organic compounds
(1R*,2S*,4S*,5R*)-Cyclohexane-1,2:4,5-tetracarboxylic dianhydride
aDepartment of Biomolecular Science, Faculty of Science, Toho University, 2-2-1 Miyama, Funabashi, Chiba 274-8510, Japan, bDepartment of Chemistry, Faculty of Science, Toho University, 2-2-1 Miyama, Funabashi, Chiba 274-8510, Japan, and cDepartment of Research and Development, Gas Chemical Division, Iwatani Industrial Gases Corporation Ltd, 10 Otakasu-cho, Amagasaki, Hyogo 660-0842, Japan
*Correspondence e-mail: auchida@biomol.sci.toho-u.ac.jp
The title compound, C10H8O6, a promising raw material to obtain colorless polyimides which are applied to microelectronic and optoelectronic devices, adopts a folded conformation in which the dihedral angle between the two anhydro rings is 55.15 (8)°. The central six-membered ring assumes a conformation intermediate between boat and twist-boat. In the crystal, molecules are linked by weak C—H⋯O interactions, forming a layer parallel to the bc plane.
Related literature
For microelectronic applications of the present compound, see: Ando et al. (2010). For background to polyimides, see: Hasegawa et al. (2007, 2008); Hasegawa & Horie (2001). For a related structure, see: Uchida et al. (2003).
Experimental
Crystal data
|
Refinement
|
Data collection: APEX2 (Bruker, 2007); cell SAINT-Plus (Bruker, 2007); data reduction: SAINT-Plus; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: PLATON (Spek, 2009) and ORTEPIII (Burnett & Johnson, 1996); software used to prepare material for publication: SHELXL97 and PLATON.
Supporting information
10.1107/S1600536812003571/is5043sup1.cif
contains datablocks global, I. DOI:Structure factors: contains datablock I. DOI: 10.1107/S1600536812003571/is5043Isup2.hkl
Supporting information file. DOI: 10.1107/S1600536812003571/is5043Isup3.mol
Supporting information file. DOI: 10.1107/S1600536812003571/is5043Isup4.cml
H"-PMDA was synthesized as follows (Hasegawa et al., 2008); PMDA was hydrolyzed with a NaOH aqueous solution. The pyromellitic acid tetrasodium salt formed was hydrogenated in a high-pressure hydrogen atmosphere in the presence of a ruthenium catalyst, and neutralized with conc. HCl. The tetracarboxylic acid obtained was isomerized by dehydrating with acetic anhydride at a precisely controlled temperature. Crystals of the title compound suitable for X-ray analysis were obtained from an acetic anhydride solution.
All H atoms were placed in geometrical positions (C—H = 0.98 and 0.97 Å for CH and CH2, respectively) and constrained to ride on their parent atoms with Uiso(H) = 1.2Ueq(C).
Data collection: APEX2 (Bruker, 2007); cell
SAINT-Plus (Bruker, 2007); data reduction: SAINT-Plus (Bruker, 2007); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: PLATON (Spek, 2009) and ORTEPIII (Burnett & Johnson, 1996); software used to prepare material for publication: SHELXL97 (Sheldrick, 2008) and PLATON (Spek, 2009).C10H8O6 | F(000) = 464 |
Mr = 224.16 | Dx = 1.613 Mg m−3 |
Monoclinic, P21/c | Mo Kα radiation, λ = 0.71073 Å |
Hall symbol: -P 2ybc | Cell parameters from 3549 reflections |
a = 12.167 (2) Å | θ = 2.5–28.3° |
b = 7.1380 (14) Å | µ = 0.14 mm−1 |
c = 10.626 (2) Å | T = 296 K |
β = 90.12 (3)° | Block, colorless |
V = 922.8 (3) Å3 | 0.51 × 0.42 × 0.42 mm |
Z = 4 |
Bruker APEXII CCD area-detector diffractometer | 2285 independent reflections |
Radiation source: fine-focus sealed tube | 2015 reflections with I > 2σ(I) |
Graphite monochromator | Rint = 0.026 |
ϕ and ω scans | θmax = 28.3°, θmin = 3.3° |
Absorption correction: multi-scan (SADABS; Sheldrick, 1996) | h = −16→16 |
Tmin = 0.934, Tmax = 0.945 | k = −9→9 |
6648 measured reflections | l = −7→14 |
Refinement on F2 | Secondary atom site location: difference Fourier map |
Least-squares matrix: full | Hydrogen site location: inferred from neighbouring sites |
R[F2 > 2σ(F2)] = 0.045 | H-atom parameters constrained |
wR(F2) = 0.140 | w = 1/[σ2(Fo2) + (0.0954P)2 + 0.121P] where P = (Fo2 + 2Fc2)/3 |
S = 1.00 | (Δ/σ)max < 0.001 |
2285 reflections | Δρmax = 0.30 e Å−3 |
146 parameters | Δρmin = −0.18 e Å−3 |
0 restraints | Extinction correction: SHELXL97 (Sheldrick, 2008), Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4 |
Primary atom site location: structure-invariant direct methods | Extinction coefficient: 0.057 (8) |
C10H8O6 | V = 922.8 (3) Å3 |
Mr = 224.16 | Z = 4 |
Monoclinic, P21/c | Mo Kα radiation |
a = 12.167 (2) Å | µ = 0.14 mm−1 |
b = 7.1380 (14) Å | T = 296 K |
c = 10.626 (2) Å | 0.51 × 0.42 × 0.42 mm |
β = 90.12 (3)° |
Bruker APEXII CCD area-detector diffractometer | 2285 independent reflections |
Absorption correction: multi-scan (SADABS; Sheldrick, 1996) | 2015 reflections with I > 2σ(I) |
Tmin = 0.934, Tmax = 0.945 | Rint = 0.026 |
6648 measured reflections |
R[F2 > 2σ(F2)] = 0.045 | 0 restraints |
wR(F2) = 0.140 | H-atom parameters constrained |
S = 1.00 | Δρmax = 0.30 e Å−3 |
2285 reflections | Δρmin = −0.18 e Å−3 |
146 parameters |
Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes. |
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger. |
x | y | z | Uiso*/Ueq | ||
O1 | 1.05049 (8) | −0.0274 (2) | 0.67601 (13) | 0.0712 (4) | |
O2 | 0.97350 (9) | 0.22073 (16) | 0.58580 (11) | 0.0583 (3) | |
O3 | 0.85376 (13) | 0.43198 (17) | 0.50962 (13) | 0.0773 (4) | |
O4 | 0.54696 (9) | 0.16073 (17) | 0.83493 (12) | 0.0642 (3) | |
O5 | 0.61479 (8) | −0.12795 (16) | 0.85526 (9) | 0.0504 (3) | |
O6 | 0.68964 (10) | −0.40914 (17) | 0.82316 (12) | 0.0662 (4) | |
C1 | 0.85268 (9) | 0.02100 (17) | 0.69704 (11) | 0.0371 (3) | |
H1 | 0.8492 | 0.0003 | 0.7881 | 0.045* | |
C2 | 0.79051 (10) | 0.20009 (16) | 0.66127 (11) | 0.0382 (3) | |
H2 | 0.7781 | 0.2748 | 0.7373 | 0.046* | |
C3 | 0.68030 (11) | 0.16836 (17) | 0.59459 (13) | 0.0439 (3) | |
H3A | 0.6350 | 0.2794 | 0.6032 | 0.053* | |
H3B | 0.6930 | 0.1473 | 0.5056 | 0.053* | |
C4 | 0.62021 (9) | 0.00055 (17) | 0.65005 (11) | 0.0374 (3) | |
H4 | 0.5530 | −0.0204 | 0.6010 | 0.045* | |
C5 | 0.68715 (10) | −0.18238 (16) | 0.65113 (11) | 0.0363 (3) | |
H5 | 0.6573 | −0.2689 | 0.5881 | 0.044* | |
C6 | 0.80993 (10) | −0.15105 (16) | 0.62629 (12) | 0.0401 (3) | |
H6A | 0.8509 | −0.2608 | 0.6528 | 0.048* | |
H6B | 0.8216 | −0.1342 | 0.5367 | 0.048* | |
C7 | 0.96943 (10) | 0.0603 (2) | 0.65718 (13) | 0.0479 (3) | |
C8 | 0.86994 (13) | 0.3023 (2) | 0.57707 (14) | 0.0508 (4) | |
C9 | 0.58864 (9) | 0.0285 (2) | 0.78582 (13) | 0.0431 (3) | |
C10 | 0.66715 (10) | −0.2597 (2) | 0.78074 (13) | 0.0434 (3) |
U11 | U22 | U33 | U12 | U13 | U23 | |
O1 | 0.0325 (5) | 0.0985 (10) | 0.0825 (9) | 0.0007 (5) | −0.0011 (5) | 0.0044 (7) |
O2 | 0.0524 (6) | 0.0621 (7) | 0.0605 (7) | −0.0161 (5) | 0.0189 (5) | −0.0008 (5) |
O3 | 0.1034 (10) | 0.0551 (7) | 0.0736 (8) | −0.0151 (7) | 0.0130 (7) | 0.0214 (6) |
O4 | 0.0493 (6) | 0.0756 (8) | 0.0679 (7) | 0.0162 (5) | 0.0054 (5) | −0.0189 (6) |
O5 | 0.0465 (5) | 0.0679 (7) | 0.0369 (5) | 0.0015 (4) | 0.0045 (4) | 0.0062 (4) |
O6 | 0.0716 (7) | 0.0576 (7) | 0.0694 (7) | 0.0034 (5) | 0.0005 (6) | 0.0278 (6) |
C1 | 0.0332 (5) | 0.0456 (6) | 0.0326 (5) | −0.0024 (4) | 0.0015 (4) | 0.0029 (5) |
C2 | 0.0437 (6) | 0.0349 (6) | 0.0359 (6) | −0.0044 (4) | 0.0042 (5) | −0.0022 (4) |
C3 | 0.0494 (7) | 0.0388 (6) | 0.0436 (7) | 0.0024 (5) | −0.0066 (5) | 0.0077 (5) |
C4 | 0.0318 (5) | 0.0427 (6) | 0.0377 (6) | 0.0014 (4) | −0.0066 (4) | 0.0019 (5) |
C5 | 0.0359 (6) | 0.0361 (6) | 0.0368 (6) | −0.0030 (4) | 0.0003 (4) | 0.0013 (4) |
C6 | 0.0365 (6) | 0.0379 (6) | 0.0461 (7) | 0.0009 (4) | 0.0073 (5) | −0.0005 (5) |
C7 | 0.0383 (6) | 0.0595 (8) | 0.0460 (7) | −0.0094 (6) | 0.0031 (5) | −0.0051 (6) |
C8 | 0.0627 (9) | 0.0427 (7) | 0.0471 (7) | −0.0126 (6) | 0.0090 (6) | 0.0006 (6) |
C9 | 0.0282 (5) | 0.0548 (7) | 0.0464 (7) | 0.0024 (5) | −0.0005 (5) | −0.0042 (5) |
C10 | 0.0368 (6) | 0.0487 (7) | 0.0447 (7) | −0.0040 (5) | −0.0011 (5) | 0.0091 (5) |
O1—C7 | 1.1850 (19) | C2—C3 | 1.5322 (18) |
O2—C7 | 1.3745 (19) | C2—H2 | 0.9800 |
O2—C8 | 1.391 (2) | C3—C4 | 1.5226 (17) |
O3—C8 | 1.1869 (19) | C3—H3A | 0.9700 |
O4—C9 | 1.1923 (17) | C3—H3B | 0.9700 |
O5—C9 | 1.3754 (18) | C4—C9 | 1.5070 (18) |
O5—C10 | 1.3853 (18) | C4—C5 | 1.5390 (16) |
O6—C10 | 1.1898 (18) | C4—H4 | 0.9800 |
C1—C7 | 1.5095 (17) | C5—C10 | 1.5039 (17) |
C1—C6 | 1.5304 (17) | C5—C6 | 1.5341 (17) |
C1—C2 | 1.5328 (17) | C5—H5 | 0.9800 |
C1—H1 | 0.9800 | C6—H6A | 0.9700 |
C2—C8 | 1.5068 (18) | C6—H6B | 0.9700 |
C7—O2—C8 | 110.60 (10) | C5—C4—H4 | 108.4 |
C9—O5—C10 | 110.53 (10) | C10—C5—C6 | 111.75 (10) |
C7—C1—C6 | 109.29 (10) | C10—C5—C4 | 103.39 (10) |
C7—C1—C2 | 103.86 (10) | C6—C5—C4 | 112.99 (9) |
C6—C1—C2 | 112.36 (10) | C10—C5—H5 | 109.5 |
C7—C1—H1 | 110.4 | C6—C5—H5 | 109.5 |
C6—C1—H1 | 110.4 | C4—C5—H5 | 109.5 |
C2—C1—H1 | 110.4 | C1—C6—C5 | 111.25 (10) |
C8—C2—C3 | 111.02 (11) | C1—C6—H6A | 109.4 |
C8—C2—C1 | 103.55 (10) | C5—C6—H6A | 109.4 |
C3—C2—C1 | 114.98 (10) | C1—C6—H6B | 109.4 |
C8—C2—H2 | 109.0 | C5—C6—H6B | 109.4 |
C3—C2—H2 | 109.0 | H6A—C6—H6B | 108.0 |
C1—C2—H2 | 109.0 | O1—C7—O2 | 120.18 (13) |
C4—C3—C2 | 110.96 (9) | O1—C7—C1 | 129.62 (14) |
C4—C3—H3A | 109.4 | O2—C7—C1 | 110.16 (12) |
C2—C3—H3A | 109.4 | O3—C8—O2 | 121.05 (14) |
C4—C3—H3B | 109.4 | O3—C8—C2 | 129.08 (16) |
C2—C3—H3B | 109.4 | O2—C8—C2 | 109.86 (12) |
H3A—C3—H3B | 108.0 | O4—C9—O5 | 120.41 (13) |
C9—C4—C3 | 112.95 (11) | O4—C9—C4 | 129.29 (13) |
C9—C4—C5 | 103.95 (10) | O5—C9—C4 | 110.30 (10) |
C3—C4—C5 | 114.57 (10) | O6—C10—O5 | 119.85 (13) |
C9—C4—H4 | 108.4 | O6—C10—C5 | 129.67 (14) |
C3—C4—H4 | 108.4 | O5—C10—C5 | 110.48 (11) |
C7—C1—C2—C8 | 13.48 (13) | C6—C1—C7—O2 | 109.53 (12) |
C6—C1—C2—C8 | −104.52 (11) | C2—C1—C7—O2 | −10.57 (13) |
C7—C1—C2—C3 | 134.77 (11) | C7—O2—C8—O3 | −172.68 (15) |
C6—C1—C2—C3 | 16.77 (14) | C7—O2—C8—C2 | 6.61 (15) |
C8—C2—C3—C4 | 155.23 (11) | C3—C2—C8—O3 | 42.5 (2) |
C1—C2—C3—C4 | 38.11 (15) | C1—C2—C8—O3 | 166.44 (16) |
C2—C3—C4—C9 | 63.98 (13) | C3—C2—C8—O2 | −136.70 (12) |
C2—C3—C4—C5 | −54.81 (14) | C1—C2—C8—O2 | −12.78 (14) |
C9—C4—C5—C10 | 11.25 (11) | C10—O5—C9—O4 | −176.99 (12) |
C3—C4—C5—C10 | 134.99 (11) | C10—O5—C9—C4 | 3.01 (13) |
C9—C4—C5—C6 | −109.73 (11) | C3—C4—C9—O4 | 45.97 (18) |
C3—C4—C5—C6 | 14.02 (14) | C5—C4—C9—O4 | 170.76 (14) |
C7—C1—C6—C5 | −172.96 (10) | C3—C4—C9—O5 | −134.04 (11) |
C2—C1—C6—C5 | −58.22 (13) | C5—C4—C9—O5 | −9.25 (12) |
C10—C5—C6—C1 | −74.30 (13) | C9—O5—C10—O6 | −175.24 (13) |
C4—C5—C6—C1 | 41.81 (13) | C9—O5—C10—C5 | 4.90 (14) |
C8—O2—C7—O1 | −179.25 (14) | C6—C5—C10—O6 | −68.34 (18) |
C8—O2—C7—C1 | 2.77 (15) | C4—C5—C10—O6 | 169.85 (14) |
C6—C1—C7—O1 | −68.20 (19) | C6—C5—C10—O5 | 111.50 (11) |
C2—C1—C7—O1 | 171.70 (15) | C4—C5—C10—O5 | −10.31 (13) |
D—H···A | D—H | H···A | D···A | D—H···A |
C1—H1···O3i | 0.98 | 2.40 | 3.3384 (19) | 159 |
C3—H3B···O6ii | 0.97 | 2.58 | 3.429 (2) | 146 |
Symmetry codes: (i) x, −y+1/2, z+1/2; (ii) x, −y−1/2, z−1/2. |
Experimental details
Crystal data | |
Chemical formula | C10H8O6 |
Mr | 224.16 |
Crystal system, space group | Monoclinic, P21/c |
Temperature (K) | 296 |
a, b, c (Å) | 12.167 (2), 7.1380 (14), 10.626 (2) |
β (°) | 90.12 (3) |
V (Å3) | 922.8 (3) |
Z | 4 |
Radiation type | Mo Kα |
µ (mm−1) | 0.14 |
Crystal size (mm) | 0.51 × 0.42 × 0.42 |
Data collection | |
Diffractometer | Bruker APEXII CCD area-detector diffractometer |
Absorption correction | Multi-scan (SADABS; Sheldrick, 1996) |
Tmin, Tmax | 0.934, 0.945 |
No. of measured, independent and observed [I > 2σ(I)] reflections | 6648, 2285, 2015 |
Rint | 0.026 |
Refinement | |
R[F2 > 2σ(F2)], wR(F2), S | 0.045, 0.140, 1.00 |
No. of reflections | 2285 |
No. of parameters | 146 |
H-atom treatment | H-atom parameters constrained |
Δρmax, Δρmin (e Å−3) | 0.30, −0.18 |
Computer programs: APEX2 (Bruker, 2007), SAINT-Plus (Bruker, 2007), SHELXS97 (Sheldrick, 2008), PLATON (Spek, 2009) and ORTEPIII (Burnett & Johnson, 1996), SHELXL97 (Sheldrick, 2008) and PLATON (Spek, 2009).
D—H···A | D—H | H···A | D···A | D—H···A |
C1—H1···O3i | 0.98 | 2.40 | 3.3384 (19) | 159 |
C3—H3B···O6ii | 0.97 | 2.58 | 3.429 (2) | 146 |
Symmetry codes: (i) x, −y+1/2, z+1/2; (ii) x, −y−1/2, z−1/2. |
References
Ando, S., Ueda, M., Kakimoto, M., Kochi, M., Takeichi, T., Hasegawa, M. & Yokota, R. (2010). The Latest Polyimides: Fundamentals and Applications, 2nd ed. Tokyo: NTS. Google Scholar
Bruker (2007). APEX2 and SAINT-Plus. Bruker AXS Inc., Madison, Wisconsin, USA. Google Scholar
Burnett, M. N. & Johnson, C. K. (1996). ORTEPIII. Report ORNL-6895. Oak Ridge National Laboratory, Tennessee, USA. Google Scholar
Hasegawa, M., Fujii, M., Uchida, A., Hirano, D., Yamaguchi, S., Takezawa, E. & Ishikawa, A. (2008). Polym. Prep. Jpn, 57, 4031–4032. Google Scholar
Hasegawa, M. & Horie, K. (2001). Prog. Polym. Sci. 26, 259–335. CrossRef CAS Google Scholar
Hasegawa, M., Horiuchi, M. & Wada, Y. (2007). High Perform. Polym. 19, 175–193. Web of Science CrossRef CAS Google Scholar
Sheldrick, G. M. (1996). SADABS. University of Göttingen, Germany. Google Scholar
Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. Web of Science CrossRef CAS IUCr Journals Google Scholar
Spek, A. L. (2009). Acta Cryst. D65, 148–155. Web of Science CrossRef CAS IUCr Journals Google Scholar
Uchida, A., Hasegawa, M. & Manami, H. (2003). Acta Cryst. C59, o435–o438. Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.
Aromatic polyimides (PI) have been widely applied to microelectronic and optoelectronic devices for their reliable combined properties: considerably high glass transition temperatures (Tg), non-flammability, and good dielectric and mechanical properties (Ando et al., 2010). Conventional aromatic PI films are intensively colored on the basis of charge-transfer (CT) interactions (Hasegawa & Horie, 2001). However, the coloration often disturbs optical applications of PIs. Recently, there is a strong demand that further lightens the total weights of flat panel displays by replacing fragile inorganic glass substrates (~400 µm thick) by plastic substrates (~100 µm thick). However, it is not easy to develop the practically useful plastic substrates simultaneously possessing excellent optical transparency and sufficient heat resistance (Tg's > 250 °C) for the device fabrication processes such as inorganic transparent electrode deposition. The most effective strategy for completely erasing the significant PI film coloration is to use non-aromatic (cycloaliphatic) monomers either in tetracarboxylic dianhydride or diamine, thereby the CT interactions are inhibited. Our previous work illustrated that the equimolar polyaddition of cis, cis, cis-1,2,4,5-cyclohexanetetracarboxylic dianhydride (H-PMDA), synthesized by hydrogenation of pyromellitic dianhydride (PMDA), and some diamines indeed led to colorless PIs with very high Tg's (Hasegawa et al., 2007). However, the obtained PI films were very brittle in some cases owing to poor chain entanglement caused by insufficient molecular weights of the resultant PIs, which come from the insufficient reactivity of H-PMDA with diamines. The low reactivity of H-PMDA can be explained in terms of its steric structure (Uchida et al., 2003). In order to solve this crucial problem, we developed another H-PMDA isomer, i.e., 1R*, 2S*, 4S*, 5R*-cyclohexanetetracarboxylic dianhydride (H"-PMDA) (Hasegawa et al., 2008). The present work reports the crystal structure of this compound.