organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

N-Phenyl-2-(propan-2-yl­­idene)­hydrazine­carboxamide

aDepartment of Pharmaceutical Chemistry, College of Pharmacy, King Saud University, Riyadh 11451, Saudi Arabia, bMedicinal and Pharmaceutical Chemistry Department, Pharmaceutical and Drug Industries Research Division, National Research Centre, 12622, Dokki, Giza, Egypt, and cX-ray Crystallography Unit, School of Physics, Universiti Sains Malaysia, 11800 USM, Penang, Malaysia
*Correspondence e-mail: hkfun@usm.my

(Received 2 February 2012; accepted 4 February 2012; online 10 February 2012)

In the title compound, C10H13N3O, the hydrazinecarboxamide N—N—C(=O)—N unit is nearly planar [maximum deviation = 0.018 (2) Å] and is inclined at a dihedral angle of 8.45 (10)° with respect to the plane of the phenyl ring. The mol­ecular structure is stabilized by an intra­molecular C—H⋯O hydrogen bond which generates an S(6) ring motif. In the crystal, mol­ecules are linked into an inversion dimer by pairs of N—H⋯O and C—H⋯O hydrogen bonds.

Related literature

For general background to and the pharmacological activities of the title compound, see: Sander & Shorvon (1987[Sander, J. W. & Shorvon, S. D. (1987). J. Neurol. Neurosurg. Psychiatry, 50, 829-839.]); Dimmock et al. (1993[Dimmock, J. R., Sidhu, K. K., Thayer, R. S., Mack, P., Dutty, M. J., Reid, R. S. & Quail, J. W. (1993). J. Med. Chem. 36, 2243-2252.]). For the preparation of the starting material of the title compound, see: Aboul-Enein et al. (2012[Aboul-Enein, M. N., El-Azzouny, A. A., Attia, M. I., Maklad, Y. A., Amin, K. M., Abdel-Rehim, M. & El-Behairy, M. F. (2012). Eur. J. Med. Chem. 47, 360-369.]). For standard bond-length data, see: Allen et al. (1987[Allen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1-19.]). For hydrogen-bond motifs, see: Bernstein et al. (1995[Bernstein, J., Davis, R. E., Shimoni, L. & Chamg, N.-L. (1995). Angew. Chem. Int. Ed. Engl. 34, 1555-1573.]). For a related compound, see: Thirumurugan et al. (2006[Thirumurugan, R., Sriram, D., Saxena, A., Stables, J. & Yogeeswari, P. (2006). Bioorg. Med. Chem. 14, 3106-3112.]).

[Scheme 1]

Experimental

Crystal data
  • C10H13N3O

  • Mr = 191.23

  • Monoclinic, P 21 /c

  • a = 6.2225 (3) Å

  • b = 15.3429 (7) Å

  • c = 11.8897 (5) Å

  • β = 112.283 (4)°

  • V = 1050.35 (8) Å3

  • Z = 4

  • Cu Kα radiation

  • μ = 0.66 mm−1

  • T = 296 K

  • 0.50 × 0.11 × 0.08 mm

Data collection
  • Bruker SMART APEXII CCD area-detector diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 2009[Bruker (2009). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]) Tmin = 0.438, Tmax = 0.949

  • 7990 measured reflections

  • 1657 independent reflections

  • 938 reflections with I > 2σ(I)

  • Rint = 0.135

Refinement
  • R[F2 > 2σ(F2)] = 0.048

  • wR(F2) = 0.142

  • S = 0.95

  • 1657 reflections

  • 130 parameters

  • H-atom parameters constrained

  • Δρmax = 0.18 e Å−3

  • Δρmin = −0.13 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
N2—H2⋯O1i 0.87 2.04 2.892 (3) 168
C1—H1A⋯O1 0.93 2.29 2.879 (3) 120
C9—H9A⋯O1i 0.96 2.50 3.366 (3) 149
Symmetry code: (i) -x+2, -y, -z+2.

Data collection: APEX2 (Bruker, 2009[Bruker (2009). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2009[Bruker (2009). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXTL; molecular graphics: SHELXTL; software used to prepare material for publication: SHELXTL and PLATON (Spek, 2009[Spek, A. L. (2009). Acta Cryst. D65, 148-155.]).

Supporting information


Comment top

Epilepsy is one of the most widespread pathologies of the human brain, affecting approximately 1% of world population. Nevertheless, in the case of single drug treatment, the number of non-responding patients is as high as 30% and in chronic medication with currently available antiepileptic drugs (AEDs) may result in severe side-effects and undesired drug interactions (Sander & Shorvon, 1987). That is why, in recent years, intensive research has been carried out aiming at the development of new therapeutic strategies for epilepsy. Arylsemicarbazones have been documented to display significant anticonvulsant activity through the work of Dimmock and his colleagues (Dimmock et al., 1993). Arylsemicarbazones are structurally dissimilar from many common monocyclic anticonvulsants which incorporate the dicarboxamide functionality, such as hydantoins and succinimides, which may contribute to toxic side effects. In general, semicarbazones have rapid onsets of action and one of the ways in which these compounds exerted their anticonvulsant activity is likely to be their interaction with the chloride channels.

In the title molecule, Fig. 1, the hydrazinecarboxamide moiety (N1–N3/O1/C7) is nearly planar with a maximum deviation of 0.018 (2) Å at atom N1, and is inclined at an angle of 8.45 (10)° with the phenyl ring (C1–C6). Bond lengths (Allen et al., 1987) and angles are within normal ranges and are comparable to a related structure (Thirumurugan et al., 2006). The molecular structure is stabilized by an intramolecular C1—H1A···O1 hydrogen bond (Table 1), which generates an S(6) ring motifs (Bernstein et al., 1995). In the crystal (Fig. 2), molecules are linked into an inversion dimer by pairs of intermolecular N2—H2···O1 and C9—H9A···O1 hydrogen bonds (Table 1).

Related literature top

For general background to and the pharmacological activities of the title compound, see: Sander & Shorvon (1987); Dimmock et al. (1993). For the preparation of the title compound, see: Aboul-Enein et al. (2012). For standard bond-length data, see: Allen et al. (1987). For hydrogen-bond motifs, see: Bernstein et al. (1995). For a related compound, see: Thirumurugan et al. (2006).

Experimental top

A solution of N-phenylhydrazinecarboxamide (0.1 g, 0.66 mmol) (Aboul-Enein et al., 2012) and two drops of acetic acid in acetone (5 ml) was stirred at room temperature for 18 h. The solvent was evaporated under reduced pressure and the residue was recrystallized from ethanol to give the title compound. M.p. : 429-430 K.

Refinement top

N-bound H atoms were located in a difference Fourier map [N—H = 0.8488 and 0.8694 Å] and refined using a riding model, with Uiso(H) = 1.2 Ueq(N). The remaining hydrogen atoms were positioned geometrically [C—H = 0.93 or 0.96 Å] and were refined using a riding model, with Uiso(H) = 1.2 or 1.5 Ueq(C). A rotating group model was applied to the methyl groups.

Computing details top

Data collection: APEX2 (Bruker, 2009); cell refinement: SAINT (Bruker, 2009); data reduction: SAINT (Bruker, 2009); program(s) used to solve structure: SHELXTL (Sheldrick, 2008); program(s) used to refine structure: SHELXTL (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008) and PLATON (Spek, 2009).

Figures top
[Figure 1] Fig. 1. The molecular structure of the title compound showing 50% probability displacement ellipsoids for non-H atoms.
[Figure 2] Fig. 2. The crystal structure of the title compound, viewed along the a axis. H atoms not involved in hydrogen bonds (dashed lines) have been omitted for clarity.
N-Phenyl-2-(propan-2-ylidene)hydrazinecarboxamide top
Crystal data top
C10H13N3OF(000) = 408
Mr = 191.23Dx = 1.209 Mg m3
Monoclinic, P21/cCu Kα radiation, λ = 1.54178 Å
Hall symbol: -P 2ybcCell parameters from 751 reflections
a = 6.2225 (3) Åθ = 5.0–67.2°
b = 15.3429 (7) ŵ = 0.66 mm1
c = 11.8897 (5) ÅT = 296 K
β = 112.283 (4)°Needel, colourless
V = 1050.35 (8) Å30.50 × 0.11 × 0.08 mm
Z = 4
Data collection top
Bruker SMART APEXII CCD area-detector
diffractometer
1657 independent reflections
Radiation source: fine-focus sealed tube938 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.135
ϕ and ω scansθmax = 63.0°, θmin = 5.0°
Absorption correction: multi-scan
(SADABS; Bruker, 2009)
h = 56
Tmin = 0.438, Tmax = 0.949k = 1717
7990 measured reflectionsl = 1313
Refinement top
Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.048H-atom parameters constrained
wR(F2) = 0.142 w = 1/[σ2(Fo2) + (0.0676P)2]
where P = (Fo2 + 2Fc2)/3
S = 0.95(Δ/σ)max = 0.002
1657 reflectionsΔρmax = 0.18 e Å3
130 parametersΔρmin = 0.13 e Å3
0 restraintsExtinction correction: SHELXTL (Sheldrick, 2008), Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
Primary atom site location: structure-invariant direct methodsExtinction coefficient: 0.0093 (12)
Crystal data top
C10H13N3OV = 1050.35 (8) Å3
Mr = 191.23Z = 4
Monoclinic, P21/cCu Kα radiation
a = 6.2225 (3) ŵ = 0.66 mm1
b = 15.3429 (7) ÅT = 296 K
c = 11.8897 (5) Å0.50 × 0.11 × 0.08 mm
β = 112.283 (4)°
Data collection top
Bruker SMART APEXII CCD area-detector
diffractometer
1657 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 2009)
938 reflections with I > 2σ(I)
Tmin = 0.438, Tmax = 0.949Rint = 0.135
7990 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0480 restraints
wR(F2) = 0.142H-atom parameters constrained
S = 0.95Δρmax = 0.18 e Å3
1657 reflectionsΔρmin = 0.13 e Å3
130 parameters
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > 2sigma(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
O10.8269 (3)0.06411 (10)0.88218 (14)0.0795 (5)
N10.5175 (3)0.12926 (11)0.90676 (16)0.0686 (6)
H10.45850.12990.96050.082*
N20.7965 (3)0.05943 (12)1.06500 (16)0.0691 (6)
H20.91840.02601.09120.083*
N30.6658 (3)0.08137 (11)1.13237 (17)0.0671 (5)
C10.4742 (4)0.16254 (14)0.6968 (2)0.0740 (7)
H1A0.62020.14020.70870.089*
C20.3356 (5)0.19777 (16)0.5857 (2)0.0844 (7)
H2A0.39050.19890.52300.101*
C30.1202 (4)0.23094 (16)0.5654 (2)0.0855 (8)
H3A0.03010.25430.49000.103*
C40.0386 (4)0.22947 (15)0.6575 (2)0.0800 (7)
H4A0.10740.25210.64500.096*
C50.1727 (4)0.19460 (13)0.7679 (2)0.0715 (7)
H5A0.11540.19330.82960.086*
C60.3922 (4)0.16118 (12)0.78967 (19)0.0602 (6)
C70.7190 (4)0.08280 (14)0.9466 (2)0.0640 (6)
C80.7504 (4)0.06860 (13)1.2464 (2)0.0669 (6)
C90.9849 (4)0.03171 (16)1.3183 (2)0.0873 (8)
H9A1.01810.01481.27330.131*
H9B0.98710.00971.39430.131*
H9C1.10010.07651.33330.131*
C100.6029 (4)0.09321 (16)1.3149 (2)0.0883 (8)
H10A0.45830.11661.25960.132*
H10B0.68180.13641.37480.132*
H10C0.57350.04261.35430.132*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
O10.0855 (11)0.0935 (11)0.0727 (11)0.0206 (8)0.0449 (9)0.0105 (9)
N10.0766 (12)0.0733 (11)0.0652 (11)0.0133 (10)0.0374 (9)0.0071 (10)
N20.0719 (12)0.0784 (12)0.0636 (12)0.0100 (9)0.0331 (9)0.0026 (10)
N30.0725 (13)0.0741 (11)0.0650 (12)0.0015 (9)0.0375 (9)0.0009 (10)
C10.0778 (16)0.0797 (14)0.0764 (16)0.0085 (11)0.0427 (12)0.0103 (13)
C20.0960 (19)0.0941 (16)0.0774 (18)0.0090 (15)0.0490 (13)0.0165 (14)
C30.0818 (18)0.0957 (17)0.0816 (18)0.0115 (14)0.0338 (13)0.0227 (15)
C40.0774 (17)0.0878 (16)0.0817 (18)0.0106 (12)0.0379 (13)0.0125 (15)
C50.0796 (16)0.0728 (13)0.0733 (16)0.0049 (12)0.0415 (12)0.0028 (12)
C60.0688 (15)0.0544 (11)0.0658 (14)0.0002 (10)0.0351 (10)0.0015 (11)
C70.0725 (16)0.0627 (12)0.0636 (16)0.0014 (11)0.0333 (11)0.0006 (12)
C80.0744 (16)0.0662 (11)0.0662 (16)0.0066 (11)0.0335 (12)0.0052 (12)
C90.0894 (17)0.0979 (16)0.0719 (15)0.0069 (13)0.0275 (13)0.0016 (14)
C100.0961 (19)0.1029 (17)0.0802 (17)0.0004 (15)0.0496 (14)0.0007 (15)
Geometric parameters (Å, º) top
O1—C71.229 (3)C3—H3A0.9300
N1—C71.362 (3)C4—C51.369 (3)
N1—C61.401 (2)C4—H4A0.9300
N1—H10.8488C5—C61.388 (3)
N2—C71.352 (3)C5—H5A0.9300
N2—N31.382 (2)C8—C101.487 (3)
N2—H20.8694C8—C91.495 (3)
N3—C81.270 (2)C9—H9A0.9600
C1—C61.381 (3)C9—H9B0.9600
C1—C21.385 (3)C9—H9C0.9600
C1—H1A0.9300C10—H10A0.9600
C2—C31.367 (3)C10—H10B0.9600
C2—H2A0.9300C10—H10C0.9600
C3—C41.371 (3)
C7—N1—C6128.38 (18)C1—C6—C5118.7 (2)
C7—N1—H1110.4C1—C6—N1124.4 (2)
C6—N1—H1120.5C5—C6—N1116.88 (18)
C7—N2—N3118.88 (18)O1—C7—N2121.6 (2)
C7—N2—H2116.6O1—C7—N1123.6 (2)
N3—N2—H2124.1N2—C7—N1114.8 (2)
C8—N3—N2118.99 (18)N3—C8—C10117.0 (2)
C6—C1—C2118.9 (2)N3—C8—C9126.0 (2)
C6—C1—H1A120.6C10—C8—C9117.0 (2)
C2—C1—H1A120.6C8—C9—H9A109.5
C3—C2—C1121.9 (2)C8—C9—H9B109.5
C3—C2—H2A119.1H9A—C9—H9B109.5
C1—C2—H2A119.1C8—C9—H9C109.5
C2—C3—C4119.3 (2)H9A—C9—H9C109.5
C2—C3—H3A120.4H9B—C9—H9C109.5
C4—C3—H3A120.4C8—C10—H10A109.5
C5—C4—C3119.7 (2)C8—C10—H10B109.5
C5—C4—H4A120.1H10A—C10—H10B109.5
C3—C4—H4A120.1C8—C10—H10C109.5
C4—C5—C6121.5 (2)H10A—C10—H10C109.5
C4—C5—H5A119.3H10B—C10—H10C109.5
C6—C5—H5A119.3
C7—N2—N3—C8171.93 (18)C7—N1—C6—C111.0 (3)
C6—C1—C2—C30.1 (4)C7—N1—C6—C5169.99 (19)
C1—C2—C3—C40.0 (4)N3—N2—C7—O1179.16 (18)
C2—C3—C4—C50.3 (4)N3—N2—C7—N12.0 (3)
C3—C4—C5—C60.7 (3)C6—N1—C7—O12.5 (3)
C2—C1—C6—C50.5 (3)C6—N1—C7—N2178.70 (18)
C2—C1—C6—N1178.47 (19)N2—N3—C8—C10179.96 (18)
C4—C5—C6—C10.8 (3)N2—N3—C8—C90.5 (3)
C4—C5—C6—N1178.26 (18)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N2—H2···O1i0.872.042.892 (3)168
C1—H1A···O10.932.292.879 (3)120
C9—H9A···O1i0.962.503.366 (3)149
Symmetry code: (i) x+2, y, z+2.

Experimental details

Crystal data
Chemical formulaC10H13N3O
Mr191.23
Crystal system, space groupMonoclinic, P21/c
Temperature (K)296
a, b, c (Å)6.2225 (3), 15.3429 (7), 11.8897 (5)
β (°) 112.283 (4)
V3)1050.35 (8)
Z4
Radiation typeCu Kα
µ (mm1)0.66
Crystal size (mm)0.50 × 0.11 × 0.08
Data collection
DiffractometerBruker SMART APEXII CCD area-detector
diffractometer
Absorption correctionMulti-scan
(SADABS; Bruker, 2009)
Tmin, Tmax0.438, 0.949
No. of measured, independent and
observed [I > 2σ(I)] reflections
7990, 1657, 938
Rint0.135
(sin θ/λ)max1)0.578
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.048, 0.142, 0.95
No. of reflections1657
No. of parameters130
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.18, 0.13

Computer programs: APEX2 (Bruker, 2009), SAINT (Bruker, 2009), SHELXTL (Sheldrick, 2008) and PLATON (Spek, 2009).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N2—H2···O1i0.872.042.892 (3)168
C1—H1A···O10.932.292.879 (3)120
C9—H9A···O1i0.962.503.366 (3)149
Symmetry code: (i) x+2, y, z+2.
 

Footnotes

Thomson Reuters ResearcherID: A-5525-2009.

§Thomson Reuters ResearcherID: A-3561-2009.

Acknowledgements

The authors thank the Deanship of Scientific Research and the Research Center of the College of Pharmacy, King Saud University, for supporting this study. The authors also thank Universiti Sains Malaysia for a Research University Grant (No. 1001/PFIZIK/811160).

References

First citationAboul-Enein, M. N., El-Azzouny, A. A., Attia, M. I., Maklad, Y. A., Amin, K. M., Abdel-Rehim, M. & El-Behairy, M. F. (2012). Eur. J. Med. Chem. 47, 360–369.  Web of Science CAS PubMed Google Scholar
First citationAllen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1–19.  CrossRef Web of Science Google Scholar
First citationBernstein, J., Davis, R. E., Shimoni, L. & Chamg, N.-L. (1995). Angew. Chem. Int. Ed. Engl. 34, 1555–1573.  CrossRef CAS Web of Science Google Scholar
First citationBruker (2009). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationDimmock, J. R., Sidhu, K. K., Thayer, R. S., Mack, P., Dutty, M. J., Reid, R. S. & Quail, J. W. (1993). J. Med. Chem. 36, 2243–2252.  CSD CrossRef CAS PubMed Web of Science Google Scholar
First citationSander, J. W. & Shorvon, S. D. (1987). J. Neurol. Neurosurg. Psychiatry, 50, 829–839.  CrossRef CAS PubMed Web of Science Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSpek, A. L. (2009). Acta Cryst. D65, 148–155.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationThirumurugan, R., Sriram, D., Saxena, A., Stables, J. & Yogeeswari, P. (2006). Bioorg. Med. Chem. 14, 3106–3112.  Web of Science CrossRef PubMed CAS Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds