organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

(1E,2E)-1,2-Bis[1-(3-nitro­phen­yl)ethyl­­idene]hydrazine

aX-ray Crystallography Unit, School of Physics, Universiti Sains Malaysia, 11800 USM, Penang, Malaysia, and bCrystal Materials Research Unit, Department of Chemistry, Faculty of Science, Prince of Songkla University, Hat-Yai, Songkhla 90112, Thailand
*Correspondence e-mail: hkfun@usm.my

(Received 31 January 2012; accepted 3 February 2012; online 10 February 2012)

The asymmetric unit of the title compound, C16H14N4O4, contains one half-mol­ecule of (nitro­phen­yl)ethanimine and the complete mol­ecule is generated by a crystallographic inversion centre. The mol­ecule has an E conformation with respect to each C=N double bond. The central C=N—N=C plane is twisted from the benzene rings with a dihedral angle of 24.76 (11)°. In the crystal, C—H⋯O inter­actions link the molecules to form sheets that lie parallel to (10-4).

Related literature

For the biological acivity of hydrazones, see: Khanmohammadi et al. (2008[Khanmohammadi, H., Abnosi, M. H., Hosseinzadeh, A. & Erfantalab, M. (2008). Spectrochim. Acta A, 71, 1474-1480.]); Luboch et al. (2009[Luboch, E., Wagner-Wysiecka, E. & Rzymowski, T. (2009). Tetrahedron, 65, 10671-10678.]). For related structures, see: Chantrapromma et al. (2011[Chantrapromma, S., Jansrisewangwong, P., Chanawanno, K. & Fun, H.-K. (2011). Acta Cryst. E67, o2221-o2222.]); Fun, Jansrisewangwong et al. (2011[Fun, H.-K., Jansrisewangwong, P., Karalai, C. & Chantrapromma, S. (2011). Acta Cryst. E67, o3424.]); Fun, Nilwanna et al. (2011[Fun, H.-K., Nilwanna, B., Jansrisewangwong, P., Kobkeatthawin, T. & Chantrapromma, S. (2011). Acta Cryst. E67, o3202-o3203.]); Jansrisewangwong et al. (2010[Jansrisewangwong, P., Chantrapromma, S. & Fun, H.-K. (2010). Acta Cryst. E66, o2170.]); Nilwanna et al. (2011[Nilwanna, B., Chantrapromma, S., Jansrisewangwong, P. & Fun, H.-K. (2011). Acta Cryst. E67, o3084-o3085.]). For bond-length data, see: Allen et al. (1987[Allen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1-19.]).

[Scheme 1]

Experimental

Crystal data
  • C16H14N4O4

  • Mr = 326.31

  • Monoclinic, P 21 /c

  • a = 3.9296 (3) Å

  • b = 7.4448 (5) Å

  • c = 26.3979 (19) Å

  • β = 94.022 (1)°

  • V = 770.37 (10) Å3

  • Z = 2

  • Mo Kα radiation

  • μ = 0.10 mm−1

  • T = 296 K

  • 0.34 × 0.17 × 0.10 mm

Data collection
  • Bruker APEX DUO CCD area-detector diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 2009[Bruker (2009). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]) Tmin = 0.966, Tmax = 0.990

  • 15392 measured reflections

  • 2254 independent reflections

  • 1686 reflections with I > 2σ(I)

  • Rint = 0.028

Refinement
  • R[F2 > 2σ(F2)] = 0.047

  • wR(F2) = 0.146

  • S = 1.06

  • 2254 reflections

  • 110 parameters

  • H-atom parameters constrained

  • Δρmax = 0.21 e Å−3

  • Δρmin = −0.18 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
C3—H3A⋯O1i 0.93 2.57 3.239 (2) 129
Symmetry code: (i) [-x+2, y+{\script{1\over 2}}, -z+{\script{1\over 2}}].

Data collection: APEX2 (Bruker, 2009[Bruker (2009). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2009[Bruker (2009). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXTL; molecular graphics: SHELXTL; software used to prepare material for publication: SHELXTL and PLATON (Spek, 2009[Spek, A. L. (2009). Acta Cryst. D65, 148-155.]).

Supporting information


Comment top

Hydrazones have been intensively investigated mostly because of their potential applications as antibacterial and antifungal drugs (Khanmohammadi et al., 2008) and as fluorescent chemosensors for metal ions (Luboch et al., 2009). Owing to our medicinal chemistry research on hydrazones, we previously reported the synthesis and crystal structures of some hydrazone derivatives (Chantrapromma et al., 2011; Fun, Jansrisewangwong et al., 2011; Fun, Nilwanna et al., 2011; Jansrisewangwong et al., 2010; Nilwanna et al., 2011). The title compound was synthesized to study for antibacterial activity and fluorescence properties in order to get more detail on the structural activity relationship through comparing with other closely related compounds.

The asymmetric unit of (I) (Fig. 1), contains one half-molecule of (nitrophenyl)ethanimine and the complete molecule is generated by a crystallographic inversion centre (-x,-y + 1,-z). The molecule is in an E configuration with respect to C7N1 double bond [1.2803 (17) Å] with the torsion angle N1A—N1—C7—C1 = 179.92 (10)°. The methyl groups are twisted from the planes of benzene (C1–C6 and C1A–C6A) rings and their orientations can be indicated by the torsion angles (C1—C6—C7—C8 and C1A—C6A—C7A—C8A) = 24.91 (19)°. The bond length are within the normal range (Allen et al., 1987) and are comparable with the related structures (Chantrapromma et al., 2011; Fun, Jansrisewangwong et al., 2011; Fun, Nilwanna et al., 2011; Jansrisewangwong et al., 2010; Nilwanna et al., 2011). In the crystal structure (Fig. 2), the C3—H3A···O1 interaction links the molecules into two-dimensional layers parallel to the (1 0 4) plane.

Related literature top

For the biological acivity of hydrazones, see: Khanmohammadi et al. (2008); Luboch et al. (2009). For related structures, see: Chantrapromma et al. (2011); Fun, Jansrisewangwong et al. (2011); Fun, Nilwanna et al. (2011); Jansrisewangwong et al. (2010); Nilwanna et al. (2011). For bond-length data, see: Allen et al. (1987).

Experimental top

The title compound was synthesized by mixing a solution (1:2 molar ratio) of hydrazine hydrate (0.10 ml, 2 mmol) and 3-nitroacetophenone (0.66 g, 4 mmol) in ethanol (20 ml). The resulting solution was refluxed for 4 h, yielding the yellow crystalline solid. The resultant solid was filtered off and washed with methanol. Yellow block-shaped single crystals of the title compound suitable for X-ray structure determination were recrystalized from acetone by slow evaporation of the solvent at room temperature over several days (m.p. 469–471 K).

Refinement top

All the H atoms were positioned geometrically and refined using a riding model with C—H = 0.93 and 0.96 Å. The Uiso values were constrained to be 1.5Ueq of the carrier atom for methyl H atoms and 1.2Ueq for the remaining H atoms. A rotating group model was used for the methyl groups.

Computing details top

Data collection: APEX2 (Bruker, 2009); cell refinement: SAINT (Bruker, 2009); data reduction: SAINT (Bruker, 2009); program(s) used to solve structure: SHELXTL (Sheldrick, 2008); program(s) used to refine structure: SHELXTL (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008) and PLATON (Spek, 2009).

Figures top
[Figure 1] Fig. 1. The structure of the title compound, showing 50% probability displacement ellipsoids. H atoms are shown as spheres of arbitrary radius.
[Figure 2] Fig. 2. The crystal packing, viewed along the b-axis, showing the molecules linked into two-dimensional layers parallel to the (104) plane. H atoms that not involved in hydrogen bonding (dashed lines) are omitted for clarity.
(1E,2E)-1,2-Bis[1-(3-nitrophenyl)ethylidene]hydrazine top
Crystal data top
C16H14N4O4F(000) = 340
Mr = 326.31Dx = 1.407 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ybcCell parameters from 4585 reflections
a = 3.9296 (3) Åθ = 2.8–28.3°
b = 7.4448 (5) ŵ = 0.10 mm1
c = 26.3979 (19) ÅT = 296 K
β = 94.022 (1)°Block, yellow
V = 770.37 (10) Å30.34 × 0.17 × 0.10 mm
Z = 2
Data collection top
Bruker APEX DUO CCD area-detector
diffractometer
2254 independent reflections
Radiation source: fine-focus sealed tube1686 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.028
ϕ and ω scansθmax = 30.1°, θmin = 1.6°
Absorption correction: multi-scan
(SADABS; Bruker, 2009)
h = 55
Tmin = 0.966, Tmax = 0.990k = 1010
15392 measured reflectionsl = 3737
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.047Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.146H-atom parameters constrained
S = 1.06 w = 1/[σ2(Fo2) + (0.069P)2 + 0.1466P]
where P = (Fo2 + 2Fc2)/3
2254 reflections(Δ/σ)max < 0.001
110 parametersΔρmax = 0.21 e Å3
0 restraintsΔρmin = 0.18 e Å3
Crystal data top
C16H14N4O4V = 770.37 (10) Å3
Mr = 326.31Z = 2
Monoclinic, P21/cMo Kα radiation
a = 3.9296 (3) ŵ = 0.10 mm1
b = 7.4448 (5) ÅT = 296 K
c = 26.3979 (19) Å0.34 × 0.17 × 0.10 mm
β = 94.022 (1)°
Data collection top
Bruker APEX DUO CCD area-detector
diffractometer
2254 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 2009)
1686 reflections with I > 2σ(I)
Tmin = 0.966, Tmax = 0.990Rint = 0.028
15392 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0470 restraints
wR(F2) = 0.146H-atom parameters constrained
S = 1.06Δρmax = 0.21 e Å3
2254 reflectionsΔρmin = 0.18 e Å3
110 parameters
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > 2sigma(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
O10.9642 (5)0.1248 (2)0.20045 (5)0.1005 (6)
O20.8102 (4)0.06399 (18)0.12349 (5)0.0867 (5)
N10.0796 (3)0.47453 (16)0.02358 (4)0.0461 (3)
N20.8220 (3)0.16404 (18)0.15972 (5)0.0572 (3)
C10.3995 (4)0.6788 (2)0.14058 (5)0.0507 (3)
H1A0.31170.79420.13620.061*
C20.5585 (4)0.6293 (2)0.18705 (6)0.0583 (4)
H2A0.57260.71130.21370.070*
C30.6956 (4)0.4607 (2)0.19421 (5)0.0525 (4)
H3A0.80390.42720.22520.063*
C40.6669 (3)0.34261 (18)0.15379 (5)0.0429 (3)
C50.5072 (3)0.38640 (17)0.10740 (4)0.0400 (3)
H5A0.49140.30290.08110.048*
C60.3697 (3)0.55758 (17)0.10032 (4)0.0390 (3)
C70.1991 (3)0.60690 (18)0.05020 (5)0.0399 (3)
C80.1829 (5)0.7991 (2)0.03461 (6)0.0643 (4)
H8A0.14100.80680.00160.096*
H8B0.39560.85670.04470.096*
H8C0.00160.85780.05070.096*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
O10.1420 (14)0.0814 (10)0.0708 (9)0.0246 (9)0.0438 (9)0.0216 (7)
O20.1242 (12)0.0551 (7)0.0763 (9)0.0281 (7)0.0242 (8)0.0045 (6)
N10.0550 (6)0.0460 (6)0.0357 (5)0.0002 (5)0.0080 (4)0.0071 (4)
N20.0638 (8)0.0518 (7)0.0535 (7)0.0030 (6)0.0133 (6)0.0126 (6)
C10.0561 (8)0.0465 (7)0.0488 (8)0.0046 (6)0.0020 (6)0.0061 (6)
C20.0696 (10)0.0617 (9)0.0424 (7)0.0022 (7)0.0053 (6)0.0130 (6)
C30.0576 (8)0.0632 (9)0.0350 (6)0.0071 (7)0.0088 (5)0.0015 (6)
C40.0440 (6)0.0450 (7)0.0388 (6)0.0030 (5)0.0044 (5)0.0058 (5)
C50.0430 (6)0.0426 (7)0.0338 (6)0.0013 (5)0.0024 (4)0.0006 (5)
C60.0383 (6)0.0425 (6)0.0357 (6)0.0002 (5)0.0007 (4)0.0015 (5)
C70.0391 (6)0.0426 (7)0.0376 (6)0.0045 (5)0.0003 (4)0.0042 (5)
C80.0847 (11)0.0450 (8)0.0600 (9)0.0046 (8)0.0171 (8)0.0064 (7)
Geometric parameters (Å, º) top
O1—N21.2121 (16)C3—C41.3808 (19)
O2—N21.2105 (19)C3—H3A0.9300
N1—C71.2803 (17)C4—C51.3756 (17)
N1—N1i1.406 (2)C5—C61.3916 (18)
N2—C41.4663 (19)C5—H5A0.9300
C1—C21.387 (2)C6—C71.4867 (17)
C1—C61.3930 (19)C7—C81.489 (2)
C1—H1A0.9300C8—H8A0.9600
C2—C31.374 (2)C8—H8B0.9600
C2—H2A0.9300C8—H8C0.9600
C7—N1—N1i113.69 (14)C4—C5—C6119.02 (12)
O2—N2—O1122.84 (15)C4—C5—H5A120.5
O2—N2—C4118.75 (12)C6—C5—H5A120.5
O1—N2—C4118.38 (14)C5—C6—C1118.67 (11)
C2—C1—C6120.76 (14)C5—C6—C7119.49 (11)
C2—C1—H1A119.6C1—C6—C7121.84 (12)
C6—C1—H1A119.6N1—C7—C6115.05 (11)
C3—C2—C1120.81 (14)N1—C7—C8125.53 (12)
C3—C2—H2A119.6C6—C7—C8119.41 (12)
C1—C2—H2A119.6C7—C8—H8A109.5
C2—C3—C4117.74 (12)C7—C8—H8B109.5
C2—C3—H3A121.1H8A—C8—H8B109.5
C4—C3—H3A121.1C7—C8—H8C109.5
C5—C4—C3122.99 (13)H8A—C8—H8C109.5
C5—C4—N2118.04 (12)H8B—C8—H8C109.5
C3—C4—N2118.94 (12)
C6—C1—C2—C31.1 (2)C4—C5—C6—C10.12 (19)
C1—C2—C3—C40.5 (2)C4—C5—C6—C7179.49 (11)
C2—C3—C4—C50.3 (2)C2—C1—C6—C50.9 (2)
C2—C3—C4—N2177.71 (14)C2—C1—C6—C7179.72 (13)
O2—N2—C4—C51.6 (2)N1i—N1—C7—C6179.90 (13)
O1—N2—C4—C5179.73 (15)N1i—N1—C7—C80.7 (2)
O2—N2—C4—C3176.58 (16)C5—C6—C7—N124.84 (17)
O1—N2—C4—C31.6 (2)C1—C6—C7—N1155.80 (13)
C3—C4—C5—C60.5 (2)C5—C6—C7—C8154.43 (14)
N2—C4—C5—C6177.55 (11)C1—C6—C7—C824.9 (2)
Symmetry code: (i) x, y+1, z.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C3—H3A···O1ii0.932.573.239 (2)129
Symmetry code: (ii) x+2, y+1/2, z+1/2.

Experimental details

Crystal data
Chemical formulaC16H14N4O4
Mr326.31
Crystal system, space groupMonoclinic, P21/c
Temperature (K)296
a, b, c (Å)3.9296 (3), 7.4448 (5), 26.3979 (19)
β (°) 94.022 (1)
V3)770.37 (10)
Z2
Radiation typeMo Kα
µ (mm1)0.10
Crystal size (mm)0.34 × 0.17 × 0.10
Data collection
DiffractometerBruker APEX DUO CCD area-detector
diffractometer
Absorption correctionMulti-scan
(SADABS; Bruker, 2009)
Tmin, Tmax0.966, 0.990
No. of measured, independent and
observed [I > 2σ(I)] reflections
15392, 2254, 1686
Rint0.028
(sin θ/λ)max1)0.705
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.047, 0.146, 1.06
No. of reflections2254
No. of parameters110
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.21, 0.18

Computer programs: APEX2 (Bruker, 2009), SAINT (Bruker, 2009), SHELXTL (Sheldrick, 2008) and PLATON (Spek, 2009).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C3—H3A···O1i0.93002.57003.239 (2)129.00
Symmetry code: (i) x+2, y+1/2, z+1/2.
 

Footnotes

Thomson Reuters ResearcherID: A-3561-2009.

§Thomson Reuters ResearcherID: A-5085-2009. Additional correspondence author e-mail: suchada.c@psu.ac.th.

Acknowledgements

HKF, IAR and SIJA thank the Malaysian Government and Universiti Sains Malaysia for Research University grants (Nos. 1001/PFIZIK/811160 and 1001/PFIZIK/811151). PJ and SC thank the Prince of Songkla University for financial support through the Crystal Materials Research Unit.

References

First citationAllen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1–19.  CrossRef Web of Science Google Scholar
First citationBruker (2009). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationChantrapromma, S., Jansrisewangwong, P., Chanawanno, K. & Fun, H.-K. (2011). Acta Cryst. E67, o2221–o2222.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationFun, H.-K., Jansrisewangwong, P., Karalai, C. & Chantrapromma, S. (2011). Acta Cryst. E67, o3424.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationFun, H.-K., Nilwanna, B., Jansrisewangwong, P., Kobkeatthawin, T. & Chantrapromma, S. (2011). Acta Cryst. E67, o3202–o3203.  Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
First citationJansrisewangwong, P., Chantrapromma, S. & Fun, H.-K. (2010). Acta Cryst. E66, o2170.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationKhanmohammadi, H., Abnosi, M. H., Hosseinzadeh, A. & Erfantalab, M. (2008). Spectrochim. Acta A, 71, 1474–1480.  CrossRef Google Scholar
First citationLuboch, E., Wagner-Wysiecka, E. & Rzymowski, T. (2009). Tetrahedron, 65, 10671–10678.  Web of Science CrossRef CAS Google Scholar
First citationNilwanna, B., Chantrapromma, S., Jansrisewangwong, P. & Fun, H.-K. (2011). Acta Cryst. E67, o3084–o3085.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSpek, A. L. (2009). Acta Cryst. D65, 148–155.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds