organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 68| Part 3| March 2012| Pages o717-o718

3-Benzyl-6-methyl-2-sulfanyl­idene-2,3-di­hydroquinazolin-4(1H)-one

aDepartment of Pharmaceutical Chemistry, College of Pharmacy, King Saud University, Riyadh 11451, Saudi Arabia, bDrug Exploration and Development Chair, College of Pharmacy, King Saud University, Riyadh 11451, Saudi Arabia, cCollege of Pharmaceutical Sciences, Future University, Cairo 12311, Egypt, and dX-ray Crystallography Unit, School of Physics, Universiti Sains Malaysia, 11800 USM, Penang, Malaysia
*Correspondence e-mail: hkfun@usm.my

(Received 6 February 2012; accepted 10 February 2012; online 17 February 2012)

In the title compound, C16H14N2OS, the quinazoline ring system is essentially planar, with a maximum deviation of 0.029 (3) Å. The dihedral angle between the quinazoline and benzene rings is 88.4 (2)°. In the crystal, adjacent mol­ecules are connected via pairs of N—H⋯S and C—H⋯O hydrogen bonds, which generate R22(8) and R22(10) graph-set motifs, respectively, resulting in a supra­molecular chain along the a axis.

Related literature

For details and applications of quinazoline compounds, see: Roth & Fenner (2000[Roth, H. J. & Fenner, H. (2000). Arzneistoffe, 3rd ed., pp. 51-114. Stuttgart: Deutscher Apotheker Verlag.]); Jantova et al. (2004[Jantova, S., Stankovsky, S. & Spirkova, K. (2004). Biologia (Bratisl.), 59, 741-752.]); Harris & Thorarensen (2004[Harris, C. R. & Thorarensen, A. (2004). Curr. Med. Chem. 11, 2213-2243.]); Andries et al. (2005[Andries, K., Verhasselt, P., Guillemont, J., Gohlmann, H. W., Neefs, J. M., Winkler, H., Van Gestel, J., Timmerman, P., Zhu, M., Lee, E., Williams, P., de Chaffoy, D., Huitric, E., Hoffner, S., Cambau, E., Truffot-Pernot, C., Lounis, N. & Jarlier, V. A. (2005). Science, 307, 223-227.]); Al-Rashood et al. (2006[Al-Rashood, S. T., Aboldahab, I. A., Nagi, M. N., Abouzeid, L. A., Abdel-Aziz, A. A. M., Abdel-hamide, S. G., Youssef, K. M., Al-Obaid, A. M. & El-Subbagh, H. I. (2006). Bioorg. Med. Chem. 14, 8608-8621.]); Ghorab et al. (2007[Ghorab, M. M., Ragab, F. A., Noaman, E., Heiba, H. I. & El-Hossary, E. M. (2007). Arzneim. Forsch. Drug Res. 58, 35-41.]); Rádl et al. (2000[Rádl, S., Hezky, P., Proška, J. & Krejci, I. (2000). Arch. Pharm. (Weinheim Ger.), 333, 381-386.]); Klepser & Klepser (1997[Klepser, M. E. & Klepser, T. B. (1997). Drugs, 53, 40-73.]); Al-Omar et al. (2004[Al-Omar, M. A., Abdel Hamide, S. G., Al-Khamees, H. A. & El-Subbagh, H. I. (2004). Saudi Pharm. J. 12, 63-71.]); Al-Omary et al. (2010[Al-Omary, M. F., Abou-zeid, L. A., Nagi, M. N., Habib, E. E., Abdel-Aziz, A., El-Azab, A. S., Abdel-Hamide, S. G., Al-Omar, M. A., Al-Obaid, A. M. & El-Subbagh, H. I. (2010). Bioorg. Med. Chem. 18, 2849-2863.]). For hydrogen-bond motifs, see: Bernstein et al. (1995[Bernstein, J., Davis, R. E., Shimoni, L. & Chang, N.-L. (1995). Angew. Chem. Int. Ed. Engl. 34, 1555-1573.]). For bond-length data, see: Allen et al. (1987[Allen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1-S19.]).

[Scheme 1]

Experimental

Crystal data
  • C16H14N2OS

  • Mr = 282.35

  • Monoclinic, C 2/c

  • a = 24.2438 (18) Å

  • b = 5.1618 (5) Å

  • c = 24.4265 (17) Å

  • β = 111.532 (6)°

  • V = 2843.4 (4) Å3

  • Z = 8

  • Cu Kα radiation

  • μ = 1.99 mm−1

  • T = 296 K

  • 0.83 × 0.12 × 0.06 mm

Data collection
  • Bruker SMART APEXII CCD diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 2009[Bruker (2009). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]) Tmin = 0.289, Tmax = 0.890

  • 9528 measured reflections

  • 2592 independent reflections

  • 1421 reflections with I > 2σ(I)

  • Rint = 0.104

Refinement
  • R[F2 > 2σ(F2)] = 0.055

  • wR(F2) = 0.166

  • S = 0.93

  • 2592 reflections

  • 182 parameters

  • H-atom parameters constrained

  • Δρmax = 0.24 e Å−3

  • Δρmin = −0.21 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
N1—H1A⋯S1i 0.86 2.50 3.335 (3) 165
C4—H4A⋯O1ii 0.93 2.41 3.295 (4) 159
Symmetry codes: (i) [-x+{\script{1\over 2}}, -y+{\script{1\over 2}}, -z]; (ii) -x, -y+2, -z.

Data collection: APEX2 (Bruker, 2009[Bruker (2009). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2009[Bruker (2009). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXTL; molecular graphics: SHELXTL; software used to prepare material for publication: SHELXTL and PLATON (Spek, 2009[Spek, A. L. (2009). Acta Cryst. D65, 148-155.]).

Supporting information


Comment top

Quinazoline moiety is present in many classes of biologically-active compounds. A number of them have been clinically used as antifungal, antibacterial and antiprotozoic drugs (Roth & Fenner, 2000; Jantova et al., 2004; Harris & Thorarensen, 2004), as well as antituberculotic agents (Andries et al., 2005). Furthermore, they have drawn much attention due to their broad range of pharmacological properties which include antitumor (Al-Rashood et al., 2006), anticancer (Ghorab et al., 2007) and analgesic (Rádl et al., 2000) properties. Certain quinazoline analogs also showed remarkable activity against the opportunistic infections of Pneumocystis carinii and Toxoplasma gondii. Those microorganisms proved to be the priniciple cause of death in patients with immunocompromised diseases such as acquired immune deficiency syndrome (Klepser & Klepser, 1997). This work is a continuation of this program with the aim of obtaining an interesting series of quinazolines that contain the thioxo functional group which was identified as a possible pharmacophore of the antimicrobial activity (Al-Omar et al., 2004; Al-Omary et al., 2010).

The molecular structure of the title compound is shown in Fig. 1. The quinazoline (N1,N2/C1–C8) ring is essentially planar, with a maximum deviation of 0.029 (3) Å for atom C2. The dihedral angle between the quinazoline (N1,N2/C1–C8) and the benzene (C10–C15) rings is 88.4 (2)°. The bond lengths (Allen et al., 1987) and angles are within normal ranges. In the crystal, (Fig. 2), the adjacent molecules are connected via a pair of N—H···S and C—H···O (Table 1) hydrogen bonds, generating R22(8) and R22(10) graph-set motifs (Bernstein et al., 1995), respectively, resulting in a supramolecular [100] chain.

Related literature top

For details and applications of quinazoline compounds, see: Roth & Fenner (2000); Jantova et al. (2004); Harris & Thorarensen (2004); Andries et al. (2005); Al-Rashood et al. (2006); Ghorab et al. (2007); Rádl et al. (2000); Klepser & Klepser (1997); Al-Omar et al. (2004); Al-Omary et al. (2010). For hydrogen-bond motifs, see: Bernstein et al. (1995). For bond-length data, see: Allen et al. (1987).

Experimental top

A mixture of benzyl isothiocyanate (10 mmol) and 2-amino-5-methyl benzoic acid (10 mmol) in ethanol (30 ml) was heated under reflux in the presence of triethylamine (5 mmol) for 2 h. After cooling, the mixture was poured into ice/water. The resulting solid was filtered, washed with water and dried. Recrystallization from ethanol gave 3-benzyl-2,3-dihydro-6-methyl-2-thioxo-quinazoline-4(1H)-one as colorless crystals.

Refinement top

All H atoms were positioned geometrically (N—H = 0.86 Å and C—H = 0.93–0.97 Å) and were refined using a riding model, with Uiso(H) = 1.2 or 1.5Ueq(C). A rotating group model was applied to the methyl groups.

Computing details top

Data collection: APEX2 (Bruker, 2009); cell refinement: SAINT (Bruker, 2009); data reduction: SAINT (Bruker, 2009); program(s) used to solve structure: SHELXTL (Sheldrick, 2008); program(s) used to refine structure: SHELXTL (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008) and PLATON (Spek, 2009).

Figures top
[Figure 1] Fig. 1. The molecular structure of the title compound, showing 30% probability displacement ellipsoids.
[Figure 2] Fig. 2. The crystal packing view of the title compound along the b axis.
3-Benzyl-6-methyl-2-sulfanylidene-2,3-dihydroquinazolin-4(1H)-one top
Crystal data top
C16H14N2OSF(000) = 1184
Mr = 282.35Dx = 1.319 Mg m3
Monoclinic, C2/cCu Kα radiation, λ = 1.54178 Å
Hall symbol: -C 2ycCell parameters from 339 reflections
a = 24.2438 (18) Åθ = 3.9–53.5°
b = 5.1618 (5) ŵ = 1.99 mm1
c = 24.4265 (17) ÅT = 296 K
β = 111.532 (6)°Needle, colourless
V = 2843.4 (4) Å30.83 × 0.12 × 0.06 mm
Z = 8
Data collection top
Bruker SMART APEXII CCD
diffractometer
2592 independent reflections
Radiation source: fine-focus sealed tube1421 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.104
ϕ and ω scansθmax = 69.8°, θmin = 3.9°
Absorption correction: multi-scan
(SADABS; Bruker, 2009)
h = 2929
Tmin = 0.289, Tmax = 0.890k = 65
9528 measured reflectionsl = 2828
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.055Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.166H-atom parameters constrained
S = 0.93 w = 1/[σ2(Fo2) + (0.0875P)2]
where P = (Fo2 + 2Fc2)/3
2592 reflections(Δ/σ)max = 0.001
182 parametersΔρmax = 0.24 e Å3
0 restraintsΔρmin = 0.21 e Å3
Crystal data top
C16H14N2OSV = 2843.4 (4) Å3
Mr = 282.35Z = 8
Monoclinic, C2/cCu Kα radiation
a = 24.2438 (18) ŵ = 1.99 mm1
b = 5.1618 (5) ÅT = 296 K
c = 24.4265 (17) Å0.83 × 0.12 × 0.06 mm
β = 111.532 (6)°
Data collection top
Bruker SMART APEXII CCD
diffractometer
2592 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 2009)
1421 reflections with I > 2σ(I)
Tmin = 0.289, Tmax = 0.890Rint = 0.104
9528 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0550 restraints
wR(F2) = 0.166H-atom parameters constrained
S = 0.93Δρmax = 0.24 e Å3
2592 reflectionsΔρmin = 0.21 e Å3
182 parameters
Special details top

Geometry. All s.u.'s (except the s.u. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell s.u.'s are taken into account individually in the estimation of s.u.'s in distances, angles and torsion angles; correlations between s.u.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell s.u.'s is used for estimating s.u.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > 2σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R-factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
S10.22029 (4)0.1447 (2)0.07055 (4)0.0718 (3)
N10.17921 (10)0.4985 (6)0.01167 (11)0.0630 (7)
H1A0.20970.45900.01990.076*
N20.12318 (10)0.4401 (5)0.04598 (11)0.0574 (7)
O10.04534 (10)0.7057 (5)0.03541 (11)0.0747 (7)
C10.17206 (13)0.3706 (7)0.03308 (14)0.0594 (8)
C20.08423 (13)0.6424 (7)0.01808 (14)0.0600 (8)
C30.09395 (12)0.7664 (7)0.03127 (13)0.0585 (8)
C40.05611 (13)0.9575 (7)0.06444 (14)0.0630 (9)
H4A0.02431.01000.05440.076*
C50.06438 (15)1.0717 (7)0.11196 (15)0.0691 (9)
C60.11382 (16)0.9891 (8)0.12434 (16)0.0763 (10)
H6A0.12061.06380.15590.092*
C70.15210 (15)0.8048 (7)0.09221 (15)0.0715 (10)
H7A0.18480.75780.10130.086*
C80.14201 (13)0.6879 (7)0.04573 (14)0.0578 (8)
C90.10920 (14)0.2997 (7)0.09172 (15)0.0657 (9)
H9A0.12630.12760.09580.079*
H9B0.06650.27990.07880.079*
C100.13111 (14)0.4281 (7)0.15093 (14)0.0641 (9)
C110.1103 (2)0.3376 (10)0.1930 (2)0.0988 (15)
H11A0.08310.20220.18400.119*
C120.1298 (3)0.4483 (15)0.2483 (2)0.131 (2)
H12A0.11440.39020.27580.157*
C130.1710 (3)0.6401 (16)0.2634 (2)0.133 (2)
H13A0.18540.70570.30150.160*
C140.1912 (2)0.7364 (11)0.2216 (2)0.1082 (15)
H14A0.21790.87370.23060.130*
C150.17129 (17)0.6268 (8)0.16567 (16)0.0783 (11)
H15A0.18560.68980.13770.094*
C160.02217 (18)1.2711 (9)0.14931 (18)0.0893 (12)
H16B0.00641.31430.13210.134*
H16A0.00211.20270.18810.134*
H16C0.04381.42380.15160.134*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
S10.0640 (5)0.0875 (7)0.0707 (6)0.0172 (4)0.0327 (5)0.0084 (5)
N10.0558 (14)0.083 (2)0.0576 (17)0.0153 (13)0.0295 (14)0.0029 (15)
N20.0510 (13)0.0688 (18)0.0577 (16)0.0036 (11)0.0264 (13)0.0049 (13)
O10.0601 (12)0.0924 (19)0.0855 (17)0.0135 (11)0.0430 (13)0.0007 (13)
C10.0500 (16)0.076 (2)0.0554 (19)0.0024 (14)0.0231 (16)0.0121 (17)
C20.0498 (16)0.073 (2)0.059 (2)0.0022 (14)0.0228 (16)0.0124 (17)
C30.0472 (16)0.076 (2)0.051 (2)0.0010 (14)0.0169 (16)0.0104 (17)
C40.0543 (17)0.070 (2)0.066 (2)0.0069 (15)0.0225 (17)0.0068 (18)
C50.065 (2)0.074 (2)0.066 (2)0.0057 (16)0.0211 (18)0.0006 (19)
C60.077 (2)0.086 (3)0.072 (2)0.0089 (18)0.035 (2)0.008 (2)
C70.068 (2)0.090 (3)0.068 (2)0.0134 (17)0.0375 (19)0.009 (2)
C80.0472 (16)0.073 (2)0.0540 (19)0.0062 (13)0.0194 (15)0.0060 (16)
C90.0629 (19)0.065 (2)0.080 (2)0.0013 (14)0.0393 (19)0.0001 (18)
C100.0643 (18)0.074 (2)0.063 (2)0.0196 (16)0.0343 (18)0.0090 (18)
C110.115 (3)0.114 (4)0.090 (3)0.020 (3)0.065 (3)0.028 (3)
C120.150 (6)0.185 (7)0.080 (4)0.064 (5)0.069 (4)0.043 (4)
C130.131 (5)0.196 (7)0.068 (3)0.061 (4)0.031 (4)0.018 (4)
C140.108 (4)0.117 (4)0.092 (3)0.010 (3)0.027 (3)0.030 (3)
C150.082 (2)0.089 (3)0.066 (3)0.002 (2)0.029 (2)0.011 (2)
C160.082 (3)0.091 (3)0.092 (3)0.014 (2)0.028 (2)0.012 (2)
Geometric parameters (Å, º) top
S1—C11.667 (3)C7—H7A0.9300
N1—C11.342 (4)C9—C101.500 (5)
N1—C81.382 (4)C9—H9A0.9700
N1—H1A0.8600C9—H9B0.9700
N2—C11.381 (3)C10—C151.369 (5)
N2—C21.405 (4)C10—C111.381 (5)
N2—C91.472 (4)C11—C121.382 (7)
O1—C21.212 (3)C11—H11A0.9300
C2—C31.458 (4)C12—C131.357 (9)
C3—C41.388 (5)C12—H12A0.9300
C3—C81.396 (4)C13—C141.377 (8)
C4—C51.381 (5)C13—H13A0.9300
C4—H4A0.9300C14—C151.390 (6)
C5—C61.406 (5)C14—H14A0.9300
C5—C161.501 (5)C15—H15A0.9300
C6—C71.359 (5)C16—H16B0.9600
C6—H6A0.9300C16—H16A0.9600
C7—C81.385 (4)C16—H16C0.9600
C1—N1—C8126.0 (2)N2—C9—C10114.6 (3)
C1—N1—H1A117.0N2—C9—H9A108.6
C8—N1—H1A117.0C10—C9—H9A108.6
C1—N2—C2124.2 (3)N2—C9—H9B108.6
C1—N2—C9120.1 (3)C10—C9—H9B108.6
C2—N2—C9115.7 (2)H9A—C9—H9B107.6
N1—C1—N2115.9 (3)C15—C10—C11118.5 (4)
N1—C1—S1121.1 (2)C15—C10—C9123.4 (3)
N2—C1—S1123.0 (2)C11—C10—C9118.1 (4)
O1—C2—N2120.1 (3)C10—C11—C12120.0 (5)
O1—C2—C3123.6 (3)C10—C11—H11A120.0
N2—C2—C3116.3 (2)C12—C11—H11A120.0
C4—C3—C8119.5 (3)C13—C12—C11121.3 (5)
C4—C3—C2121.5 (3)C13—C12—H12A119.3
C8—C3—C2119.0 (3)C11—C12—H12A119.3
C5—C4—C3121.7 (3)C12—C13—C14119.3 (5)
C5—C4—H4A119.1C12—C13—H13A120.4
C3—C4—H4A119.1C14—C13—H13A120.4
C4—C5—C6116.7 (3)C13—C14—C15119.5 (6)
C4—C5—C16121.8 (3)C13—C14—H14A120.3
C6—C5—C16121.5 (3)C15—C14—H14A120.3
C7—C6—C5122.9 (3)C10—C15—C14121.3 (4)
C7—C6—H6A118.5C10—C15—H15A119.3
C5—C6—H6A118.5C14—C15—H15A119.3
C6—C7—C8119.3 (3)C5—C16—H16B109.5
C6—C7—H7A120.3C5—C16—H16A109.5
C8—C7—H7A120.3H16B—C16—H16A109.5
N1—C8—C7122.0 (3)C5—C16—H16C109.5
N1—C8—C3118.3 (3)H16B—C16—H16C109.5
C7—C8—C3119.7 (3)H16A—C16—H16C109.5
C8—N1—C1—N20.9 (5)C1—N1—C8—C7178.2 (3)
C8—N1—C1—S1179.7 (3)C1—N1—C8—C33.6 (5)
C2—N2—C1—N14.2 (5)C6—C7—C8—N1179.7 (4)
C9—N2—C1—N1176.0 (3)C6—C7—C8—C32.1 (6)
C2—N2—C1—S1175.1 (2)C4—C3—C8—N1179.5 (3)
C9—N2—C1—S14.6 (4)C2—C3—C8—N11.3 (5)
C1—N2—C2—O1173.6 (3)C4—C3—C8—C71.3 (5)
C9—N2—C2—O16.1 (5)C2—C3—C8—C7179.6 (3)
C1—N2—C2—C36.2 (5)C1—N2—C9—C1097.0 (3)
C9—N2—C2—C3174.1 (3)C2—N2—C9—C1082.7 (3)
O1—C2—C3—C44.2 (5)N2—C9—C10—C1513.4 (5)
N2—C2—C3—C4176.0 (3)N2—C9—C10—C11167.7 (3)
O1—C2—C3—C8176.6 (3)C15—C10—C11—C120.3 (6)
N2—C2—C3—C83.1 (5)C9—C10—C11—C12179.3 (4)
C8—C3—C4—C50.5 (5)C10—C11—C12—C132.3 (8)
C2—C3—C4—C5178.6 (3)C11—C12—C13—C143.8 (10)
C3—C4—C5—C61.4 (5)C12—C13—C14—C153.2 (8)
C3—C4—C5—C16177.6 (3)C11—C10—C15—C140.2 (6)
C4—C5—C6—C70.5 (6)C9—C10—C15—C14178.7 (4)
C16—C5—C6—C7178.5 (4)C13—C14—C15—C101.3 (7)
C5—C6—C7—C81.3 (6)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1A···S1i0.862.503.335 (3)165
C4—H4A···O1ii0.932.413.295 (4)159
Symmetry codes: (i) x+1/2, y+1/2, z; (ii) x, y+2, z.

Experimental details

Crystal data
Chemical formulaC16H14N2OS
Mr282.35
Crystal system, space groupMonoclinic, C2/c
Temperature (K)296
a, b, c (Å)24.2438 (18), 5.1618 (5), 24.4265 (17)
β (°) 111.532 (6)
V3)2843.4 (4)
Z8
Radiation typeCu Kα
µ (mm1)1.99
Crystal size (mm)0.83 × 0.12 × 0.06
Data collection
DiffractometerBruker SMART APEXII CCD
diffractometer
Absorption correctionMulti-scan
(SADABS; Bruker, 2009)
Tmin, Tmax0.289, 0.890
No. of measured, independent and
observed [I > 2σ(I)] reflections
9528, 2592, 1421
Rint0.104
(sin θ/λ)max1)0.609
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.055, 0.166, 0.93
No. of reflections2592
No. of parameters182
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.24, 0.21

Computer programs: APEX2 (Bruker, 2009), SAINT (Bruker, 2009), SHELXTL (Sheldrick, 2008) and PLATON (Spek, 2009).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1A···S1i0.862.503.335 (3)165
C4—H4A···O1ii0.932.413.295 (4)159
Symmetry codes: (i) x+1/2, y+1/2, z; (ii) x, y+2, z.
 

Footnotes

Alternative address: College of Pharmacy (Visiting Professor), King Saud University, PO Box 2457, Riyadh 11451, Saudi Arabia. Thomson Reuters ResearcherID: A-3561-2009.

Acknowledgements

RAS, MAO and HES express their gratitude to Mr Hazem Ghabbour, X-ray Division of the Pharmaceutical Chemistry Department, King Saud University, for valuable help in the determination of the X-ray crystal structure. MH and HFK thank the Malaysian Government and Universiti Sains Malaysia for Research University Grant No. 1001/PFIZIK/811160. MH also thanks Universiti Sains Malaysia for a postdoctoral research fellowship.

References

First citationAllen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1–S19.  CrossRef Web of Science Google Scholar
First citationAl-Omar, M. A., Abdel Hamide, S. G., Al-Khamees, H. A. & El-Subbagh, H. I. (2004). Saudi Pharm. J. 12, 63–71.  CAS Google Scholar
First citationAl-Omary, M. F., Abou-zeid, L. A., Nagi, M. N., Habib, E. E., Abdel-Aziz, A., El-Azab, A. S., Abdel-Hamide, S. G., Al-Omar, M. A., Al-Obaid, A. M. & El-Subbagh, H. I. (2010). Bioorg. Med. Chem. 18, 2849–2863.  Web of Science CAS PubMed Google Scholar
First citationAl-Rashood, S. T., Aboldahab, I. A., Nagi, M. N., Abouzeid, L. A., Abdel-Aziz, A. A. M., Abdel-hamide, S. G., Youssef, K. M., Al-Obaid, A. M. & El-Subbagh, H. I. (2006). Bioorg. Med. Chem. 14, 8608–8621.  Web of Science PubMed CAS Google Scholar
First citationAndries, K., Verhasselt, P., Guillemont, J., Gohlmann, H. W., Neefs, J. M., Winkler, H., Van Gestel, J., Timmerman, P., Zhu, M., Lee, E., Williams, P., de Chaffoy, D., Huitric, E., Hoffner, S., Cambau, E., Truffot-Pernot, C., Lounis, N. & Jarlier, V. A. (2005). Science, 307, 223–227.  Web of Science CrossRef PubMed CAS Google Scholar
First citationBernstein, J., Davis, R. E., Shimoni, L. & Chang, N.-L. (1995). Angew. Chem. Int. Ed. Engl. 34, 1555–1573.  CrossRef CAS Web of Science Google Scholar
First citationBruker (2009). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationGhorab, M. M., Ragab, F. A., Noaman, E., Heiba, H. I. & El-Hossary, E. M. (2007). Arzneim. Forsch. Drug Res. 58, 35–41.  Google Scholar
First citationHarris, C. R. & Thorarensen, A. (2004). Curr. Med. Chem. 11, 2213–2243.  Web of Science CrossRef PubMed CAS Google Scholar
First citationJantova, S., Stankovsky, S. & Spirkova, K. (2004). Biologia (Bratisl.), 59, 741–752.  CAS Google Scholar
First citationKlepser, M. E. & Klepser, T. B. (1997). Drugs, 53, 40–73.  CrossRef CAS PubMed Web of Science Google Scholar
First citationRádl, S., Hezky, P., Proška, J. & Krejci, I. (2000). Arch. Pharm. (Weinheim Ger.), 333, 381–386.  Google Scholar
First citationRoth, H. J. & Fenner, H. (2000). Arzneistoffe, 3rd ed., pp. 51–114. Stuttgart: Deutscher Apotheker Verlag.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSpek, A. L. (2009). Acta Cryst. D65, 148–155.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 68| Part 3| March 2012| Pages o717-o718
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds