (1975). For the synthetic procedure, see: Moumou et al. (2010).

Experimental top

The mixture of 1β,10α-epoxy-9α-hydoxypartenolide (10α-hydroxy- 4,9-dimethyl-13-methylen-3,8,15-dioxa-tetracyclo [10.3.0.02,4.07,9] pentadecan-14-one) (500 mg, 1.78 mmol) and one equivalent of 1-(4-methoxyphenyl-piperazine) in EtOH (20 ml) was stirred for twelve hours at room temperature. Then the reaction was stopped by adding water (10 ml) and the solution was extracted with chloroform (3 x 20 ml). The combined organic layers were dried over anhydrous MgSO4, filtered and concentrated under vacuum to give 730 mg (1.8 mmol) of the title compound (yield: 90%). Recrystallization was performed from in ethyl acetate.

Refinement top

All H atoms were fixed geometrically and treated as riding with C—H = 0.96 Å (methyl), 0.97 Å (methylene), 0.98 Å (methine) with Uiso(H) = 1.2Ueq(methylene, methine) or Uiso(H) = 1.5Ueq(methyl, OH). In the absence of significant anomalous scattering, the absolute configuration could not be reliably determined and thus Friedel pairs were merged and any references to the Flack parameter were removed.

Computing details top

Data collection: CrysAlis PRO (Agilent, 2010); cell refinement: CrysAlis PRO (Agilent, 2010); data reduction: CrysAlis PRO (Agilent, 2010); program(s) used to solve structure: SHELXS97 (Sheldrick,2008); program(s) used to refine structure: SHELXL97 (Sheldrick,2008); molecular graphics: ORTEP-3 for Windows (Farrugia, 1997) and PLATON (Spek, 2009); software used to prepare material for publication: WinGX (Farrugia, 1999).

Figures top
[Figure 1] Fig. 1. : Molecular structure of the title compound with displacement ellipsoids drawn at the 30% probability level. H atoms are represented as small spheres of arbitrary radii.
[Figure 2] Fig. 2. : Partial packing view showing the C–H···O hydrogen bonds as dashed lines. H atoms not involved in hydrogen bonding have been omitted for clarity.
10α-Hydroxy-13-{[4-(4-methoxyphenyl)piperazin-1-yl]methyl}-4,9-dimethyl- 3,8,15-trioxatetracyclo[10.3.0.02,4.07,9]pentadecan-14-one top
Crystal data top
C26H36N2O6F(000) = 1016
Mr = 472.57Dx = 1.308 Mg m3
Orthorhombic, P212121Mo Kα radiation, λ = 0.71073 Å
Hall symbol: P 2ac 2abCell parameters from 4896 reflections
a = 8.0770 (7) Åθ = 2.9–26.4°
b = 10.2667 (10) ŵ = 0.09 mm1
c = 28.937 (3) ÅT = 180 K
V = 2399.5 (4) Å3Platelet, colourless
Z = 40.27 × 0.21 × 0.06 mm
Data collection top
Agilent Xcalibur Sapphire1 long nozzle
diffractometer
2810 independent reflections
Radiation source: fine-focus sealed tube1704 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.091
Detector resolution: 8.2632 pixels mm-1θmax = 26.4°, θmin = 2.9°
ω scanh = 109
Absorption correction: multi-scan
(CrysAlis PRO; Agilent, 2010)
k = 1212
Tmin = 0.732, Tmax = 1.000l = 3536
14543 measured reflections
Refinement top
Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.072H-atom parameters constrained
wR(F2) = 0.188 w = 1/[σ2(Fo2) + (0.099P)2]
where P = (Fo2 + 2Fc2)/3
S = 1.04(Δ/σ)max = 0.003
2810 reflectionsΔρmax = 0.29 e Å3
312 parametersΔρmin = 0.32 e Å3
0 restraintsExtinction correction: SHELXL97 (Sheldrick, 2008), Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
Primary atom site location: structure-invariant direct methodsExtinction coefficient: 0.015 (3)
Crystal data top
C26H36N2O6V = 2399.5 (4) Å3
Mr = 472.57Z = 4
Orthorhombic, P212121Mo Kα radiation
a = 8.0770 (7) ŵ = 0.09 mm1
b = 10.2667 (10) ÅT = 180 K
c = 28.937 (3) Å0.27 × 0.21 × 0.06 mm
Data collection top
Agilent Xcalibur Sapphire1 long nozzle
diffractometer
2810 independent reflections
Absorption correction: multi-scan
(CrysAlis PRO; Agilent, 2010)
1704 reflections with I > 2σ(I)
Tmin = 0.732, Tmax = 1.000Rint = 0.091
14543 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0720 restraints
wR(F2) = 0.188H-atom parameters constrained
S = 1.04Δρmax = 0.29 e Å3
2810 reflectionsΔρmin = 0.32 e Å3
312 parameters
Special details top

Experimental. Empirical absorption correction using spherical harmonics, implemented in SCALE3 ABSPACK scaling algorithm. CrysAlisPro (Agilent Technologies)

Geometry. All s.u.'s (except the s.u. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell s.u.'s are taken into account individually in the estimation of s.u.'s in distances, angles and torsion angles; correlations between s.u.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell s.u.'s is used for estimating s.u.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > 2σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
C312.1349 (10)0.2714 (15)0.2812 (3)0.113 (5)
H31A2.17950.31230.25410.169*
H31B2.22030.26320.30410.169*
H31C2.09370.18660.27340.169*
O40.8235 (5)0.3794 (4)0.00693 (14)0.0333 (11)
O11.3161 (5)0.6411 (4)0.04954 (14)0.0362 (10)
H11.29850.59310.07160.054*
O21.3704 (5)0.7880 (4)0.02594 (14)0.0356 (10)
C40.8345 (7)0.3744 (5)0.0395 (2)0.0315 (15)
O30.8874 (5)0.4797 (4)0.10678 (14)0.0365 (11)
O50.7156 (6)0.3568 (4)0.06296 (16)0.0489 (13)
N11.1958 (6)0.4608 (5)0.11902 (17)0.0347 (12)
C81.5793 (8)0.3993 (7)0.2180 (2)0.0376 (15)
C91.0557 (7)0.6789 (6)0.1189 (2)0.0333 (14)
H9A1.06360.68330.15230.040*
H9B0.95340.72120.10980.040*
C101.2454 (8)0.3285 (5)0.1318 (2)0.0334 (14)
H10A1.16710.29350.15400.040*
H10B1.24330.27330.10460.040*
C111.4177 (7)0.3273 (6)0.1526 (2)0.0374 (15)
H11A1.49680.35770.12980.045*
H11B1.44720.23870.16090.045*
N21.4267 (6)0.4099 (5)0.19340 (17)0.0346 (13)
C131.0497 (7)0.5390 (6)0.1044 (2)0.0296 (14)
C140.9858 (7)0.4080 (5)0.0276 (2)0.0281 (14)
H141.03450.33050.04190.034*
C150.9541 (7)0.5129 (5)0.0624 (2)0.0293 (14)
H150.90420.59130.04900.035*
C161.2353 (7)0.7204 (5)0.0486 (2)0.0287 (14)
H161.13580.70980.02960.034*
C171.1864 (7)0.4527 (6)0.1208 (2)0.0355 (15)
H17A1.18430.44820.15390.053*
H17B1.29080.48750.11090.053*
H17C1.17200.36700.10820.053*
C181.3777 (7)0.5670 (6)0.0123 (2)0.0322 (14)
H181.49180.54250.01990.039*
C191.2032 (7)0.7534 (5)0.0975 (2)0.0328 (14)
H19A1.18190.84620.09980.039*
H19B1.30190.73480.11540.039*
C201.3840 (7)0.6487 (5)0.0314 (2)0.0315 (14)
C211.5243 (8)0.6110 (7)0.0626 (2)0.0424 (17)
H21A1.62690.64010.04940.064*
H21B1.52660.51800.06600.064*
H21C1.50930.65080.09230.064*
C221.2032 (9)0.5405 (6)0.1613 (2)0.0437 (16)
H22A1.17130.62920.15400.052*
H22B1.12490.50670.18370.052*
C231.0127 (8)0.3903 (6)0.0541 (2)0.0325 (14)
H231.06200.30350.05710.039*
C241.0916 (7)0.4580 (5)0.0123 (2)0.0300 (14)
H241.07040.55150.01540.036*
C251.3730 (8)0.5406 (6)0.1820 (2)0.0398 (16)
H25A1.37290.59360.20980.048*
H25B1.45040.57900.16030.048*
C261.2791 (7)0.4403 (5)0.0058 (2)0.0308 (14)
H26A1.31860.37600.02770.037*
H26B1.29960.40670.02500.037*
C271.8662 (8)0.3621 (8)0.2705 (2)0.051 (2)
C281.7086 (8)0.3259 (7)0.2023 (2)0.0457 (18)
H281.70120.28740.17320.055*
C291.0275 (8)0.4595 (6)0.1002 (2)0.0383 (15)
H29A0.95470.41720.12230.046*
H29B0.98990.54860.09660.046*
C301.8521 (8)0.3069 (8)0.2287 (3)0.051 (2)
H301.93780.25590.21710.061*
O62.0017 (7)0.3498 (8)0.29937 (17)0.086 (2)
C321.5986 (9)0.4555 (8)0.2613 (2)0.054 (2)
H321.51210.50500.27320.065*
C331.7365 (10)0.4416 (10)0.2869 (3)0.072 (3)
H331.74630.48400.31520.086*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
C310.031 (5)0.259 (16)0.048 (5)0.009 (7)0.004 (4)0.012 (8)
O40.021 (2)0.025 (2)0.053 (3)0.0027 (17)0.001 (2)0.0020 (19)
O10.032 (2)0.034 (2)0.042 (2)0.001 (2)0.003 (2)0.006 (2)
O20.029 (2)0.025 (2)0.053 (3)0.0114 (18)0.005 (2)0.005 (2)
C40.020 (3)0.027 (3)0.047 (4)0.002 (2)0.007 (3)0.003 (3)
O30.028 (2)0.036 (2)0.045 (3)0.0047 (19)0.005 (2)0.002 (2)
O50.039 (3)0.040 (3)0.067 (3)0.006 (2)0.015 (3)0.004 (2)
N10.037 (3)0.028 (3)0.039 (3)0.004 (2)0.001 (3)0.004 (2)
C80.037 (4)0.046 (4)0.029 (4)0.006 (3)0.002 (3)0.001 (3)
C90.032 (3)0.026 (3)0.042 (4)0.002 (3)0.004 (3)0.001 (3)
C100.042 (4)0.020 (3)0.039 (4)0.010 (3)0.005 (3)0.003 (3)
C110.033 (4)0.035 (3)0.044 (4)0.000 (3)0.004 (3)0.008 (3)
N20.037 (3)0.026 (3)0.041 (3)0.001 (2)0.003 (2)0.005 (2)
C130.026 (3)0.022 (3)0.041 (4)0.001 (2)0.001 (3)0.002 (3)
C140.021 (3)0.020 (3)0.044 (4)0.001 (2)0.001 (3)0.001 (3)
C150.026 (3)0.023 (3)0.039 (4)0.003 (2)0.008 (3)0.002 (3)
C160.022 (3)0.021 (3)0.043 (4)0.012 (2)0.004 (3)0.005 (3)
C170.034 (3)0.029 (3)0.044 (4)0.004 (3)0.001 (3)0.010 (3)
C180.028 (3)0.038 (3)0.030 (3)0.001 (3)0.000 (3)0.006 (3)
C190.028 (3)0.021 (3)0.049 (4)0.002 (2)0.002 (3)0.003 (3)
C200.032 (3)0.020 (3)0.043 (4)0.001 (3)0.002 (3)0.005 (3)
C210.025 (3)0.049 (4)0.053 (4)0.007 (3)0.004 (3)0.002 (3)
C220.051 (4)0.030 (3)0.050 (4)0.006 (3)0.002 (4)0.005 (3)
C230.030 (3)0.026 (3)0.041 (4)0.006 (3)0.000 (3)0.005 (3)
C240.032 (3)0.019 (3)0.039 (4)0.001 (3)0.000 (3)0.001 (3)
C250.055 (4)0.024 (3)0.040 (4)0.005 (3)0.008 (3)0.004 (3)
C260.020 (3)0.026 (3)0.046 (4)0.004 (2)0.005 (3)0.005 (3)
C270.034 (4)0.085 (6)0.034 (4)0.012 (4)0.007 (3)0.001 (4)
C280.036 (4)0.060 (5)0.041 (4)0.003 (4)0.008 (3)0.012 (3)
C290.041 (4)0.036 (3)0.038 (4)0.010 (3)0.002 (3)0.001 (3)
C300.028 (4)0.070 (5)0.056 (5)0.000 (4)0.004 (3)0.002 (4)
O60.047 (4)0.168 (7)0.042 (3)0.019 (4)0.014 (3)0.002 (4)
C320.047 (4)0.077 (5)0.037 (4)0.008 (4)0.008 (3)0.019 (4)
C330.054 (5)0.124 (8)0.037 (5)0.012 (6)0.005 (4)0.025 (5)
Geometric parameters (Å, º) top
C31—O61.442 (13)C16—C201.494 (8)
C31—H31A0.9600C16—H160.9800
C31—H31B0.9600C17—H17A0.9600
C31—H31C0.9600C17—H17B0.9600
O4—C41.347 (7)C17—H17C0.9600
O4—C141.470 (7)C18—C201.518 (8)
O1—C181.410 (7)C18—C261.537 (8)
O1—H10.8200C18—H180.9800
O2—C201.443 (7)C19—H19A0.9700
O2—C161.449 (6)C19—H19B0.9700
C4—O51.190 (7)C20—C211.500 (9)
C4—C231.509 (8)C21—H21A0.9600
O3—C151.435 (7)C21—H21B0.9600
O3—C131.447 (7)C21—H21C0.9600
N1—C101.463 (7)C22—C251.497 (9)
N1—C291.464 (8)C22—H22A0.9700
N1—C221.473 (8)C22—H22B0.9700
C8—C281.366 (9)C23—C291.517 (8)
C8—C321.388 (9)C23—C241.532 (8)
C8—N21.428 (8)C23—H230.9800
C9—C131.497 (8)C24—C261.537 (8)
C9—C191.546 (8)C24—H240.9800
C9—H9A0.9700C25—H25A0.9700
C9—H9B0.9700C25—H25B0.9700
C10—C111.516 (8)C26—H26A0.9700
C10—H10A0.9700C26—H26B0.9700
C10—H10B0.9700C27—C301.341 (10)
C11—N21.457 (8)C27—O61.383 (8)
C11—H11A0.9700C27—C331.410 (11)
C11—H11B0.9700C28—C301.402 (10)
N2—C251.448 (8)C28—H280.9300
C13—C151.465 (9)C29—H29A0.9700
C13—C171.493 (8)C29—H29B0.9700
C14—C151.496 (8)C30—H300.9300
C14—C241.526 (8)C32—C331.345 (10)
C14—H140.9800C32—H320.9300
C15—H150.9800C33—H330.9300
C16—C191.477 (8)
O6—C31—H31A109.5O1—C18—H18107.3
O6—C31—H31B109.5C20—C18—H18107.3
H31A—C31—H31B109.5C26—C18—H18107.3
O6—C31—H31C109.5C16—C19—C9113.9 (5)
H31A—C31—H31C109.5C16—C19—H19A108.8
H31B—C31—H31C109.5C9—C19—H19A108.8
C4—O4—C14110.7 (4)C16—C19—H19B108.8
C18—O1—H1109.5C9—C19—H19B108.8
C20—O2—C1662.2 (4)H19A—C19—H19B107.7
O5—C4—O4121.5 (6)O2—C20—C1659.1 (3)
O5—C4—C23128.8 (6)O2—C20—C21112.3 (5)
O4—C4—C23109.7 (5)C16—C20—C21122.3 (5)
C15—O3—C1361.1 (4)O2—C20—C18117.1 (5)
C10—N1—C29109.9 (5)C16—C20—C18121.6 (5)
C10—N1—C22107.1 (5)C21—C20—C18112.5 (5)
C29—N1—C22110.6 (5)C20—C21—H21A109.5
C28—C8—C32116.4 (6)C20—C21—H21B109.5
C28—C8—N2122.4 (6)H21A—C21—H21B109.5
C32—C8—N2121.0 (6)C20—C21—H21C109.5
C13—C9—C19112.8 (5)H21A—C21—H21C109.5
C13—C9—H9A109.0H21B—C21—H21C109.5
C19—C9—H9A109.0N1—C22—C25111.7 (5)
C13—C9—H9B109.0N1—C22—H22A109.3
C19—C9—H9B109.0C25—C22—H22A109.3
H9A—C9—H9B107.8N1—C22—H22B109.3
N1—C10—C11111.1 (5)C25—C22—H22B109.3
N1—C10—H10A109.4H22A—C22—H22B107.9
C11—C10—H10A109.4C4—C23—C29111.8 (5)
N1—C10—H10B109.4C4—C23—C24103.0 (5)
C11—C10—H10B109.4C29—C23—C24116.7 (5)
H10A—C10—H10B108.0C4—C23—H23108.3
N2—C11—C10111.2 (5)C29—C23—H23108.3
N2—C11—H11A109.4C24—C23—H23108.3
C10—C11—H11A109.4C14—C24—C23102.2 (5)
N2—C11—H11B109.4C14—C24—C26114.8 (5)
C10—C11—H11B109.4C23—C24—C26117.0 (5)
H11A—C11—H11B108.0C14—C24—H24107.5
C8—N2—C25116.3 (5)C23—C24—H24107.5
C8—N2—C11113.8 (5)C26—C24—H24107.5
C25—N2—C11109.9 (5)N2—C25—C22111.4 (5)
O3—C13—C1559.0 (4)N2—C25—H25A109.3
O3—C13—C17113.9 (5)C22—C25—H25A109.3
C15—C13—C17123.0 (5)N2—C25—H25B109.3
O3—C13—C9114.8 (5)C22—C25—H25B109.3
C15—C13—C9115.2 (5)H25A—C25—H25B108.0
C17—C13—C9117.2 (5)C24—C26—C18113.3 (5)
O4—C14—C15105.3 (4)C24—C26—H26A108.9
O4—C14—C24105.0 (4)C18—C26—H26A108.9
C15—C14—C24111.3 (4)C24—C26—H26B108.9
O4—C14—H14111.6C18—C26—H26B108.9
C15—C14—H14111.6H26A—C26—H26B107.7
C24—C14—H14111.6C30—C27—O6125.0 (7)
O3—C15—C1359.8 (4)C30—C27—C33119.0 (7)
O3—C15—C14119.7 (5)O6—C27—C33115.9 (7)
C13—C15—C14126.9 (5)C8—C28—C30121.8 (7)
O3—C15—H15113.3C8—C28—H28119.1
C13—C15—H15113.3C30—C28—H28119.1
C14—C15—H15113.3N1—C29—C23113.8 (5)
O2—C16—C19117.1 (5)N1—C29—H29A108.8
O2—C16—C2058.7 (3)C23—C29—H29A108.8
C19—C16—C20125.0 (5)N1—C29—H29B108.8
O2—C16—H16114.7C23—C29—H29B108.8
C19—C16—H16114.7H29A—C29—H29B107.7
C20—C16—H16114.7C27—C30—C28120.2 (7)
C13—C17—H17A109.5C27—C30—H30119.9
C13—C17—H17B109.5C28—C30—H30119.9
H17A—C17—H17B109.5C27—O6—C31114.9 (6)
C13—C17—H17C109.5C33—C32—C8123.1 (7)
H17A—C17—H17C109.5C33—C32—H32118.5
H17B—C17—H17C109.5C8—C32—H32118.5
O1—C18—C20110.5 (5)C32—C33—C27119.4 (7)
O1—C18—C26111.5 (5)C32—C33—H33120.3
C20—C18—C26112.5 (5)C27—C33—H33120.3
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O1—H1···N10.822.102.901 (6)165
C9—H9B···O1i0.972.503.345 (7)145
C14—H14···O5ii0.982.493.447 (7)165
C15—H15···O2i0.982.513.342 (7)142
C24—H24···O2i0.982.333.185 (7)146
C33—H33···O3iii0.932.533.335 (10)145
Symmetry codes: (i) x1/2, y+3/2, z; (ii) x+1/2, y+1/2, z; (iii) x+5/2, y+1, z1/2.

Experimental details

Crystal data
Chemical formulaC26H36N2O6
Mr472.57
Crystal system, space groupOrthorhombic, P212121
Temperature (K)180
a, b, c (Å)8.0770 (7), 10.2667 (10), 28.937 (3)
V3)2399.5 (4)
Z4
Radiation typeMo Kα
µ (mm1)0.09
Crystal size (mm)0.27 × 0.21 × 0.06
Data collection
DiffractometerAgilent Xcalibur Sapphire1 long nozzle
diffractometer
Absorption correctionMulti-scan
(CrysAlis PRO; Agilent, 2010)
Tmin, Tmax0.732, 1.000
No. of measured, independent and
observed [I > 2σ(I)] reflections
14543, 2810, 1704
Rint0.091
(sin θ/λ)max1)0.625
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.072, 0.188, 1.04
No. of reflections2810
No. of parameters312
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.29, 0.32

Computer programs: CrysAlis PRO (Agilent, 2010), SHELXS97 (Sheldrick,2008), SHELXL97 (Sheldrick,2008), ORTEP-3 for Windows (Farrugia, 1997) and PLATON (Spek, 2009), WinGX (Farrugia, 1999).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O1—H1···N10.822.102.901 (6)165
C9—H9B···O1i0.972.503.345 (7)145
C14—H14···O5ii0.982.493.447 (7)165
C15—H15···O2i0.982.513.342 (7)142
C24—H24···O2i0.982.333.185 (7)146
C33—H33···O3iii0.932.533.335 (10)145
Symmetry codes: (i) x1/2, y+3/2, z; (ii) x+1/2, y+1/2, z; (iii) x+5/2, y+1, z1/2.
 

References

First citationAbdel Sattar, E., Galal, A. M. & Mossa, J. S. (1996). J. Nat. Prod. 59, 403–405.  CrossRef CAS PubMed Google Scholar
First citationAgilent (2010). CrysAlis PRO. Agilent Technologies Ltd, Yarnton, Oxfordshire, England.  Google Scholar
First citationCremer, D. & Pople, J. A. (1975). J. Am. Chem. Soc. 97, 1354–1358.  CrossRef CAS Web of Science Google Scholar
First citationEl Hassany, B., El Hanbali, F., Akssira, M., Mellouki, F., Haidou, A. & Barero, A. F. (2004). Fitoterapia, 75, 573–576.  Web of Science CrossRef PubMed CAS Google Scholar
First citationFarrugia, L. J. (1997). J. Appl. Cryst. 30, 565.  CrossRef IUCr Journals Google Scholar
First citationFarrugia, L. J. (1999). J. Appl. Cryst. 32, 837–838.  CrossRef CAS IUCr Journals Google Scholar
First citationHwang, D.-R., Wu, Y.-S., Chang, C.-W., Lien, T.-W., Chen, W.-C., Tan, U.-K., Hsu, J. T. A. & Hsieh, H.-P. (2006). Bioorg. Med. Chem. 14, 83—91.  Google Scholar
First citationMoumou, M., Akssira, M., El Ammari, L., Benharref, A. & Berraho, M. (2010). Acta Cryst. E66, o2395.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationNeelakantan, S., Nasim, Sh., Guzman, M. L., Jordan, C. T. & Crooks, P. A. (2009). Bioorg. Med. Chem. Lett. 19, 4346–4349.  Web of Science CrossRef PubMed CAS Google Scholar
First citationNeukirch, H., Kaneider, N. C., Wiedermann, C. J., Guerriero, A. & D'Ambrosio, M. (2003). Bioorg. Med. Chem. 11, 1503–1510.  Web of Science CrossRef PubMed CAS Google Scholar
First citationQureshi, S., Ageel, A. M., Al-Yahya, M. A., Tariq, M., Mossa, J. S. & Shah, A. H. (1990). J. Ethnopharmacol. 28, 157–162.  CrossRef CAS PubMed Web of Science Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSpek, A. L. (2009). Acta Cryst. D65, 148–155.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 68| Part 3| March 2012| Pages o715-o716
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds