organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 68| Part 3| March 2012| Pages o830-o831

5-(4-Eth­­oxy­phen­yl)-3-(pyridin-2-yl)-4,5-di­hydro-1H-pyrazole-1-carbo­thio­amide

aCrystal Materials Research Unit, Department of Chemistry, Faculty of Science, Prince of Songkla University, Hat-Yai, Songkhla 90112, Thailand, and bX-ray Crystallography Unit, School of Physics, Universiti Sains Malaysia, 11800 USM, Penang, Malaysia
*Correspondence e-mail: suchada.c@psu.ac.th

(Received 5 February 2012; accepted 14 February 2012; online 24 February 2012)

In the title compound, C17H18N4OS, a pyrazoline derivative, the pyrazoline ring adopts an envelope conformation with the C atom bonded to the benzene ring as the flap atom. The dihedral angle between the pyridine and benzene rings is 80.50 (6)°. The eth­oxy­phenyl group is approximately planar, with an r.m.s. deviation of 0.0238 (1) Å for the nine non-H atoms. In the crystal, mol­ecules are linked by N—H⋯O and N—H⋯S hydrogen bonds into a tape along the b axis. Weak C—H⋯N and C—H⋯π inter­actions are also observed.

Related literature

For bond-length data, see: Allen et al. (1987[Allen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1-19.]). For related literature on ring conformations, see: Cremer & Pople (1975[Cremer, D. & Pople, J. A. (1975). J. Am. Chem. Soc. 97, 1354-1358.]). For related structures, see: Fun et al. (2012[Fun, H.-K., Suwunwong, T. & Chantrapromma, S. (2012). Acta Cryst. E68, o259-o260.]); Nonthason et al. (2011[Nonthason, P., Suwunwong, T., Chantrapromma, S. & Fun, H.-K. (2011). Acta Cryst. E67, o3501-o3502.]). For background to and applications of pyrazoline derivatives, see: Amir et al. (2008[Amir, M., Kumar, H. & Khan, S. A. (2008). Bioorg. Med. Chem. Lett. 18, 918-922.]); Gong et al. (2011[Gong, Z.-L., Zhao, B.-X., Liu, W.-Y. & Lv, H.-S. (2011). J. Photochem. Photobiol. A, 218, 6-10.]); Husain et al. (2008[Husain, K., Abid, M. & Azam, A. (2008). Eur. J. Med. Chem. 43, 393-403.]); Manna & Agrawal (2009[Manna, K. & Agrawal, Y. K. (2009). Bioorg. Med. Chem. Lett. 19, 2688-2692.]); Özdemir et al. (2007[Özdemir, Z., Kandilci, H. B., Gümüşel, B., Çaliş, Ü. & Bilgin, A. A. (2007). Eur. J. Med. Chem. 42, 373-379.]); Sarkar et al. (2010[Sarkar, A., Mandal, T. K., Rana, D. K., Dhar, S., Chall, S. & Bhattacharya, S. C. (2010). J. Lumin. 130, 2271-2276.]). For the stability of the temperature controller used in the data collection, see: Cosier & Glazer (1986[Cosier, J. & Glazer, A. M. (1986). J. Appl. Cryst. 19, 105-107.]).

[Scheme 1]

Experimental

Crystal data
  • C17H18N4OS

  • Mr = 326.42

  • Monoclinic, P 21 /c

  • a = 13.4622 (1) Å

  • b = 9.4175 (1) Å

  • c = 13.3002 (2) Å

  • β = 103.146 (1)°

  • V = 1642.01 (3) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.21 mm−1

  • T = 100 K

  • 0.34 × 0.22 × 0.20 mm

Data collection
  • Bruker APEXII CCD area-detector diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 2005[Bruker (2005). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]) Tmin = 0.934, Tmax = 0.960

  • 23465 measured reflections

  • 4784 independent reflections

  • 3970 reflections with I > 2σ(I)

  • Rint = 0.028

Refinement
  • R[F2 > 2σ(F2)] = 0.040

  • wR(F2) = 0.097

  • S = 1.03

  • 4784 reflections

  • 217 parameters

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.45 e Å−3

  • Δρmin = −0.26 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

Cg1 and Cg2 are the centroids of the C1–C5/N3 and C9–C14 rings, respectively.

D—H⋯A D—H H⋯A DA D—H⋯A
N4—H1N4⋯S1i 0.925 (19) 2.472 (19) 3.3803 (12) 167.3 (15)
N4—H2N4⋯O1ii 0.825 (18) 2.296 (18) 3.0604 (15) 154.2 (17)
C3—H3A⋯N3iii 0.95 2.51 3.4053 (18) 156
C2—H2ACg2iii 0.95 2.67 3.4401 (14) 138
C7—H7ACg1iv 0.99 2.69 3.4841 (13) 138
Symmetry codes: (i) -x+1, -y+2, -z+2; (ii) x, y+1, z; (iii) [-x+2, y+{\script{1\over 2}}, -z+{\script{3\over 2}}]; (iv) -x+2, -y+2, -z+2.

Data collection: APEX2 (Bruker, 2005[Bruker (2005). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2005[Bruker (2005). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXTL; molecular graphics: SHELXTL; software used to prepare material for publication: SHELXTL and PLATON (Spek, 2009[Spek, A. L. (2009). Acta Cryst. D65, 148-155.]).

Supporting information


Comment top

Pyrazoline derivatives are of interest in many fields, such as in medicinal chemistry due to their various bioactivities i.e. antidepressant and anticonvulsant (Özdemir et al., 2007), antimicrobial (Manna & Agrawal, 2009), antiamoebic (Husain et al., 2008), analgesic and anti-inflammatory (Amir et al., 2008) properties, as well as being used as fluorescent sensors (Gong et al., 2011) and fluorescent probes (Sarkar et al., 2010). The title pyrazoline derivative (I) was synthesized because we want to modify the structure of heteroaryl chalcone derivative in order to enhance its fluorescence property, by cyclization with thiosemicarbazide. (I) possess fluorescent property as expected which will be reported elsewhere with its closely related compound (Nonthason et al., 2011).

In the molecule of the title pyrazoline derivative (Fig. 1), C17H18N4OS, the pyrazoline ring adopts envelope conformation with the puckered C8 atom having the maximum deviation of 0.1408 (13) Å, and the puckering parameter Q = 0.2236 (13) Å and ϕ = 77.6 (3)° (Cremer & Pople, 1975). The dihedral angle between the pyridine and benzene ring is 80.50 (6)°. The conformation of the carbothioamide unit with respect to the pyrazoline ring can be indicated by the torsion angles N1–N2–C15–N4 = 1.90 (17)° and N1–N2–C15–S1 = -177.84 (8)°. The ethoxy group is co-planar with its attached benzene ring with the torsion angle C16–O1–C12–C11 = -0.39 (17)° and C12–O1–C16–C17 = 177.61 (11)°, and an r.m.s. deviation of 0.0238 (1) Å for the nine non H atoms (C9–C14/O1/C16/C17). Bond distances of (I) are in normal range (Allen et al., 1987) and comparable with the related structures (Fun et al., 2012; Nonthason et al., 2011)

In the crystal packing (Fig. 2), the molecules are linked by N—H···O, and N—H···S hydrogen bonds into a tape along the b axis. Weak C—H···N and C—H···π interactions are also present (Table 1).

Related literature top

For bond-length data, see: Allen et al. (1987). For related literature on ring conformations, see: Cremer & Pople (1975). For related structures, see: Fun et al. (2012); Nonthason et al. (2011). For background to and applications of pyrazoline derivatives, see: Amir et al. (2008); Gong et al. (2011); Husain et al. (2008); Manna & Agrawal (2009); Özdemir et al. (2007); Sarkar et al. (2010). For the stability of the temperature controller used in the data collection, see: Cosier & Glazer (1986).

Experimental top

The title compound was synthesized by cyclization reaction of E-3-(4-ethoxyphenyl)-1-(pyridin-2-yl)prop-2-en-1-one (0.25 g, 1 mmol) with excess thiosemicarbazide (0.18 g, 2 mmol) in a solution of KOH (0.11 g, 2 mmol) in ethanol (10 ml). The reaction mixture was vigorously stirred and refluxed for 5 h. The pale-yellow solid of the title compound obtained after cooling of the reaction was then filtered off under vacuum. Pale yellow block-shaped single crystals of the title compound suitable for X-ray structure determination were recrystallized from ethanol by slow evaporation of the solvent at room temperature after several days (m.p. 480–481 K).

Refinement top

Amide H atoms were located in a difference maps and refined isotropically. The remaining H atoms were positioned geometrically and allowed to ride on their parent atoms, with C—H = 0.95 Å for aromatic, 1.00 Å for CH, 0.99 Å for CH2 and 0.98 Å for CH3 atoms. The Uiso values were constrained to be 1.5Ueq of the carrier atom for methyl H atoms and 1.2Ueq for the remaining H atoms. A rotating group model was used for the methyl groups.

Computing details top

Data collection: APEX2 (Bruker, 2005); cell refinement: SAINT (Bruker, 2005); data reduction: SAINT (Bruker, 2005); program(s) used to solve structure: SHELXTL (Sheldrick, 2008); program(s) used to refine structure: SHELXTL (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008) and PLATON (Spek, 2009).

Figures top
[Figure 1] Fig. 1. The molecular structure of the title compound, showing 60% probability displacement ellipsoids and the atom-numbering scheme.
[Figure 2] Fig. 2. A packing diagram of the title compound viewed along the c axis. For the sake of clarity, only H atoms involved in the hydrogen bonds were shown. The hydrogen bonds were drawn as dashed lines.
5-(4-Ethoxyphenyl)-3-(pyridin-2-yl)-4,5-dihydro-1H-pyrazole-1- carbothioamide top
Crystal data top
C17H18N4OSF(000) = 688
Mr = 326.42Dx = 1.320 Mg m3
Monoclinic, P21/cMelting point = 480–481 K
Hall symbol: -P 2ybcMo Kα radiation, λ = 0.71073 Å
a = 13.4622 (1) ÅCell parameters from 4784 reflections
b = 9.4175 (1) Åθ = 1.6–30.0°
c = 13.3002 (2) ŵ = 0.21 mm1
β = 103.146 (1)°T = 100 K
V = 1642.01 (3) Å3Block, pale yellow
Z = 40.34 × 0.22 × 0.20 mm
Data collection top
Bruker APEXII CCD area-detector
diffractometer
4784 independent reflections
Radiation source: sealed tube3970 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.028
ϕ and ω scansθmax = 30.0°, θmin = 1.6°
Absorption correction: multi-scan
(SADABS; Bruker, 2005)
h = 1818
Tmin = 0.934, Tmax = 0.960k = 1311
23465 measured reflectionsl = 1813
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.040Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.097H atoms treated by a mixture of independent and constrained refinement
S = 1.03 w = 1/[σ2(Fo2) + (0.0417P)2 + 0.7316P]
where P = (Fo2 + 2Fc2)/3
4784 reflections(Δ/σ)max = 0.001
217 parametersΔρmax = 0.45 e Å3
0 restraintsΔρmin = 0.26 e Å3
Crystal data top
C17H18N4OSV = 1642.01 (3) Å3
Mr = 326.42Z = 4
Monoclinic, P21/cMo Kα radiation
a = 13.4622 (1) ŵ = 0.21 mm1
b = 9.4175 (1) ÅT = 100 K
c = 13.3002 (2) Å0.34 × 0.22 × 0.20 mm
β = 103.146 (1)°
Data collection top
Bruker APEXII CCD area-detector
diffractometer
4784 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 2005)
3970 reflections with I > 2σ(I)
Tmin = 0.934, Tmax = 0.960Rint = 0.028
23465 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0400 restraints
wR(F2) = 0.097H atoms treated by a mixture of independent and constrained refinement
S = 1.03Δρmax = 0.45 e Å3
4784 reflectionsΔρmin = 0.26 e Å3
217 parameters
Special details top

Experimental. The crystal was placed in the cold stream of an Oxford Cryosystems Cobra open-flow nitrogen cryostat (Cosier & Glazer, 1986) operating at 120.0 (1) K.

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > 2sigma(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
S10.59440 (2)0.80604 (3)1.06339 (3)0.01960 (9)
O10.68026 (7)0.21264 (9)0.77613 (7)0.01893 (19)
N10.79666 (8)0.91705 (11)0.90593 (8)0.0162 (2)
N20.74574 (8)0.84262 (11)0.96929 (8)0.0159 (2)
N31.05784 (8)0.87566 (12)0.89934 (8)0.0186 (2)
N40.61973 (9)1.00933 (12)0.93150 (9)0.0214 (2)
H1N40.5594 (14)1.0488 (19)0.9404 (13)0.033 (5)*
H2N40.6522 (13)1.0458 (19)0.8925 (14)0.032 (5)*
C11.12851 (10)0.92690 (15)0.85186 (10)0.0216 (3)
H1A1.19690.89500.87490.026*
C21.10730 (10)1.02328 (15)0.77156 (10)0.0228 (3)
H2A1.15961.05590.73990.027*
C31.00762 (10)1.07148 (15)0.73821 (10)0.0211 (3)
H3A0.99081.13810.68330.025*
C40.93292 (9)1.02150 (14)0.78583 (10)0.0187 (2)
H4A0.86431.05280.76440.022*
C50.96155 (9)0.92381 (13)0.86619 (9)0.0159 (2)
C60.88757 (9)0.86558 (13)0.92109 (9)0.0153 (2)
C70.90988 (9)0.75117 (13)1.00217 (9)0.0162 (2)
H7A0.95200.78751.06810.019*
H7B0.94450.66890.97890.019*
C80.80072 (9)0.71273 (13)1.01217 (9)0.0147 (2)
H8A0.79830.69951.08620.018*
C90.76061 (9)0.58201 (13)0.94880 (9)0.0142 (2)
C100.68335 (9)0.58700 (13)0.85977 (9)0.0167 (2)
H10A0.65050.67490.83880.020*
C110.65281 (9)0.46572 (13)0.80034 (10)0.0179 (2)
H11A0.59920.47100.74010.022*
C120.70147 (9)0.33741 (13)0.83010 (9)0.0159 (2)
C130.77894 (10)0.32974 (13)0.91996 (10)0.0184 (2)
H13A0.81180.24180.94090.022*
C140.80746 (9)0.45060 (13)0.97800 (9)0.0180 (2)
H14A0.86000.44471.03910.022*
C150.65479 (9)0.89184 (13)0.98368 (9)0.0159 (2)
C160.60157 (10)0.21507 (15)0.68243 (11)0.0246 (3)
H16A0.61810.28590.63370.029*
H16B0.53520.24060.69770.029*
C170.59640 (12)0.06844 (16)0.63618 (12)0.0306 (3)
H17A0.54250.06550.57280.046*
H17B0.58140.00080.68570.046*
H17C0.66200.04530.62000.046*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
S10.02002 (15)0.01758 (16)0.02402 (17)0.00250 (12)0.01091 (12)0.00250 (12)
O10.0221 (4)0.0132 (4)0.0194 (4)0.0009 (3)0.0005 (3)0.0023 (3)
N10.0165 (5)0.0138 (5)0.0194 (5)0.0013 (4)0.0066 (4)0.0001 (4)
N20.0172 (5)0.0121 (5)0.0197 (5)0.0011 (4)0.0070 (4)0.0016 (4)
N30.0160 (5)0.0194 (6)0.0208 (5)0.0001 (4)0.0048 (4)0.0000 (4)
N40.0191 (5)0.0181 (6)0.0301 (6)0.0044 (4)0.0119 (5)0.0068 (5)
C10.0161 (6)0.0240 (7)0.0258 (7)0.0004 (5)0.0072 (5)0.0014 (5)
C20.0230 (6)0.0245 (7)0.0236 (6)0.0037 (5)0.0114 (5)0.0013 (5)
C30.0248 (6)0.0207 (6)0.0180 (6)0.0025 (5)0.0054 (5)0.0018 (5)
C40.0179 (6)0.0186 (6)0.0193 (6)0.0007 (5)0.0032 (4)0.0007 (5)
C50.0165 (5)0.0145 (6)0.0171 (5)0.0017 (4)0.0046 (4)0.0023 (4)
C60.0158 (5)0.0136 (6)0.0165 (5)0.0012 (4)0.0036 (4)0.0016 (4)
C70.0158 (5)0.0145 (6)0.0179 (6)0.0005 (4)0.0032 (4)0.0004 (5)
C80.0159 (5)0.0125 (6)0.0162 (5)0.0012 (4)0.0044 (4)0.0006 (4)
C90.0143 (5)0.0130 (6)0.0163 (5)0.0002 (4)0.0055 (4)0.0007 (4)
C100.0152 (5)0.0139 (6)0.0206 (6)0.0023 (4)0.0033 (4)0.0012 (5)
C110.0158 (5)0.0168 (6)0.0193 (6)0.0013 (5)0.0001 (4)0.0005 (5)
C120.0165 (5)0.0141 (6)0.0181 (6)0.0021 (4)0.0059 (4)0.0010 (5)
C130.0209 (6)0.0129 (6)0.0204 (6)0.0020 (5)0.0026 (5)0.0025 (5)
C140.0207 (6)0.0161 (6)0.0154 (5)0.0008 (5)0.0005 (4)0.0022 (5)
C150.0161 (5)0.0129 (6)0.0188 (6)0.0004 (4)0.0043 (4)0.0032 (4)
C160.0219 (6)0.0227 (7)0.0254 (7)0.0008 (5)0.0027 (5)0.0057 (5)
C170.0315 (7)0.0262 (8)0.0311 (8)0.0015 (6)0.0010 (6)0.0125 (6)
Geometric parameters (Å, º) top
S1—C151.6822 (13)C7—C81.5483 (16)
O1—C121.3726 (15)C7—H7A0.9900
O1—C161.4406 (15)C7—H7B0.9900
N1—C61.2889 (15)C8—C91.5201 (17)
N1—N21.3906 (14)C8—H8A1.0000
N2—C151.3628 (15)C9—C101.3878 (16)
N2—C81.4756 (15)C9—C141.4032 (17)
N3—C11.3454 (16)C10—C111.3966 (17)
N3—C51.3492 (16)C10—H10A0.9500
N4—C151.3341 (17)C11—C121.3885 (17)
N4—H1N40.925 (18)C11—H11A0.9500
N4—H2N40.825 (18)C12—C131.3979 (17)
C1—C21.3810 (19)C13—C141.3799 (18)
C1—H1A0.9500C13—H13A0.9500
C2—C31.3902 (19)C14—H14A0.9500
C2—H2A0.9500C16—C171.5069 (19)
C3—C41.3871 (17)C16—H16A0.9900
C3—H3A0.9500C16—H16B0.9900
C4—C51.3964 (18)C17—H17A0.9800
C4—H4A0.9500C17—H17B0.9800
C5—C61.4685 (16)C17—H17C0.9800
C6—C71.5056 (17)
C12—O1—C16117.61 (10)N2—C8—H8A111.0
C6—N1—N2107.28 (10)C9—C8—H8A111.0
C15—N2—N1119.74 (10)C7—C8—H8A111.0
C15—N2—C8127.98 (10)C10—C9—C14117.94 (11)
N1—N2—C8112.27 (9)C10—C9—C8123.27 (11)
C1—N3—C5117.10 (11)C14—C9—C8118.69 (10)
C15—N4—H1N4118.9 (11)C9—C10—C11121.48 (11)
C15—N4—H2N4119.8 (12)C9—C10—H10A119.3
H1N4—N4—H2N4121.3 (16)C11—C10—H10A119.3
N3—C1—C2123.70 (12)C12—C11—C10119.43 (11)
N3—C1—H1A118.2C12—C11—H11A120.3
C2—C1—H1A118.2C10—C11—H11A120.3
C1—C2—C3118.44 (12)O1—C12—C11124.56 (11)
C1—C2—H2A120.8O1—C12—C13115.40 (11)
C3—C2—H2A120.8C11—C12—C13120.03 (11)
C4—C3—C2119.40 (12)C14—C13—C12119.62 (11)
C4—C3—H3A120.3C14—C13—H13A120.2
C2—C3—H3A120.3C12—C13—H13A120.2
C3—C4—C5118.07 (12)C13—C14—C9121.48 (11)
C3—C4—H4A121.0C13—C14—H14A119.3
C5—C4—H4A121.0C9—C14—H14A119.3
N3—C5—C4123.29 (11)N4—C15—N2115.59 (11)
N3—C5—C6114.95 (11)N4—C15—S1124.18 (9)
C4—C5—C6121.75 (11)N2—C15—S1120.24 (9)
N1—C6—C5120.60 (11)O1—C16—C17107.17 (11)
N1—C6—C7114.13 (10)O1—C16—H16A110.3
C5—C6—C7125.17 (10)C17—C16—H16A110.3
C6—C7—C8100.97 (9)O1—C16—H16B110.3
C6—C7—H7A111.6C17—C16—H16B110.3
C8—C7—H7A111.6H16A—C16—H16B108.5
C6—C7—H7B111.6C16—C17—H17A109.5
C8—C7—H7B111.6C16—C17—H17B109.5
H7A—C7—H7B109.4H17A—C17—H17B109.5
N2—C8—C9111.92 (10)C16—C17—H17C109.5
N2—C8—C7100.10 (9)H17A—C17—H17C109.5
C9—C8—C7111.48 (10)H17B—C17—H17C109.5
C6—N1—N2—C15167.71 (11)C6—C7—C8—C997.86 (11)
C6—N1—N2—C813.34 (13)N2—C8—C9—C101.69 (16)
C5—N3—C1—C20.8 (2)C7—C8—C9—C10109.50 (13)
N3—C1—C2—C30.6 (2)N2—C8—C9—C14178.00 (10)
C1—C2—C3—C40.2 (2)C7—C8—C9—C1466.81 (14)
C2—C3—C4—C50.03 (19)C14—C9—C10—C110.20 (18)
C1—N3—C5—C40.56 (19)C8—C9—C10—C11176.13 (11)
C1—N3—C5—C6179.50 (11)C9—C10—C11—C120.76 (18)
C3—C4—C5—N30.21 (19)C16—O1—C12—C110.39 (17)
C3—C4—C5—C6179.86 (11)C16—O1—C12—C13179.50 (11)
N2—N1—C6—C5179.01 (10)C10—C11—C12—O1177.82 (11)
N2—N1—C6—C72.46 (14)C10—C11—C12—C131.26 (18)
N3—C5—C6—N1170.77 (11)O1—C12—C13—C14178.37 (11)
C4—C5—C6—N19.29 (18)C11—C12—C13—C140.79 (18)
N3—C5—C6—C75.37 (17)C12—C13—C14—C90.19 (19)
C4—C5—C6—C7174.57 (12)C10—C9—C14—C130.68 (18)
N1—C6—C7—C815.72 (14)C8—C9—C14—C13175.83 (11)
C5—C6—C7—C8167.92 (11)N1—N2—C15—N41.90 (17)
C15—N2—C8—C982.65 (15)C8—N2—C15—N4176.86 (11)
N1—N2—C8—C996.19 (11)N1—N2—C15—S1177.84 (8)
C15—N2—C8—C7159.15 (12)C8—N2—C15—S13.40 (17)
N1—N2—C8—C722.01 (12)C12—O1—C16—C17177.61 (11)
C6—C7—C8—N220.67 (11)
Hydrogen-bond geometry (Å, º) top
Cg1 and Cg2 are the centroids of the C1–C5/N1 and C9–C14 rings, respectively.
D—H···AD—HH···AD···AD—H···A
N4—H1N4···S1i0.925 (19)2.472 (19)3.3803 (12)167.3 (15)
N4—H2N4···O1ii0.825 (18)2.296 (18)3.0604 (15)154.2 (17)
C3—H3A···N3iii0.952.513.4053 (18)156
C2—H2A···Cg2iii0.952.673.4401 (14)138
C7—H7A···Cg1iv0.992.693.4841 (13)138
Symmetry codes: (i) x+1, y+2, z+2; (ii) x, y+1, z; (iii) x+2, y+1/2, z+3/2; (iv) x+2, y+2, z+2.

Experimental details

Crystal data
Chemical formulaC17H18N4OS
Mr326.42
Crystal system, space groupMonoclinic, P21/c
Temperature (K)100
a, b, c (Å)13.4622 (1), 9.4175 (1), 13.3002 (2)
β (°) 103.146 (1)
V3)1642.01 (3)
Z4
Radiation typeMo Kα
µ (mm1)0.21
Crystal size (mm)0.34 × 0.22 × 0.20
Data collection
DiffractometerBruker APEXII CCD area-detector
diffractometer
Absorption correctionMulti-scan
(SADABS; Bruker, 2005)
Tmin, Tmax0.934, 0.960
No. of measured, independent and
observed [I > 2σ(I)] reflections
23465, 4784, 3970
Rint0.028
(sin θ/λ)max1)0.703
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.040, 0.097, 1.03
No. of reflections4784
No. of parameters217
H-atom treatmentH atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å3)0.45, 0.26

Computer programs: APEX2 (Bruker, 2005), SAINT (Bruker, 2005), SHELXTL (Sheldrick, 2008) and PLATON (Spek, 2009).

Hydrogen-bond geometry (Å, º) top
Cg1 and Cg2 are the centroids of the C1–C5/N1 and C9–C14 rings, respectively.
D—H···AD—HH···AD···AD—H···A
N4—H1N4···S1i0.925 (19)2.472 (19)3.3803 (12)167.3 (15)
N4—H2N4···O1ii0.825 (18)2.296 (18)3.0604 (15)154.2 (17)
C3—H3A···N3iii0.952.513.4053 (18)156
C2—H2A···Cg2iii0.952.673.4401 (14)138
C7—H7A···Cg1iv0.992.693.4841 (13)138
Symmetry codes: (i) x+1, y+2, z+2; (ii) x, y+1, z; (iii) x+2, y+1/2, z+3/2; (iv) x+2, y+2, z+2.
 

Footnotes

Thomson Reuters ResearcherID: A-5085-2009.

§Thomson Reuters ResearcherID: A-3561-2009. Additional correspondence author, e-mail: hkfun@usm.my.

Acknowledgements

The authors thank the Prince of Songkla Univeristy for financial support through the Crystal Materials Research Unit and the Universiti Sains Malaysia for the Research University grant No. 1001/PFIZIK/811160. PN thanks the Development and Promotion of Science and Technology Talents Project for a fellowship.

References

First citationAllen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1–19.  CrossRef Web of Science Google Scholar
First citationAmir, M., Kumar, H. & Khan, S. A. (2008). Bioorg. Med. Chem. Lett. 18, 918–922.  Web of Science CrossRef PubMed CAS Google Scholar
First citationBruker (2005). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationCosier, J. & Glazer, A. M. (1986). J. Appl. Cryst. 19, 105–107.  CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationCremer, D. & Pople, J. A. (1975). J. Am. Chem. Soc. 97, 1354–1358.  CrossRef CAS Web of Science Google Scholar
First citationFun, H.-K., Suwunwong, T. & Chantrapromma, S. (2012). Acta Cryst. E68, o259–o260.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationGong, Z.-L., Zhao, B.-X., Liu, W.-Y. & Lv, H.-S. (2011). J. Photochem. Photobiol. A, 218, 6–10.  Web of Science CrossRef CAS Google Scholar
First citationHusain, K., Abid, M. & Azam, A. (2008). Eur. J. Med. Chem. 43, 393–403.  Web of Science CrossRef PubMed CAS Google Scholar
First citationManna, K. & Agrawal, Y. K. (2009). Bioorg. Med. Chem. Lett. 19, 2688–2692.  Web of Science CrossRef PubMed CAS Google Scholar
First citationNonthason, P., Suwunwong, T., Chantrapromma, S. & Fun, H.-K. (2011). Acta Cryst. E67, o3501–o3502.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationÖzdemir, Z., Kandilci, H. B., Gümüşel, B., Çaliş, Ü. & Bilgin, A. A. (2007). Eur. J. Med. Chem. 42, 373–379.  Web of Science PubMed Google Scholar
First citationSarkar, A., Mandal, T. K., Rana, D. K., Dhar, S., Chall, S. & Bhattacharya, S. C. (2010). J. Lumin. 130, 2271–2276.  Web of Science CrossRef CAS Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSpek, A. L. (2009). Acta Cryst. D65, 148–155.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 68| Part 3| March 2012| Pages o830-o831
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds