organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

10-Ethyl-3-(5-methyl-1,3,4-oxa­diazol-2-yl)-10H-pheno­thia­zine

aCollege of Chemistry, Dalian University of Technology, 116024 Dalian, Liaoning, People's Republic of China, bState Key Laboratory of Fine Chemicals, DUT-KTH Joint Education and Research Center on Molecular Devices, Dalian University of Technology, 116024 Dalian, Liaoning, People's Republic of China, and cDepartment of Chemistry, School of Chemical Science and Engineering, KTH Royal Institute of Technology, Stockholm 10044, Sweden
*Correspondence e-mail: liujh@dlut.edu.cn, lichengs@kth.se

(Received 28 January 2012; accepted 3 February 2012; online 10 February 2012)

In the title compound, C17H15N3OS, the phenothia­zine ring system is slightly bent, with a dihedral angle of 13.68 (7)° between the benzene rings. The dihedral angle between the oxadiazole ring and the adjacent benzene ring is 7.72 (7)°. In the crystal, a ππ inter­action with a centroid–centroid distance of 3.752 (2) Å is observed between the benzene rings of neighbouring mol­ecules.

Related literature

For general background to phenothia­zine derivatives, see: Kim et al. (2011[Kim, S. H., Kim, H. W., Sakong, C., Namgoong, J., Park, S. W., Ko, M. J., Lee, C. H., Lee, W. I. & Kim, J. P. (2011). Org. Lett. 13, 5784-5787.]); Hagfeldt et al. (2010[Hagfeldt, A., Boschloo, G., Sun, L.-C., Kloo, L. & Pettersson, H. (2010). Chem. Rev. 110, 6595-6663.]). For related structures, see: Chu & Van der Helm (1975[Chu, S. S. C. & Van der Helm, D. (1975). Acta Cryst. B31, 1179-1183.]); Hdii et al. (1998[Hdii, F., Reboul, J.-P., Barbe, J., Siri, D. & Pèpe, G. (1998). Acta Cryst. C54, 1151-1152.]); Li, Hu et al. (2009[Li, D. M., Hu, R. T., Zhou, W., Sun, P. P., Kan, Y. H., Tian, Y. P., Wu, J. Y., Tao, X. T. & Jiang, M. H. (2009). Eur. J. Inorg. Chem. pp. 2664-2672.]); Li, Lv et al. (2009[Li, D. M., Lv, L. F., Sun, P. P., Zhou, W., Wang, P., Wu, J. Y., Kan, Y. H., Zhou, H. P. & Tian, Y. P. (2009). Dyes Pigm. 83, 180-186.]); Yu et al. (2011[Yu, D.-H., Wang, J.-Q., Kong, L. & Liu, Z. (2011). Acta Cryst. E67, o3344.]).

[Scheme 1]

Experimental

Crystal data
  • C17H15N3OS

  • Mr = 309.38

  • Triclinic, [P \overline 1]

  • a = 7.6752 (4) Å

  • b = 8.2913 (4) Å

  • c = 12.9469 (8) Å

  • α = 84.870 (4)°

  • β = 82.569 (4)°

  • γ = 63.696 (3)°

  • V = 731.92 (7) Å3

  • Z = 2

  • Mo Kα radiation

  • μ = 0.23 mm−1

  • T = 293 K

  • 0.15 × 0.15 × 0.10 mm

Data collection
  • Bruker SMART APEX diffractometer

  • Absorption correction: multi-scan (SADABS; Sheldrick, 2004[Sheldrick, G. M. (2004). SADABS. University of Göttingen, Germany.]) Tmin = 0.968, Tmax = 0.979

  • 5348 measured reflections

  • 2554 independent reflections

  • 2217 reflections with I > 2σ(I)

  • Rint = 0.020

Refinement
  • R[F2 > 2σ(F2)] = 0.039

  • wR(F2) = 0.107

  • S = 1.05

  • 2554 reflections

  • 201 parameters

  • H-atom parameters constrained

  • Δρmax = 0.33 e Å−3

  • Δρmin = −0.28 e Å−3

Data collection: SMART (Bruker, 2001[Bruker (2001). SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2001[Bruker (2001). SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXTL; molecular graphics: DIAMOND (Brandenburg & Putz, 2004[Brandenburg, K. & Putz, H. (2004). DIAMOND. Crystal Impact GbR, Bonn, Germany.]) and SHELXTL; software used to prepare material for publication: SHELXTL.

Supporting information


Comment top

The derivatives of phenothiazine are a series important chemical intermediates in design of the dye-sensitized solar cells (DSSCs) (Kim et al., 2011; Hagfeldt et al., 2010). As part of our interest in these materials, here we report the crystal structure of the title compound C17H15N3OS.

The title molecule is in a nonlplanar butterfly conformation with a dihedral angle of 13.68 (7)° between two benzene rings (Fig. 1). The crystal packing exhibits a ππ interaction with a centroid-centroid distance of 3.752 (2) Å between the benzene rings from the neighbouring molecules.

Related literature top

For general background to phenothiazine derivatives, see: Kim et al. (2011); Hagfeldt et al. (2010). For related structures, see: Chu & Van der Helm (1975); Hdii et al. (1998); Li, Hu et al. (2009); Li, Lv et al. (2009); Yu et al. (2011).

Experimental top

A solution of 5-[3-(10-ethyl)phenothiazyl]-tetrazole (500 mg, 1.69 mmol) in 10 ml acetic anhydride was heated to reflux and stirred for 1 h. The excess acetic anhydride was evaporated and the residue solid was extracted three times with dichloromethane. Then the organic layer was washed with water and dried with anhydrous sodium sulfate. After removal of the solvent, the crude product was purified by chromatography on a silica gel column using dichloromethane-ethyl acetate (v/v = 10:1) as eluent and isolated as a yellow powder. Yield: 472 mg (90%). The yellow single crystals suitable for X-ray diffraction were obtained after several days by slow evaporation of a mixture solution of dichloromethane and petroleum ether.

Refinement top

H atoms were placed in calculated positions (C—H = 0.93–0.97 Å) and treated as riding atoms, with Uiso(H) = 1.2 or 1.5Ueq(C).

Computing details top

Data collection: SMART (Bruker, 2001); cell refinement: SAINT (Bruker, 2001); data reduction: SAINT (Bruker, 2001); program(s) used to solve structure: SHELXTL (Sheldrick, 2008); program(s) used to refine structure: SHELXTL (Sheldrick, 2008); molecular graphics: DIAMOND (Brandenburg & Putz, 2004) and SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. The molecular structure of the title compound with the atom-labelling scheme. Displacement ellipsoids are drawn at the 30% probability level. H atoms are represented as small spheres of arbitrary radii.
10-Ethyl-3-(5-methyl-1,3,4-oxadiazol-2-yl)-10H-phenothiazine top
Crystal data top
C17H15N3OSZ = 2
Mr = 309.38F(000) = 324
Triclinic, P1Dx = 1.404 Mg m3
Hall symbol: -P 1Mo Kα radiation, λ = 0.71073 Å
a = 7.6752 (4) ÅCell parameters from 2708 reflections
b = 8.2913 (4) Åθ = 3.0–31.6°
c = 12.9469 (8) ŵ = 0.23 mm1
α = 84.870 (4)°T = 293 K
β = 82.569 (4)°Block, yellow
γ = 63.696 (3)°0.15 × 0.15 × 0.10 mm
V = 731.92 (7) Å3
Data collection top
Bruker SMART APEX
diffractometer
2554 independent reflections
Radiation source: fine-focus sealed tube2217 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.020
ϕ and ω scansθmax = 25.0°, θmin = 2.7°
Absorption correction: multi-scan
(SADABS; Sheldrick, 2004)
h = 99
Tmin = 0.968, Tmax = 0.979k = 99
5348 measured reflectionsl = 1512
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.039Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.107H-atom parameters constrained
S = 1.05 w = 1/[σ2(Fo2) + (0.0547P)2 + 0.2148P]
where P = (Fo2 + 2Fc2)/3
2554 reflections(Δ/σ)max < 0.001
201 parametersΔρmax = 0.33 e Å3
0 restraintsΔρmin = 0.28 e Å3
Crystal data top
C17H15N3OSγ = 63.696 (3)°
Mr = 309.38V = 731.92 (7) Å3
Triclinic, P1Z = 2
a = 7.6752 (4) ÅMo Kα radiation
b = 8.2913 (4) ŵ = 0.23 mm1
c = 12.9469 (8) ÅT = 293 K
α = 84.870 (4)°0.15 × 0.15 × 0.10 mm
β = 82.569 (4)°
Data collection top
Bruker SMART APEX
diffractometer
2554 independent reflections
Absorption correction: multi-scan
(SADABS; Sheldrick, 2004)
2217 reflections with I > 2σ(I)
Tmin = 0.968, Tmax = 0.979Rint = 0.020
5348 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0390 restraints
wR(F2) = 0.107H-atom parameters constrained
S = 1.05Δρmax = 0.33 e Å3
2554 reflectionsΔρmin = 0.28 e Å3
201 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
S10.37243 (8)0.17365 (6)0.11098 (4)0.05078 (19)
O10.39396 (19)0.69128 (15)0.27750 (9)0.0430 (3)
C120.2887 (2)0.3831 (2)0.04285 (13)0.0353 (4)
N10.0965 (2)0.54971 (18)0.19818 (11)0.0410 (4)
C100.3234 (3)0.5423 (2)0.11819 (13)0.0388 (4)
C60.0893 (3)0.3994 (2)0.25572 (13)0.0376 (4)
C70.1642 (2)0.5454 (2)0.09210 (13)0.0371 (4)
C10.2039 (3)0.2227 (2)0.22245 (13)0.0377 (4)
N20.5266 (2)0.3956 (2)0.27726 (12)0.0460 (4)
C130.4168 (3)0.5350 (2)0.22376 (13)0.0388 (4)
C110.3653 (3)0.3829 (2)0.05932 (13)0.0382 (4)
H110.44700.27360.08980.046*
C90.1961 (3)0.7029 (2)0.07199 (14)0.0452 (5)
H90.16330.81100.11030.054*
C50.0285 (3)0.4198 (2)0.34965 (14)0.0450 (4)
H50.10700.53510.37340.054*
C150.0098 (3)0.7238 (2)0.24919 (15)0.0454 (5)
H15A0.07830.79360.21890.054*
H15B0.03070.70160.32240.054*
N30.5841 (2)0.4600 (2)0.37384 (12)0.0477 (4)
C80.1174 (3)0.7040 (2)0.03038 (14)0.0453 (5)
H80.03070.81330.05920.054*
C20.1976 (3)0.0770 (2)0.28143 (15)0.0462 (5)
H20.27310.03880.25770.055*
C140.5034 (3)0.6320 (2)0.36985 (13)0.0424 (4)
C40.0320 (3)0.2730 (3)0.40882 (15)0.0498 (5)
H40.11090.29080.47160.060*
C160.2063 (3)0.8351 (3)0.24062 (18)0.0573 (6)
H16A0.23000.85370.16850.086*
H16B0.24880.94930.27130.086*
H16C0.27730.77280.27660.086*
C30.0812 (3)0.1007 (3)0.37469 (16)0.0521 (5)
H30.07900.00200.41400.063*
C170.5164 (4)0.7672 (3)0.44929 (15)0.0558 (5)
H17A0.59520.81840.42720.084*
H17B0.38780.86060.45780.084*
H17C0.57480.71020.51450.084*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
S10.0589 (3)0.0257 (3)0.0468 (3)0.0033 (2)0.0067 (2)0.00176 (18)
O10.0540 (8)0.0336 (6)0.0387 (7)0.0177 (6)0.0011 (6)0.0001 (5)
C120.0363 (9)0.0266 (8)0.0403 (9)0.0112 (7)0.0049 (7)0.0004 (7)
N10.0469 (9)0.0259 (7)0.0425 (8)0.0103 (6)0.0023 (7)0.0035 (6)
C100.0405 (10)0.0356 (9)0.0403 (9)0.0169 (8)0.0050 (8)0.0008 (7)
C60.0380 (9)0.0298 (9)0.0413 (9)0.0111 (7)0.0060 (7)0.0005 (7)
C70.0352 (9)0.0287 (8)0.0438 (9)0.0110 (7)0.0022 (7)0.0016 (7)
C10.0412 (10)0.0304 (9)0.0393 (9)0.0134 (7)0.0066 (7)0.0008 (7)
N20.0514 (10)0.0370 (8)0.0437 (8)0.0154 (7)0.0002 (7)0.0004 (7)
C130.0407 (10)0.0325 (9)0.0427 (9)0.0156 (8)0.0067 (8)0.0023 (7)
C110.0393 (10)0.0281 (8)0.0430 (9)0.0103 (7)0.0039 (8)0.0048 (7)
C90.0492 (11)0.0290 (9)0.0492 (10)0.0119 (8)0.0024 (9)0.0070 (8)
C50.0437 (10)0.0377 (10)0.0460 (10)0.0118 (8)0.0002 (8)0.0035 (8)
C150.0516 (11)0.0325 (9)0.0502 (10)0.0170 (8)0.0002 (9)0.0068 (8)
N30.0526 (10)0.0434 (9)0.0423 (8)0.0181 (8)0.0011 (7)0.0023 (7)
C80.0472 (11)0.0268 (9)0.0505 (11)0.0078 (8)0.0020 (9)0.0011 (7)
C20.0545 (12)0.0309 (9)0.0496 (10)0.0158 (8)0.0053 (9)0.0009 (8)
C140.0471 (11)0.0425 (10)0.0374 (9)0.0197 (8)0.0031 (8)0.0014 (7)
C40.0507 (12)0.0497 (11)0.0452 (10)0.0212 (10)0.0014 (9)0.0039 (9)
C160.0530 (12)0.0355 (10)0.0696 (13)0.0089 (9)0.0043 (10)0.0056 (9)
C30.0612 (13)0.0424 (10)0.0523 (11)0.0249 (10)0.0033 (10)0.0093 (9)
C170.0736 (15)0.0516 (12)0.0451 (11)0.0321 (11)0.0024 (10)0.0049 (9)
Geometric parameters (Å, º) top
S1—C11.7541 (17)C9—H90.9300
S1—C121.7583 (17)C5—C41.388 (3)
O1—C141.362 (2)C5—H50.9300
O1—C131.365 (2)C15—C161.512 (3)
C12—C111.376 (2)C15—H15A0.9700
C12—C71.409 (2)C15—H15B0.9700
N1—C71.402 (2)N3—C141.282 (2)
N1—C61.413 (2)C8—H80.9300
N1—C151.472 (2)C2—C31.379 (3)
C10—C91.387 (2)C2—H20.9300
C10—C111.392 (2)C14—C171.480 (2)
C10—C131.452 (2)C4—C31.380 (3)
C6—C51.394 (2)C4—H40.9300
C6—C11.407 (2)C16—H16A0.9600
C7—C81.402 (2)C16—H16B0.9600
C1—C21.387 (2)C16—H16C0.9600
N2—C131.287 (2)C3—H30.9300
N2—N31.411 (2)C17—H17A0.9600
C11—H110.9300C17—H17B0.9600
C9—C81.383 (2)C17—H17C0.9600
C1—S1—C12101.74 (8)N1—C15—H15A108.5
C14—O1—C13102.81 (13)C16—C15—H15A108.5
C11—C12—C7121.19 (15)N1—C15—H15B108.5
C11—C12—S1116.40 (12)C16—C15—H15B108.5
C7—C12—S1122.15 (13)H15A—C15—H15B107.5
C7—N1—C6123.14 (14)C14—N3—N2106.14 (14)
C7—N1—C15118.30 (14)C9—C8—C7122.01 (16)
C6—N1—C15118.23 (14)C9—C8—H8119.0
C9—C10—C11118.04 (16)C7—C8—H8119.0
C9—C10—C13122.68 (16)C3—C2—C1121.15 (17)
C11—C10—C13119.26 (15)C3—C2—H2119.4
C5—C6—C1117.04 (16)C1—C2—H2119.4
C5—C6—N1121.22 (15)N3—C14—O1112.57 (15)
C1—C6—N1121.73 (15)N3—C14—C17129.09 (17)
C8—C7—N1121.38 (15)O1—C14—C17118.33 (16)
C8—C7—C12116.46 (15)C3—C4—C5120.19 (17)
N1—C7—C12122.11 (15)C3—C4—H4119.9
C2—C1—C6120.68 (16)C5—C4—H4119.9
C2—C1—S1116.70 (13)C15—C16—H16A109.5
C6—C1—S1122.48 (13)C15—C16—H16B109.5
C13—N2—N3106.45 (14)H16A—C16—H16B109.5
N2—C13—O1112.02 (15)C15—C16—H16C109.5
N2—C13—C10128.50 (16)H16A—C16—H16C109.5
O1—C13—C10119.47 (15)H16B—C16—H16C109.5
C12—C11—C10121.51 (15)C2—C3—C4119.06 (17)
C12—C11—H11119.2C2—C3—H3120.5
C10—C11—H11119.2C4—C3—H3120.5
C8—C9—C10120.70 (16)C14—C17—H17A109.5
C8—C9—H9119.6C14—C17—H17B109.5
C10—C9—H9119.6H17A—C17—H17B109.5
C4—C5—C6121.87 (17)C14—C17—H17C109.5
C4—C5—H5119.1H17A—C17—H17C109.5
C6—C5—H5119.1H17B—C17—H17C109.5
N1—C15—C16114.91 (16)

Experimental details

Crystal data
Chemical formulaC17H15N3OS
Mr309.38
Crystal system, space groupTriclinic, P1
Temperature (K)293
a, b, c (Å)7.6752 (4), 8.2913 (4), 12.9469 (8)
α, β, γ (°)84.870 (4), 82.569 (4), 63.696 (3)
V3)731.92 (7)
Z2
Radiation typeMo Kα
µ (mm1)0.23
Crystal size (mm)0.15 × 0.15 × 0.10
Data collection
DiffractometerBruker SMART APEX
diffractometer
Absorption correctionMulti-scan
(SADABS; Sheldrick, 2004)
Tmin, Tmax0.968, 0.979
No. of measured, independent and
observed [I > 2σ(I)] reflections
5348, 2554, 2217
Rint0.020
(sin θ/λ)max1)0.595
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.039, 0.107, 1.05
No. of reflections2554
No. of parameters201
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.33, 0.28

Computer programs: SMART (Bruker, 2001), SAINT (Bruker, 2001), DIAMOND (Brandenburg & Putz, 2004) and SHELXTL (Sheldrick, 2008).

 

Acknowledgements

The authors thank the China Natural Science Foundation (grant No. 21120102036) and the National Basic Research Program of China (grant No. 2009CB220009) for financial support.

References

First citationBrandenburg, K. & Putz, H. (2004). DIAMOND. Crystal Impact GbR, Bonn, Germany.  Google Scholar
First citationBruker (2001). SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationChu, S. S. C. & Van der Helm, D. (1975). Acta Cryst. B31, 1179–1183.  CSD CrossRef CAS IUCr Journals Web of Science Google Scholar
First citationHagfeldt, A., Boschloo, G., Sun, L.-C., Kloo, L. & Pettersson, H. (2010). Chem. Rev. 110, 6595–6663.  Web of Science CrossRef CAS PubMed Google Scholar
First citationHdii, F., Reboul, J.-P., Barbe, J., Siri, D. & Pèpe, G. (1998). Acta Cryst. C54, 1151–1152.  Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
First citationKim, S. H., Kim, H. W., Sakong, C., Namgoong, J., Park, S. W., Ko, M. J., Lee, C. H., Lee, W. I. & Kim, J. P. (2011). Org. Lett. 13, 5784–5787.  Web of Science CrossRef CAS PubMed Google Scholar
First citationLi, D. M., Hu, R. T., Zhou, W., Sun, P. P., Kan, Y. H., Tian, Y. P., Wu, J. Y., Tao, X. T. & Jiang, M. H. (2009). Eur. J. Inorg. Chem. pp. 2664–2672.  Web of Science CSD CrossRef Google Scholar
First citationLi, D. M., Lv, L. F., Sun, P. P., Zhou, W., Wang, P., Wu, J. Y., Kan, Y. H., Zhou, H. P. & Tian, Y. P. (2009). Dyes Pigm. 83, 180–186.  Web of Science CrossRef CAS Google Scholar
First citationSheldrick, G. M. (2004). SADABS. University of Göttingen, Germany.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationYu, D.-H., Wang, J.-Q., Kong, L. & Liu, Z. (2011). Acta Cryst. E67, o3344.  Web of Science CSD CrossRef IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds