organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 68| Part 3| March 2012| Pages o562-o563

(E)-4-Meth­­oxy-N′-(3,4,5-trimeth­­oxy­benzyl­­idene)benzohydrazide

aX-ray Crystallography Unit, School of Physics, Universiti Sains Malaysia, 11800 USM, Penang, Malaysia, and bCrystal Materials Research Unit, Department of Chemistry, Faculty of Science, Prince of Songkla University, Hat-Yai, Songkhla 90112, Thailand
*Correspondence e-mail: hkfun@usm.my

(Received 20 January 2012; accepted 26 January 2012; online 4 February 2012)

In the asymmetric unit of the title compound, C18H20N2O5, there are two crystallographic independent mol­ecules. Both mol­ecules are twisted; the dihedral angle between the two benzene rings is 7.2 (5)° in one mol­ecule, whereas it is 85.9 (4)° in the other. Of the three meth­oxy groups in the 3,4,5-trimeth­oxy­phenyl unit, two meth­oxy groups at meta positions are approximately coplanar with the benzene plane [C—O—C—C torsion angles of −2.3 (13)–4.8 (11)°], but the other meth­oxy, at the para position, is out of the plane [C—O—C—C of 72.8 (9)° in one mol­ecule and −77.5 (9)° in the other]. In the crystal, mol­ecules are linked by N—H⋯O hydrogen bonds and weak C—H⋯O inter­actions into tapes along the b axis. C—H⋯π inter­actions are also present.

Related literature

For bond-length data, see: Allen et al. (1987[Allen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1-19.]). For related structures, see: Fun et al. (2011[Fun, H.-K., Horkaew, J. & Chantrapromma, S. (2011). Acta Cryst. E67, o2644-o2645.]); Horkaew et al. (2011[Horkaew, J., Chantrapromma, S. & Fun, H.-K. (2011). Acta Cryst. E67, o2985.]); Promdet et al. (2011[Promdet, P., Horkaew, J., Chantrapromma, S. & Fun, H.-K. (2011). Acta Cryst. E67, o3224.]). For background and applications of benzohydrazide derivatives, see: Angelusiu et al. (2010[Angelusiu, M. V., Barbuceanu, S.-F., Draghici, C. & Almajan, G. L. (2010). Eur. J. Med. Chem. 45, 2055-2062.]); Bedia et al. (2006[Bedia, K.-K., Elçin, O., Seda, U., Fatma, K., Nathaly, S., Sevim, R. & Dimoglo, A. (2006). Eur. J. Med. Chem. 41, 1253-1261.]); Loncle et al. (2004[Loncle, C., Brunel, J. M., Vidal, N., Dherbomez, M. & Letourneux, Y. (2004). Eur. J. Med. Chem. 39, 1067-1071.]); Melnyk et al. (2006[Melnyk, P., Leroux, V., Sergheraert, C. & Grellier, P. (2006). Bioorg. Med. Chem. Lett. 16, 31-35.]); Raj et al. (2007[Raj, K. K. V., Narayana, B., Ashalatha, B. V., Kumari, N. S. & Sarojini, B. K. (2007). Eur. J. Med. Chem. 42, 425-429.]).

[Scheme 1]

Experimental

Crystal data
  • C18H20N2O5

  • Mr = 344.36

  • Monoclinic, P 21

  • a = 13.3344 (17) Å

  • b = 5.0484 (6) Å

  • c = 25.767 (3) Å

  • β = 98.250 (2)°

  • V = 1716.6 (4) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.10 mm−1

  • T = 297 K

  • 0.26 × 0.25 × 0.11 mm

Data collection
  • Bruker SMART APEXII CCD area-detector diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 2005[Bruker (2005). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]) Tmin = 0.975, Tmax = 0.990

  • 12488 measured reflections

  • 3361 independent reflections

  • 2671 reflections with I > 2σ(I)

  • Rint = 0.039

Refinement
  • R[F2 > 2σ(F2)] = 0.090

  • wR(F2) = 0.275

  • S = 1.05

  • 3361 reflections

  • 453 parameters

  • 1 restraint

  • H-atom parameters constrained

  • Δρmax = 0.75 e Å−3

  • Δρmin = −0.47 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

Cg1 and Cg2 are the centroids of the C9A–C14A and C9B–C14B rings, respectively.

D—H⋯A D—H H⋯A DA D—H⋯A
N1A—H1NA⋯O1Ai 0.86 2.11 2.944 (13) 164
N1B—H1NB⋯O1Bi 0.85 2.21 2.939 (9) 144
C8B—H8B⋯O1Bi 0.93 2.52 3.287 (11) 140
C15B—H15D⋯O2Aii 0.96 2.60 3.498 (14) 156
C17B—H17D⋯O4Biii 0.96 2.60 3.420 (10) 144
C16A—H16BCg1iv 0.96 2.66 3.429 (10) 138
C16B—H16FCg2iv 0.96 2.77 3.697 (10) 162
C18A—H18BCg1i 0.96 2.85 3.739 (10) 155
C18B—H18FCg2i 0.96 2.74 3.583 (10) 146
Symmetry codes: (i) x, y+1, z; (ii) [-x+2, y+{\script{1\over 2}}, -z+1]; (iii) [-x+1, y-{\script{1\over 2}}, -z+2]; (iv) x, y-1, z.

Data collection: APEX2 (Bruker, 2005[Bruker (2005). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2005[Bruker (2005). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXTL; molecular graphics: SHELXTL; software used to prepare material for publication: SHELXTL and PLATON (Spek, 2009[Spek, A. L. (2009). Acta Cryst. D65, 148-155.]).

Supporting information


Comment top

Benzohydrazide derivatives obtained from the reaction of aldehyde with hydrazine have been demonstrated to possess excellent biological properties such as antibacterial (Angelusiu et al., 2010) antifungal (Loncle et al., 2004), antimalarial (Melnyk et al., 2006) and antiproliferative (Raj et al., 2007) activities. The title benzohydrazide (I) is the condensation product of 4-methoxybenzohydrazide and 3,4,5-trimethoxybenzaldehyde which was synthesized in order to study and compare its biological properties with other related compounds (Fun et al., 2011; Horkaew et al., 2011; Promdet et al., 2011). (I) was screened for antioxidant activities and found to be inactive.

The title compound (Fig. 1) crystallized out with two crystallographically independent molecules A and B per asymmetric unit with the two molecules having slight differences in bond angles. The molecule exists in a trans-configuration with respect to the C8N2 bond [1.243 (12) Å in molecule A and 1.290 (11) Å in molecule B] and the torsion angle N1–N2–C8–C9 = -174.4 (7)° for molecule A [-172.2 (6)° for molecule B]. Molecule A is less twisted than molecule B which is indicated by the dihedral angle between the two benzene rings being 7.2 (5)° in molecule A whereas it is 85.9 (4)° in molecule B. The middle bridge fragment (O1/C7/N1/N2/C8) of molecule A is also less twisted than that of molecule B with the dihedral angle between the mean planes of O1/C7/N1 and N1/N2/C8 being 8.3 (15)° in molecule A whereas it is 26.0 (11)° in molecule B. The methoxy group of 4-methoxyphenyl (at atom C4) is co-planar with its bound benzene ring [torsion angle C15–O2–C4–C5 = 1.16 (18)° and the r.m.s 0.0222 (9) Å in molecule A [-4.3 (15)° and r.m.s 0.0164 (9) Å in molecule B] for the eight non-H atoms. The three methoxy substituents of 3,4,5-trimethoxyphenyl unit have two different orientations in which the two methoxy groups at two meta-positions or at atoms C11 and C13 are co-planar with torsion angles C16–O3–C11–C10 = 4.8 (11)° and C18–O5–C13–C12 = 178.5 (7)°, whereas the third one at the para-position or at atom C12 is tilted out of plane with the torsion angle C17–O4–C12–C11 = 72.8 (9)° [the corresponding values are -2.3, 179.2 (8) and -77.5 (9)°, respectively, in molecule B]. Bond distances are of normal values (Allen et al., 1987) and are comparable with the related structures (Fun et al., 2011; Horkaew et al., 2011; Promdet et al., 2011). In the crystal packing (Fig. 2), the molecules are linked by N—H···O hydrogen bonds and weak C—H···O interactions (Table 1) into tapes along the b axis. C—H···π weak interactions were presented (Table 1).

Related literature top

For bond-length data, see: Allen et al. (1987). For related structures, see: Fun et al. (2011); Horkaew et al. (2011); Promdet et al. (2011). For background and applications to benzohydrazide derivatives, see: Angelusiu et al. (2010); Bedia et al. (2006); Loncle et al. (2004); Melnyk et al. (2006); Raj et al. (2007).

Experimental top

The title compound (I) was prepared by dissolving 4-methoxybenzohydrazide (2 mmol, 0.30 g) in ethanol (10 ml). The solution of 3,4,5-trimethoxybenzaldehyde (2 mmol, 0.40 g) in ethanol (10 ml) was then added slowly to the reaction. The mixture was refluxed for around 6 hr. The solution was then cooled to room temperature and evaporated by reduced pressure. Colorless block-shaped single crystals of the title compound suitable for X-ray structure determination were recrystallized from methanol by slow evaporation of the solvent at room temperature after several days (m.p. 464-465 K).

Refinement top

All H atoms were positioned geometrically and allowed to ride on their parent atoms, with d(N—H) = 0.85–0.86 Å, and d(C—H) = 0.93 Å for aromatic and CH and 0.96 Å for CH3 atoms. The Uiso(H) values were constrained to be 1.5Ueq of the carrier atom for methyl H atoms and 1.2Ueq for the remaining H atoms. A rotating group model was used for the methyl groups. A total of 2541 Friedel pairs were merged before final refinement as there is no large anomalous dispersion for the determination of the absolute configuration.

Computing details top

Data collection: APEX2 (Bruker, 2005); cell refinement: SAINT (Bruker, 2005); data reduction: SAINT (Bruker, 2005); program(s) used to solve structure: SHELXTL (Sheldrick, 2008); program(s) used to refine structure: SHELXTL (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008) and PLATON (Spek, 2009).

Figures top
[Figure 1] Fig. 1. The molecular structure of the title compound, showing 40% probability displacement ellipsoids and the atom-numbering scheme.
[Figure 2] Fig. 2. The crystal packing of the title compound viewed along the a axis, showing tapes running along the b axis. Hydrogen bonds were drawn as dashed lines.
(E)-4-Methoxy-N'-(3,4,5-trimethoxybenzylidene)benzohydrazide top
Crystal data top
C18H20N2O5F(000) = 728
Mr = 344.36Dx = 1.332 Mg m3
Monoclinic, P21Melting point = 464–465 K
Hall symbol: P 2ybMo Kα radiation, λ = 0.71073 Å
a = 13.3344 (17) ÅCell parameters from 3361 reflections
b = 5.0484 (6) Åθ = 1.6–25.0°
c = 25.767 (3) ŵ = 0.10 mm1
β = 98.250 (2)°T = 297 K
V = 1716.6 (4) Å3Block, colorless
Z = 40.26 × 0.25 × 0.11 mm
Data collection top
Bruker SMART APEXII CCD area-detector
diffractometer
3361 independent reflections
Radiation source: fine-focus sealed tube2671 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.039
Detector resolution: 8.33 pixels mm-1θmax = 25.0°, θmin = 1.6°
ω scansh = 1515
Absorption correction: multi-scan
(SADABS; Bruker, 2005)
k = 66
Tmin = 0.975, Tmax = 0.990l = 3030
12488 measured reflections
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.090Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.275H-atom parameters constrained
S = 1.05 w = 1/[σ2(Fo2) + (0.1357P)2 + 4.5571P]
where P = (Fo2 + 2Fc2)/3
3361 reflections(Δ/σ)max = 0.001
453 parametersΔρmax = 0.75 e Å3
1 restraintΔρmin = 0.47 e Å3
Crystal data top
C18H20N2O5V = 1716.6 (4) Å3
Mr = 344.36Z = 4
Monoclinic, P21Mo Kα radiation
a = 13.3344 (17) ŵ = 0.10 mm1
b = 5.0484 (6) ÅT = 297 K
c = 25.767 (3) Å0.26 × 0.25 × 0.11 mm
β = 98.250 (2)°
Data collection top
Bruker SMART APEXII CCD area-detector
diffractometer
3361 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 2005)
2671 reflections with I > 2σ(I)
Tmin = 0.975, Tmax = 0.990Rint = 0.039
12488 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0901 restraint
wR(F2) = 0.275H-atom parameters constrained
S = 1.05Δρmax = 0.75 e Å3
3361 reflectionsΔρmin = 0.47 e Å3
453 parameters
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > 2sigma(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
O1A0.3343 (7)0.3991 (18)0.6742 (3)0.078 (2)
O2A0.6531 (5)0.112 (2)0.5437 (3)0.080 (3)
O3A0.0197 (4)0.2248 (13)0.8547 (2)0.0443 (14)
O4A0.0405 (4)0.0695 (13)0.93724 (19)0.0450 (14)
O5A0.1905 (4)0.4311 (15)0.9377 (2)0.0543 (17)
N1A0.3208 (5)0.0316 (19)0.6969 (3)0.055 (2)
H1NA0.33730.19220.69090.066*
N2A0.2568 (5)0.0252 (18)0.7341 (3)0.053 (2)
C1A0.4361 (7)0.083 (2)0.6382 (3)0.053 (2)
C2A0.4404 (8)0.243 (4)0.5919 (4)0.101 (4)
H2A0.40080.39250.58300.121*
C3A0.5149 (8)0.139 (4)0.5609 (4)0.101 (4)
H3A0.51560.21110.52780.121*
C4A0.5852 (6)0.060 (3)0.5768 (3)0.063 (3)
C5A0.5800 (7)0.192 (3)0.6231 (3)0.065 (3)
H5A0.62570.32690.63400.078*
C6A0.5070 (7)0.123 (3)0.6530 (4)0.077 (4)
H6A0.50370.21480.68410.093*
C7A0.3549 (8)0.1670 (18)0.6713 (4)0.054 (2)
C8A0.2406 (7)0.1708 (19)0.7608 (3)0.045 (2)
H8AA0.26530.33580.75280.054*
C9A0.1820 (6)0.1442 (17)0.8058 (3)0.0377 (19)
C10A0.1069 (5)0.0388 (17)0.8060 (3)0.0376 (18)
H10A0.08920.14800.77710.045*
C11A0.0568 (5)0.0620 (15)0.8494 (3)0.0321 (16)
C12A0.0869 (6)0.1012 (18)0.8933 (3)0.0373 (18)
C13A0.1640 (5)0.2884 (17)0.8925 (3)0.0337 (17)
C14A0.2105 (5)0.3152 (17)0.8482 (3)0.0364 (18)
H14A0.25970.44420.84660.044*
C15A0.7253 (8)0.309 (3)0.5574 (4)0.086 (4)
H15C0.77540.30230.53420.129*
H15B0.75730.28150.59280.129*
H15A0.69290.47960.55470.129*
C16A0.0507 (6)0.413 (2)0.8128 (3)0.048 (2)
H16C0.09860.53530.82370.072*
H16B0.00750.50750.80480.072*
H16A0.08170.31920.78220.072*
C17A0.0268 (7)0.284 (2)0.9456 (4)0.058 (3)
H17C0.05910.24640.97580.088*
H17B0.07750.30280.91530.088*
H17A0.01120.44540.95120.088*
C18A0.2695 (6)0.619 (2)0.9396 (4)0.056 (3)
H18C0.27620.71160.97240.085*
H18B0.25420.74250.91130.085*
H18A0.33190.52920.93640.085*
O1B0.8368 (6)0.3520 (12)0.6791 (3)0.064 (2)
O2B1.1551 (5)0.082 (2)0.5408 (2)0.071 (2)
O3B0.6942 (4)0.0861 (15)0.9327 (2)0.0526 (16)
O4B0.5447 (4)0.2633 (13)0.93709 (19)0.0432 (14)
O5B0.4755 (4)0.5755 (13)0.8561 (2)0.0453 (14)
N1B0.8346 (5)0.0774 (14)0.7016 (2)0.0397 (15)
H1NB0.82700.21170.68120.048*
N2B0.7795 (5)0.0341 (15)0.7419 (2)0.0402 (16)
C1B0.9427 (6)0.0541 (16)0.6400 (3)0.0367 (17)
C2B0.9451 (7)0.1879 (19)0.5939 (3)0.051 (2)
H2B0.89490.31300.58390.061*
C3B1.0160 (7)0.149 (2)0.5623 (3)0.053 (2)
H3B1.01730.25310.53260.064*
C4B1.0878 (6)0.052 (2)0.5750 (3)0.052 (2)
C5B1.0874 (6)0.195 (2)0.6201 (3)0.048 (2)
H5B1.13580.32560.62930.058*
C6B1.0139 (6)0.143 (2)0.6523 (3)0.047 (2)
H6B1.01290.24310.68250.056*
C7B0.8691 (7)0.1257 (18)0.6757 (3)0.045 (2)
C8B0.7321 (5)0.241 (2)0.7552 (3)0.0399 (19)
H8B0.72990.39510.73540.048*
C9B0.6815 (5)0.2261 (18)0.8023 (3)0.0395 (19)
C10B0.7130 (5)0.061 (2)0.8438 (3)0.0406 (19)
H10B0.76690.05350.84170.049*
C11B0.6668 (5)0.0605 (19)0.8886 (3)0.0392 (18)
C12B0.5874 (5)0.2440 (18)0.8921 (3)0.0340 (17)
C13B0.5554 (5)0.4060 (18)0.8500 (3)0.0348 (17)
C14B0.6028 (5)0.4086 (19)0.8057 (3)0.0399 (19)
H14B0.58320.52820.77870.048*
C15B1.2275 (8)0.293 (3)0.5513 (4)0.086 (4)
H15D1.25810.32810.52040.129*
H15E1.27900.24250.57950.129*
H15F1.19390.44990.56090.129*
C16B0.7757 (6)0.263 (2)0.9328 (4)0.052 (2)
H16D0.79730.32460.96790.078*
H16E0.83090.17490.91990.078*
H16F0.75440.41180.91060.078*
C17B0.4744 (7)0.062 (2)0.9456 (3)0.059 (3)
H17D0.46410.06290.98170.088*
H17E0.50060.10780.93720.088*
H17F0.41110.09320.92370.088*
C18B0.4404 (6)0.746 (2)0.8154 (3)0.050 (2)
H18D0.38650.85270.82520.075*
H18E0.41580.64530.78460.075*
H18F0.49470.85900.80820.075*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
O1A0.111 (6)0.058 (5)0.076 (5)0.016 (5)0.054 (4)0.001 (4)
O2A0.064 (4)0.122 (8)0.058 (4)0.021 (5)0.028 (3)0.003 (5)
O3A0.047 (3)0.042 (3)0.046 (3)0.009 (3)0.014 (3)0.004 (3)
O4A0.060 (3)0.045 (3)0.036 (3)0.007 (3)0.023 (2)0.011 (3)
O5A0.058 (3)0.061 (4)0.045 (3)0.017 (4)0.010 (3)0.010 (3)
N1A0.055 (4)0.064 (5)0.053 (4)0.006 (4)0.028 (3)0.007 (4)
N2A0.052 (4)0.061 (6)0.048 (4)0.005 (4)0.017 (3)0.001 (4)
C1A0.056 (5)0.058 (6)0.047 (5)0.007 (5)0.017 (4)0.003 (5)
C2A0.076 (5)0.179 (12)0.052 (4)0.006 (7)0.025 (4)0.037 (7)
C3A0.076 (5)0.179 (12)0.052 (4)0.006 (7)0.025 (4)0.037 (7)
C4A0.043 (4)0.101 (9)0.047 (5)0.002 (6)0.009 (4)0.002 (6)
C5A0.055 (5)0.095 (9)0.049 (5)0.002 (6)0.015 (4)0.013 (6)
C6A0.059 (6)0.128 (12)0.047 (5)0.001 (7)0.014 (5)0.014 (7)
C7A0.070 (6)0.029 (5)0.061 (5)0.017 (5)0.006 (5)0.016 (4)
C8A0.057 (5)0.047 (5)0.034 (4)0.007 (4)0.014 (4)0.000 (4)
C9A0.038 (4)0.042 (5)0.036 (4)0.007 (4)0.014 (3)0.002 (4)
C10A0.036 (4)0.038 (5)0.039 (4)0.007 (4)0.007 (3)0.002 (4)
C11A0.035 (4)0.022 (4)0.039 (4)0.005 (3)0.008 (3)0.006 (3)
C12A0.043 (4)0.034 (4)0.036 (4)0.010 (4)0.009 (3)0.005 (4)
C13A0.030 (3)0.034 (4)0.037 (4)0.009 (3)0.005 (3)0.005 (4)
C14A0.033 (4)0.036 (5)0.042 (4)0.007 (4)0.010 (3)0.001 (4)
C15A0.066 (6)0.115 (12)0.081 (7)0.029 (8)0.023 (6)0.027 (8)
C16A0.048 (4)0.044 (5)0.050 (5)0.002 (5)0.002 (4)0.010 (5)
C17A0.076 (6)0.045 (6)0.063 (5)0.009 (5)0.038 (5)0.001 (5)
C18A0.050 (5)0.061 (6)0.054 (5)0.009 (5)0.006 (4)0.015 (5)
O1B0.100 (6)0.023 (3)0.076 (5)0.001 (3)0.039 (4)0.005 (3)
O2B0.063 (4)0.104 (6)0.052 (3)0.008 (5)0.028 (3)0.001 (5)
O3B0.060 (3)0.064 (4)0.035 (3)0.018 (4)0.010 (3)0.010 (3)
O4B0.050 (3)0.046 (3)0.037 (3)0.001 (3)0.018 (2)0.000 (3)
O5B0.049 (3)0.044 (3)0.045 (3)0.021 (3)0.013 (2)0.004 (3)
N1B0.056 (4)0.030 (4)0.037 (3)0.010 (3)0.020 (3)0.001 (3)
N2B0.042 (3)0.040 (4)0.041 (3)0.004 (3)0.015 (3)0.007 (3)
C1B0.044 (4)0.025 (4)0.044 (4)0.013 (3)0.015 (3)0.006 (3)
C2B0.060 (5)0.043 (5)0.051 (5)0.008 (5)0.012 (4)0.010 (4)
C3B0.059 (5)0.057 (6)0.046 (5)0.001 (5)0.021 (4)0.015 (4)
C4B0.047 (4)0.072 (7)0.038 (4)0.007 (5)0.008 (3)0.000 (5)
C5B0.047 (5)0.051 (6)0.049 (5)0.002 (4)0.014 (4)0.002 (4)
C6B0.047 (5)0.051 (6)0.043 (4)0.003 (4)0.013 (4)0.006 (4)
C7B0.057 (5)0.030 (5)0.051 (5)0.008 (4)0.016 (4)0.007 (4)
C8B0.035 (4)0.046 (5)0.040 (4)0.003 (4)0.011 (3)0.001 (4)
C9B0.034 (4)0.044 (5)0.041 (4)0.005 (4)0.008 (3)0.009 (4)
C10B0.034 (4)0.047 (5)0.042 (4)0.009 (4)0.011 (3)0.009 (4)
C11B0.039 (4)0.038 (4)0.040 (4)0.006 (4)0.004 (3)0.001 (4)
C12B0.034 (4)0.038 (4)0.032 (4)0.006 (4)0.010 (3)0.002 (4)
C13B0.030 (3)0.040 (4)0.037 (4)0.001 (4)0.013 (3)0.010 (4)
C14B0.040 (4)0.048 (5)0.032 (4)0.002 (4)0.007 (3)0.003 (4)
C15B0.061 (6)0.124 (12)0.081 (7)0.032 (8)0.040 (6)0.035 (9)
C16B0.052 (5)0.038 (5)0.063 (5)0.012 (4)0.004 (4)0.010 (5)
C17B0.072 (6)0.060 (6)0.053 (5)0.002 (6)0.033 (5)0.008 (6)
C18B0.047 (5)0.051 (5)0.051 (5)0.015 (5)0.004 (4)0.009 (5)
Geometric parameters (Å, º) top
O1A—C7A1.208 (13)O1B—C7B1.229 (11)
O2A—C4A1.355 (10)O2B—C4B1.354 (9)
O2A—C15A1.394 (15)O2B—C15B1.438 (15)
O3A—C11A1.333 (9)O3B—C11B1.361 (10)
O3A—C16A1.452 (10)O3B—C16B1.408 (10)
O4A—C12A1.376 (8)O4B—C12B1.366 (8)
O4A—C17A1.442 (11)O4B—C17B1.422 (11)
O5A—C13A1.371 (9)O5B—C18B1.386 (11)
O5A—C18A1.412 (11)O5B—C13B1.394 (9)
N1A—C7A1.315 (12)N1B—C7B1.340 (11)
N1A—N2A1.401 (9)N1B—N2B1.374 (8)
N1A—H1NA0.8600N1B—H1NB0.8545
N2A—C8A1.243 (12)N2B—C8B1.290 (11)
C1A—C6A1.422 (17)C1B—C2B1.371 (11)
C1A—C2A1.449 (16)C1B—C6B1.380 (12)
C1A—C7A1.532 (13)C1B—C7B1.483 (11)
C2A—C3A1.459 (18)C2B—C3B1.349 (11)
C2A—H2A0.9300C2B—H2B0.9300
C3A—C4A1.39 (2)C3B—C4B1.402 (14)
C3A—H3A0.9300C3B—H3B0.9300
C4A—C5A1.377 (14)C4B—C5B1.367 (12)
C5A—C6A1.370 (13)C5B—C6B1.395 (11)
C5A—H5A0.9300C5B—H5B0.9300
C6A—H6A0.9300C6B—H6B0.9300
C8A—C9A1.493 (10)C8B—C9B1.474 (10)
C8A—H8AA0.9300C8B—H8B0.9300
C9A—C10A1.363 (11)C9B—C10B1.371 (12)
C9A—C14A1.403 (11)C9B—C14B1.408 (11)
C10A—C11A1.388 (10)C10B—C11B1.385 (10)
C10A—H10A0.9300C10B—H10B0.9300
C11A—C12A1.409 (11)C11B—C12B1.420 (11)
C12A—C13A1.398 (11)C12B—C13B1.376 (11)
C13A—C14A1.381 (10)C13B—C14B1.382 (9)
C14A—H14A0.9300C14B—H14B0.9300
C15A—H15C0.9600C15B—H15D0.9600
C15A—H15B0.9600C15B—H15E0.9600
C15A—H15A0.9600C15B—H15F0.9600
C16A—H16C0.9600C16B—H16D0.9600
C16A—H16B0.9600C16B—H16E0.9600
C16A—H16A0.9600C16B—H16F0.9600
C17A—H17C0.9600C17B—H17D0.9600
C17A—H17B0.9600C17B—H17E0.9600
C17A—H17A0.9600C17B—H17F0.9600
C18A—H18C0.9600C18B—H18D0.9600
C18A—H18B0.9600C18B—H18E0.9600
C18A—H18A0.9600C18B—H18F0.9600
C4A—O2A—C15A118.7 (9)C4B—O2B—C15B116.7 (8)
C11A—O3A—C16A117.9 (6)C11B—O3B—C16B117.5 (6)
C12A—O4A—C17A113.5 (6)C12B—O4B—C17B116.3 (7)
C13A—O5A—C18A118.9 (6)C18B—O5B—C13B118.5 (6)
C7A—N1A—N2A118.3 (9)C7B—N1B—N2B120.9 (7)
C7A—N1A—H1NA120.8C7B—N1B—H1NB108.7
N2A—N1A—H1NA120.8N2B—N1B—H1NB124.3
C8A—N2A—N1A112.9 (8)C8B—N2B—N1B114.0 (7)
C6A—C1A—C2A121.8 (9)C2B—C1B—C6B116.9 (7)
C6A—C1A—C7A123.3 (8)C2B—C1B—C7B121.2 (8)
C2A—C1A—C7A114.9 (10)C6B—C1B—C7B121.9 (8)
C1A—C2A—C3A111.1 (15)C3B—C2B—C1B123.9 (9)
C1A—C2A—H2A124.5C3B—C2B—H2B118.0
C3A—C2A—H2A124.5C1B—C2B—H2B118.0
C4A—C3A—C2A125.6 (11)C2B—C3B—C4B118.6 (8)
C4A—C3A—H3A117.2C2B—C3B—H3B120.7
C2A—C3A—H3A117.2C4B—C3B—H3B120.7
O2A—C4A—C5A124.9 (11)O2B—C4B—C5B125.4 (10)
O2A—C4A—C3A116.0 (9)O2B—C4B—C3B114.9 (8)
C5A—C4A—C3A119.1 (9)C5B—C4B—C3B119.6 (8)
C6A—C5A—C4A119.6 (11)C4B—C5B—C6B119.7 (9)
C6A—C5A—H5A120.2C4B—C5B—H5B120.2
C4A—C5A—H5A120.2C6B—C5B—H5B120.2
C5A—C6A—C1A122.2 (10)C1B—C6B—C5B121.2 (8)
C5A—C6A—H6A118.9C1B—C6B—H6B119.4
C1A—C6A—H6A118.9C5B—C6B—H6B119.4
O1A—C7A—N1A127.7 (10)O1B—C7B—N1B121.8 (8)
O1A—C7A—C1A119.1 (9)O1B—C7B—C1B122.8 (8)
N1A—C7A—C1A113.0 (9)N1B—C7B—C1B115.3 (8)
N2A—C8A—C9A120.8 (8)N2B—C8B—C9B118.5 (8)
N2A—C8A—H8AA119.6N2B—C8B—H8B120.7
C9A—C8A—H8AA119.6C9B—C8B—H8B120.7
C10A—C9A—C14A122.1 (7)C10B—C9B—C14B119.8 (7)
C10A—C9A—C8A122.1 (7)C10B—C9B—C8B123.1 (7)
C14A—C9A—C8A115.9 (7)C14B—C9B—C8B116.8 (8)
C9A—C10A—C11A120.0 (7)C9B—C10B—C11B121.8 (7)
C9A—C10A—H10A120.0C9B—C10B—H10B119.1
C11A—C10A—H10A120.0C11B—C10B—H10B119.1
O3A—C11A—C10A126.8 (7)O3B—C11B—C10B126.8 (7)
O3A—C11A—C12A114.4 (6)O3B—C11B—C12B114.5 (6)
C10A—C11A—C12A118.8 (7)C10B—C11B—C12B118.4 (7)
O4A—C12A—C13A120.6 (7)O4B—C12B—C13B120.5 (7)
O4A—C12A—C11A118.8 (7)O4B—C12B—C11B120.4 (7)
C13A—C12A—C11A120.6 (7)C13B—C12B—C11B119.2 (6)
O5A—C13A—C14A123.9 (7)C12B—C13B—C14B122.0 (7)
O5A—C13A—C12A116.4 (6)C12B—C13B—O5B115.6 (6)
C14A—C13A—C12A119.7 (7)C14B—C13B—O5B122.4 (7)
C13A—C14A—C9A118.7 (7)C13B—C14B—C9B118.5 (8)
C13A—C14A—H14A120.6C13B—C14B—H14B120.7
C9A—C14A—H14A120.6C9B—C14B—H14B120.7
O2A—C15A—H15C109.5O2B—C15B—H15D109.5
O2A—C15A—H15B109.5O2B—C15B—H15E109.5
H15C—C15A—H15B109.5H15D—C15B—H15E109.5
O2A—C15A—H15A109.5O2B—C15B—H15F109.5
H15C—C15A—H15A109.5H15D—C15B—H15F109.5
H15B—C15A—H15A109.5H15E—C15B—H15F109.5
O3A—C16A—H16C109.5O3B—C16B—H16D109.5
O3A—C16A—H16B109.5O3B—C16B—H16E109.5
H16C—C16A—H16B109.5H16D—C16B—H16E109.5
O3A—C16A—H16A109.5O3B—C16B—H16F109.5
H16C—C16A—H16A109.5H16D—C16B—H16F109.5
H16B—C16A—H16A109.5H16E—C16B—H16F109.5
O4A—C17A—H17C109.5O4B—C17B—H17D109.5
O4A—C17A—H17B109.5O4B—C17B—H17E109.5
H17C—C17A—H17B109.5H17D—C17B—H17E109.5
O4A—C17A—H17A109.5O4B—C17B—H17F109.5
H17C—C17A—H17A109.5H17D—C17B—H17F109.5
H17B—C17A—H17A109.5H17E—C17B—H17F109.5
O5A—C18A—H18C109.5O5B—C18B—H18D109.5
O5A—C18A—H18B109.5O5B—C18B—H18E109.5
H18C—C18A—H18B109.5H18D—C18B—H18E109.5
O5A—C18A—H18A109.5O5B—C18B—H18F109.5
H18C—C18A—H18A109.5H18D—C18B—H18F109.5
H18B—C18A—H18A109.5H18E—C18B—H18F109.5
C7A—N1A—N2A—C8A170.6 (9)C7B—N1B—N2B—C8B165.1 (8)
C6A—C1A—C2A—C3A7.8 (19)C6B—C1B—C2B—C3B4.3 (14)
C7A—C1A—C2A—C3A176.2 (11)C7B—C1B—C2B—C3B173.6 (9)
C1A—C2A—C3A—C4A10 (2)C1B—C2B—C3B—C4B4.5 (15)
C15A—O2A—C4A—C5A1.6 (18)C15B—O2B—C4B—C5B4.3 (15)
C15A—O2A—C4A—C3A180.0 (12)C15B—O2B—C4B—C3B177.6 (9)
C2A—C3A—C4A—O2A174.8 (15)C2B—C3B—C4B—O2B178.8 (9)
C2A—C3A—C4A—C5A7 (2)C2B—C3B—C4B—C5B3.0 (14)
O2A—C4A—C5A—C6A179.2 (12)O2B—C4B—C5B—C6B179.6 (9)
C3A—C4A—C5A—C6A0.9 (18)C3B—C4B—C5B—C6B1.6 (14)
C4A—C5A—C6A—C1A0.6 (18)C2B—C1B—C6B—C5B2.6 (12)
C2A—C1A—C6A—C5A3.4 (19)C7B—C1B—C6B—C5B175.2 (8)
C7A—C1A—C6A—C5A179.0 (11)C4B—C5B—C6B—C1B1.4 (14)
N2A—N1A—C7A—O1A3.5 (16)N2B—N1B—C7B—O1B15.2 (14)
N2A—N1A—C7A—C1A171.2 (7)N2B—N1B—C7B—C1B169.2 (6)
C6A—C1A—C7A—O1A142.0 (12)C2B—C1B—C7B—O1B29.8 (14)
C2A—C1A—C7A—O1A33.9 (15)C6B—C1B—C7B—O1B148.0 (10)
C6A—C1A—C7A—N1A33.2 (14)C2B—C1B—C7B—N1B145.7 (9)
C2A—C1A—C7A—N1A150.8 (11)C6B—C1B—C7B—N1B36.5 (11)
N1A—N2A—C8A—C9A174.4 (7)N1B—N2B—C8B—C9B172.2 (6)
N2A—C8A—C9A—C10A31.3 (13)N2B—C8B—C9B—C10B27.5 (12)
N2A—C8A—C9A—C14A147.3 (9)N2B—C8B—C9B—C14B158.0 (7)
C14A—C9A—C10A—C11A0.7 (12)C14B—C9B—C10B—C11B2.6 (13)
C8A—C9A—C10A—C11A177.8 (7)C8B—C9B—C10B—C11B177.0 (8)
C16A—O3A—C11A—C10A4.8 (11)C16B—O3B—C11B—C10B2.3 (13)
C16A—O3A—C11A—C12A175.8 (7)C16B—O3B—C11B—C12B177.2 (8)
C9A—C10A—C11A—O3A177.8 (7)C9B—C10B—C11B—O3B177.2 (8)
C9A—C10A—C11A—C12A1.7 (11)C9B—C10B—C11B—C12B2.5 (13)
C17A—O4A—C12A—C13A72.8 (9)C17B—O4B—C12B—C13B103.9 (10)
C17A—O4A—C12A—C11A108.5 (9)C17B—O4B—C12B—C11B77.5 (9)
O3A—C11A—C12A—O4A3.5 (10)O3B—C11B—C12B—O4B0.1 (12)
C10A—C11A—C12A—O4A177.0 (7)C10B—C11B—C12B—O4B175.3 (8)
O3A—C11A—C12A—C13A177.7 (7)O3B—C11B—C12B—C13B178.6 (8)
C10A—C11A—C12A—C13A1.8 (11)C10B—C11B—C12B—C13B3.3 (12)
C18A—O5A—C13A—C14A0.3 (12)O4B—C12B—C13B—C14B174.1 (8)
C18A—O5A—C13A—C12A178.5 (7)C11B—C12B—C13B—C14B4.5 (13)
O4A—C12A—C13A—O5A1.0 (11)O4B—C12B—C13B—O5B3.0 (11)
C11A—C12A—C13A—O5A177.7 (7)C11B—C12B—C13B—O5B178.4 (7)
O4A—C12A—C13A—C14A179.3 (7)C18B—O5B—C13B—C12B179.2 (8)
C11A—C12A—C13A—C14A0.5 (11)C18B—O5B—C13B—C14B2.2 (12)
O5A—C13A—C14A—C9A175.3 (7)C12B—C13B—C14B—C9B4.6 (12)
C12A—C13A—C14A—C9A2.9 (11)O5B—C13B—C14B—C9B178.5 (7)
C10A—C9A—C14A—C13A3.0 (12)C10B—C9B—C14B—C13B3.6 (12)
C8A—C9A—C14A—C13A175.6 (7)C8B—C9B—C14B—C13B178.2 (7)
Hydrogen-bond geometry (Å, º) top
Cg1 and Cg2 are the centroids of the C9A–C14A and C9B–C14B rings, respectively.
D—H···AD—HH···AD···AD—H···A
N1A—H1NA···O1Ai0.862.112.944 (13)164
N1B—H1NB···O1Bi0.852.212.939 (9)144
C8B—H8B···O1Bi0.932.523.287 (11)140
C15B—H15D···O2Aii0.962.603.498 (14)156
C17B—H17D···O4Biii0.962.603.420 (10)144
C16A—H16B···Cg1iv0.962.663.429 (10)138
C16B—H16F···Cg2iv0.962.773.697 (10)162
C18A—H18B···Cg1i0.962.853.739 (10)155
C18B—H18F···Cg2i0.962.743.583 (10)146
Symmetry codes: (i) x, y+1, z; (ii) x+2, y+1/2, z+1; (iii) x+1, y1/2, z+2; (iv) x, y1, z.

Experimental details

Crystal data
Chemical formulaC18H20N2O5
Mr344.36
Crystal system, space groupMonoclinic, P21
Temperature (K)297
a, b, c (Å)13.3344 (17), 5.0484 (6), 25.767 (3)
β (°) 98.250 (2)
V3)1716.6 (4)
Z4
Radiation typeMo Kα
µ (mm1)0.10
Crystal size (mm)0.26 × 0.25 × 0.11
Data collection
DiffractometerBruker SMART APEXII CCD area-detector
diffractometer
Absorption correctionMulti-scan
(SADABS; Bruker, 2005)
Tmin, Tmax0.975, 0.990
No. of measured, independent and
observed [I > 2σ(I)] reflections
12488, 3361, 2671
Rint0.039
(sin θ/λ)max1)0.595
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.090, 0.275, 1.05
No. of reflections3361
No. of parameters453
No. of restraints1
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.75, 0.47

Computer programs: APEX2 (Bruker, 2005), SAINT (Bruker, 2005), SHELXTL (Sheldrick, 2008) and PLATON (Spek, 2009).

Hydrogen-bond geometry (Å, º) top
Cg1 and Cg2 are the centroids of the C9A–C14A and C9B–C14B rings, respectively.
D—H···AD—HH···AD···AD—H···A
N1A—H1NA···O1Ai0.862.112.944 (13)164
N1B—H1NB···O1Bi0.852.212.939 (9)144
C8B—H8B···O1Bi0.932.523.287 (11)140
C15B—H15D···O2Aii0.962.603.498 (14)156
C17B—H17D···O4Biii0.962.603.420 (10)144
C16A—H16B···Cg1iv0.962.663.429 (10)138
C16B—H16F···Cg2iv0.962.773.697 (10)162
C18A—H18B···Cg1i0.962.853.739 (10)155
C18B—H18F···Cg2i0.962.743.583 (10)146
Symmetry codes: (i) x, y+1, z; (ii) x+2, y+1/2, z+1; (iii) x+1, y1/2, z+2; (iv) x, y1, z.
 

Footnotes

Thomson Reuters ResearcherID: A-3561-2009.

§Thomson Reuters ResearcherID: A-5085-2009. Additional correspondence author, e-mail: suchada.c@psu.ac.th.

Acknowledgements

The authors thank Prince of Songkla University and the Universiti Sains Malaysia for the Research University grant No. 1001/PFIZIK/811160. PP thanks the Development and Promotion of Science and Technology Talents Project for a fellowship. PP and JH thank the Crystal Materials Research Unit, Prince of Songkla University, for financial support.

References

First citationAllen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1–19.  CrossRef Web of Science Google Scholar
First citationAngelusiu, M. V., Barbuceanu, S.-F., Draghici, C. & Almajan, G. L. (2010). Eur. J. Med. Chem. 45, 2055–2062.  Web of Science CrossRef CAS PubMed Google Scholar
First citationBedia, K.-K., Elçin, O., Seda, U., Fatma, K., Nathaly, S., Sevim, R. & Dimoglo, A. (2006). Eur. J. Med. Chem. 41, 1253–1261.  Web of Science CrossRef PubMed CAS Google Scholar
First citationBruker (2005). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationFun, H.-K., Horkaew, J. & Chantrapromma, S. (2011). Acta Cryst. E67, o2644–o2645.  Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
First citationHorkaew, J., Chantrapromma, S. & Fun, H.-K. (2011). Acta Cryst. E67, o2985.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationLoncle, C., Brunel, J. M., Vidal, N., Dherbomez, M. & Letourneux, Y. (2004). Eur. J. Med. Chem. 39, 1067–1071.  Web of Science CrossRef PubMed CAS Google Scholar
First citationMelnyk, P., Leroux, V., Sergheraert, C. & Grellier, P. (2006). Bioorg. Med. Chem. Lett. 16, 31–35.  Web of Science CrossRef PubMed CAS Google Scholar
First citationPromdet, P., Horkaew, J., Chantrapromma, S. & Fun, H.-K. (2011). Acta Cryst. E67, o3224.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationRaj, K. K. V., Narayana, B., Ashalatha, B. V., Kumari, N. S. & Sarojini, B. K. (2007). Eur. J. Med. Chem. 42, 425–429.  PubMed CAS Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSpek, A. L. (2009). Acta Cryst. D65, 148–155.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 68| Part 3| March 2012| Pages o562-o563
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds