organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

1-[5-(4-Chloro­phen­yl)-3-(4-hy­dr­oxy­phen­yl)-4,5-di­hydro-1H-pyrazol-1-yl]­ethanone

aX-ray Crystallography Unit, School of Physics, Universiti Sains Malaysia, 11800 USM, Penang, Malaysia, bDepartment of Studies in Chemistry, Mangalore University, Mangalagangotri 574 199, India, and cDepartment of Chemistry, P. A. College of Engineering, Nadupadavu, Mangalore 574 153, India
*Correspondence e-mail: hkfun@usm.my

(Received 14 February 2012; accepted 15 February 2012; online 24 February 2012)

In the title compound, C17H15ClN2O2, the benzene rings form dihedral angles of 89.56 (5) and 5.87 (5)° with the mean plane of the pyrazoline ring (r.m.s. deviation = 0.084 Å). The dihedral angle between the two benzene rings is 87.57 (5)°. In the crystal, mol­ecules are linked by O—H⋯O and C—H⋯O hydrogen bonds into a helical chain along the c axis. Between the chains weak C—H⋯N and C—H⋯O inter­actions are present. The crystal studied was an inversion twin with a domain ratio of 0.72 (4):0.28 (4).

Related literature

For general background to and the biological activities of pyrazolines, see: Samshuddin et al. (2011[Samshuddin, S., Narayana, B., Sarojini, B. K., Khan, M. T. H., Yathirajan, H. S., Raj, C. G. D. & Raghavendra, R. (2011). Med. Chem. Res. doi:10.1007/s00044-011-9735-9.]); Sarojini et al. (2010[Sarojini, B. K., Vidyagayatri, M., Darshanraj, C. G., Bharath, B. R. & Manjunatha, H. (2010). Lett. Drug Des. Discov. 7, 214-224.]). For standard bond-length data, see: Allen et al. (1987[Allen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1-19.]). For the stability of the temperature controller used for the data collection, see: Cosier & Glazer (1986[Cosier, J. & Glazer, A. M. (1986). J. Appl. Cryst. 19, 105-107.]). For a related structure, see: Fun et al. (2010[Fun, H.-K., Hemamalini, M., Samshuddin, S., Narayana, B. & Yathirajan, H. S. (2010). Acta Cryst. E66, o582-o583.]).

[Scheme 1]

Experimental

Crystal data
  • C17H15ClN2O2

  • Mr = 314.76

  • Orthorhombic, P 21 21 21

  • a = 5.0213 (2) Å

  • b = 15.6834 (5) Å

  • c = 18.6368 (6) Å

  • V = 1467.67 (9) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.27 mm−1

  • T = 100 K

  • 0.43 × 0.36 × 0.22 mm

Data collection
  • Bruker SMART APEXII CCD area-detector diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 2009[Bruker (2009). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]) Tmin = 0.892, Tmax = 0.944

  • 21739 measured reflections

  • 5194 independent reflections

  • 4925 reflections with I > 2σ(I)

  • Rint = 0.019

Refinement
  • R[F2 > 2σ(F2)] = 0.030

  • wR(F2) = 0.082

  • S = 1.05

  • 5194 reflections

  • 205 parameters

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.33 e Å−3

  • Δρmin = −0.26 e Å−3

  • Absolute structure: Flack (1983[Flack, H. D. (1983). Acta Cryst. A39, 876-881.]), 2089 Friedel pairs

  • Flack parameter: 0.28 (4)

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
O1—H1O1⋯O2i 0.88 (2) 1.82 (2) 2.6971 (12) 171 (2)
C8—H8A⋯N2ii 0.99 2.56 3.5038 (14) 160
C8—H8B⋯O1iii 0.99 2.52 3.4887 (12) 166
C12—H12A⋯O2i 0.95 2.51 3.1982 (12) 130
Symmetry codes: (i) [-x+{\script{3\over 2}}, -y+2, z+{\script{1\over 2}}]; (ii) x-1, y, z; (iii) [x-{\script{1\over 2}}, -y+{\script{3\over 2}}, -z+1].

Data collection: APEX2 (Bruker, 2009[Bruker (2009). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2009[Bruker (2009). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXTL; molecular graphics: SHELXTL; software used to prepare material for publication: SHELXTL and PLATON (Spek, 2009[Spek, A. L. (2009). Acta Cryst. D65, 148-155.]).

Supporting information


Comment top

Pyrazolines have been reported to exhibit a broad spectrum of biological activities including antibacterial, antifungal, antioxidant and analgesic properties (Samshuddin et al., 2011; Sarojini et al., 2010). In continuation of our work on synthesis of pyrazoline derivatives (Fun et al., 2010), the title compound (I) is prepared and its crystal structure is reported.

In the title molecule (Fig. 1), the two benzene rings (C1–C6 and C10–C15) form dihedral angles of 89.56 (5) and 5.87 (5)°, respectively, with the 4,5-dihydro-1H-pyrazole ring (N1/N2/C7-C9). The benzene rings form a dihedral angle of 87.57 (5)°. Bond lengths (Allen et al., 1987) and angles are within normal ranges and are comparable with a related structure (Fun et al., 2010). The crystal studied was an inversion twin with a domain ratio of 0.28 (4):0.72 (4). In the crystal structure (Fig. 2) molecules are linked via intermolecular O1—H1O1···O2 and C12—H12A···O2 hydrogen bonds (Table 1) into a helical chain along the c axis. Weak C8—H8A···N2 and C8—H8B···O1 are also observed between the chains.

Related literature top

For general background to and the biological activities of pyrazolines, see: Samshuddin et al. (2011); Sarojini et al. (2010). For standard bond-length data, see: Allen et al. (1987). For the stability of the temperature controller used for the data collection, see: Cosier & Glazer (1986). For a related structure, see: Fun et al. (2010).

Experimental top

A mixture of (2E)-3-(4-chlorophenyl)-1-(4-hydroxyphenyl)prop-2-en-1-one (2.58 g, 0.01 mol) and hydrazine hydrate (0.5 ml, 0.01 mol) in 25 ml acetic acid was refluxed for 6 h. The reaction mixture was cooled and poured into 50 ml ice-cold water. The precipitate was collected by filtration and purified by recrystallization from ethanol. The single crystals were grown from DMF by slow evaporation method and yield of the compound was 80% (m.p. : 530 K).

Refinement top

Atom H1O1 was located in a difference Fourier map and refined freely [refined distance O1—H1O1 = 0.88 (2) Å]. The remaining H atoms were positioned geometrically and refined using a riding model, with C—H = 0.95 or 1.00 Å and Uiso(H) = 1.2 or 1.5 Ueq(C). A rotating group model was applied to the methyl group. The crystal studied was an inversion twin with a 0.28 (4):0.72 (4) domain ratio.

Computing details top

Data collection: APEX2 (Bruker, 2009); cell refinement: SAINT (Bruker, 2009); data reduction: SAINT (Bruker, 2009); program(s) used to solve structure: SHELXTL (Sheldrick, 2008); program(s) used to refine structure: SHELXTL (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008) and PLATON (Spek, 2009).

Figures top
[Figure 1] Fig. 1. The molecular structure of the title compound, showing 50% probability displacement ellipsoids for non-H atoms.
[Figure 2] Fig. 2. The packing diagram of the title compound, viewed along the a axis. H atoms not involved in hydrogen bonds (dashed lines) have been omitted for clarity.
1-[5-(4-Chlorophenyl)-3-(4-hydroxyphenyl)-4,5-dihydro-1H-pyrazol- 1-yl]ethanone top
Crystal data top
C17H15ClN2O2F(000) = 656
Mr = 314.76Dx = 1.424 Mg m3
Orthorhombic, P212121Mo Kα radiation, λ = 0.71073 Å
Hall symbol: P 2ac 2abCell parameters from 9904 reflections
a = 5.0213 (2) Åθ = 3.4–32.7°
b = 15.6834 (5) ŵ = 0.27 mm1
c = 18.6368 (6) ÅT = 100 K
V = 1467.67 (9) Å3Block, colourless
Z = 40.43 × 0.36 × 0.22 mm
Data collection top
Bruker SMART APEXII CCD area-detector
diffractometer
5194 independent reflections
Radiation source: fine-focus sealed tube4925 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.019
ϕ and ω scansθmax = 32.7°, θmin = 1.7°
Absorption correction: multi-scan
(SADABS; Bruker, 2009)
h = 77
Tmin = 0.892, Tmax = 0.944k = 2323
21739 measured reflectionsl = 2828
Refinement top
Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.030H atoms treated by a mixture of independent and constrained refinement
wR(F2) = 0.082 w = 1/[σ2(Fo2) + (0.0486P)2 + 0.1907P]
where P = (Fo2 + 2Fc2)/3
S = 1.05(Δ/σ)max = 0.001
5194 reflectionsΔρmax = 0.33 e Å3
205 parametersΔρmin = 0.26 e Å3
0 restraintsAbsolute structure: Flack (1983), 2089 Friedel pairs
Primary atom site location: structure-invariant direct methodsAbsolute structure parameter: 0.28 (4)
Crystal data top
C17H15ClN2O2V = 1467.67 (9) Å3
Mr = 314.76Z = 4
Orthorhombic, P212121Mo Kα radiation
a = 5.0213 (2) ŵ = 0.27 mm1
b = 15.6834 (5) ÅT = 100 K
c = 18.6368 (6) Å0.43 × 0.36 × 0.22 mm
Data collection top
Bruker SMART APEXII CCD area-detector
diffractometer
5194 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 2009)
4925 reflections with I > 2σ(I)
Tmin = 0.892, Tmax = 0.944Rint = 0.019
21739 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.030H atoms treated by a mixture of independent and constrained refinement
wR(F2) = 0.082Δρmax = 0.33 e Å3
S = 1.05Δρmin = 0.26 e Å3
5194 reflectionsAbsolute structure: Flack (1983), 2089 Friedel pairs
205 parametersAbsolute structure parameter: 0.28 (4)
0 restraints
Special details top

Experimental. The crystal was placed in the cold stream of an Oxford Cryosystems Cobra open-flow nitrogen cryostat (Cosier & Glazer, 1986) operating at 100.0 (1) K.

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > 2sigma(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Cl10.69906 (7)0.812228 (18)0.062645 (13)0.02929 (7)
O10.64339 (19)0.76579 (5)0.68963 (4)0.02423 (17)
O20.49802 (19)1.14641 (5)0.26805 (4)0.02311 (16)
N10.48592 (19)1.05034 (5)0.35670 (4)0.01842 (16)
N20.57563 (19)1.01940 (5)0.42259 (4)0.01797 (16)
C10.5989 (2)0.89416 (6)0.26375 (5)0.01860 (17)
H1A0.67980.88540.30920.022*
C20.6960 (2)0.85102 (6)0.20404 (5)0.01995 (18)
H2A0.84220.81290.20840.024*
C30.5754 (2)0.86468 (6)0.13803 (5)0.01985 (19)
C40.3600 (2)0.91916 (7)0.13069 (5)0.0213 (2)
H4A0.27750.92700.08530.026*
C50.2664 (2)0.96220 (6)0.19103 (5)0.01969 (18)
H5A0.12021.00020.18650.024*
C60.3843 (2)0.95017 (6)0.25775 (5)0.01623 (16)
C70.2786 (2)0.99601 (6)0.32343 (5)0.01790 (17)
H7A0.12011.03130.31030.021*
C80.2094 (2)0.93621 (6)0.38672 (5)0.01917 (17)
H8A0.03200.94970.40690.023*
H8B0.21290.87570.37170.023*
C90.4279 (2)0.95519 (6)0.43990 (5)0.01668 (16)
C100.4788 (2)0.90758 (6)0.50616 (5)0.01641 (16)
C110.6865 (2)0.93201 (6)0.55202 (5)0.01882 (17)
H11A0.79070.98070.54050.023*
C120.7424 (2)0.88630 (6)0.61378 (5)0.01932 (18)
H12A0.88410.90360.64430.023*
C130.5895 (2)0.81446 (6)0.63127 (5)0.01882 (17)
C140.3774 (2)0.79110 (7)0.58721 (6)0.02158 (19)
H14A0.26880.74380.59970.026*
C150.3245 (2)0.83700 (6)0.52498 (5)0.01973 (18)
H15A0.18130.82010.49490.024*
C160.5891 (2)1.12119 (6)0.32603 (5)0.01928 (18)
C170.8134 (3)1.16620 (7)0.36378 (6)0.0243 (2)
H17A0.96461.17230.33090.037*
H17B0.86811.13290.40580.037*
H17C0.75361.22280.37920.037*
H1O10.774 (5)0.7911 (13)0.7133 (11)0.056 (6)*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Cl10.03723 (16)0.03089 (13)0.01976 (10)0.00079 (12)0.00636 (10)0.00525 (9)
O10.0309 (4)0.0200 (3)0.0218 (3)0.0001 (3)0.0040 (3)0.0028 (3)
O20.0285 (4)0.0202 (3)0.0205 (3)0.0030 (3)0.0016 (3)0.0018 (3)
N10.0205 (4)0.0169 (3)0.0178 (3)0.0003 (3)0.0021 (3)0.0003 (3)
N20.0198 (4)0.0170 (3)0.0171 (3)0.0013 (3)0.0008 (3)0.0004 (3)
C10.0185 (4)0.0194 (4)0.0179 (4)0.0021 (4)0.0021 (3)0.0006 (3)
C20.0202 (5)0.0187 (4)0.0210 (4)0.0020 (4)0.0003 (4)0.0008 (3)
C30.0241 (5)0.0180 (4)0.0174 (4)0.0041 (4)0.0032 (4)0.0007 (3)
C40.0239 (5)0.0229 (4)0.0170 (4)0.0021 (4)0.0023 (4)0.0017 (3)
C50.0192 (4)0.0204 (4)0.0195 (4)0.0018 (4)0.0025 (4)0.0022 (3)
C60.0153 (4)0.0162 (4)0.0173 (3)0.0005 (3)0.0008 (3)0.0007 (3)
C70.0159 (4)0.0186 (4)0.0192 (3)0.0019 (4)0.0012 (3)0.0004 (3)
C80.0154 (4)0.0236 (4)0.0185 (3)0.0011 (4)0.0005 (3)0.0010 (3)
C90.0149 (4)0.0181 (4)0.0170 (3)0.0019 (3)0.0004 (3)0.0025 (3)
C100.0151 (4)0.0173 (4)0.0168 (3)0.0013 (3)0.0012 (3)0.0014 (3)
C110.0193 (4)0.0187 (4)0.0184 (4)0.0017 (4)0.0003 (3)0.0012 (3)
C120.0200 (5)0.0201 (4)0.0178 (3)0.0006 (4)0.0001 (3)0.0020 (3)
C130.0217 (4)0.0167 (4)0.0181 (3)0.0032 (4)0.0016 (3)0.0015 (3)
C140.0222 (5)0.0185 (4)0.0240 (4)0.0027 (4)0.0004 (4)0.0014 (3)
C150.0174 (4)0.0202 (4)0.0216 (4)0.0002 (4)0.0002 (4)0.0004 (3)
C160.0232 (5)0.0154 (4)0.0192 (4)0.0024 (4)0.0044 (4)0.0020 (3)
C170.0306 (5)0.0177 (4)0.0247 (4)0.0042 (4)0.0007 (4)0.0025 (3)
Geometric parameters (Å, º) top
Cl1—C31.7425 (10)C7—H7A1.0000
O1—C131.3560 (12)C8—C91.5080 (14)
O1—H1O10.88 (2)C8—H8A0.9900
O2—C161.2382 (13)C8—H8B0.9900
N1—C161.3527 (13)C9—C101.4656 (13)
N1—N21.3951 (11)C10—C151.3961 (14)
N1—C71.4812 (14)C10—C111.4018 (14)
N2—C91.2917 (13)C11—C121.3847 (13)
C1—C21.3906 (14)C11—H11A0.9500
C1—C61.3947 (14)C12—C131.4019 (15)
C1—H1A0.9500C12—H12A0.9500
C2—C31.3878 (14)C13—C141.3937 (15)
C2—H2A0.9500C14—C151.3906 (14)
C3—C41.3853 (17)C14—H14A0.9500
C4—C51.3932 (14)C15—H15A0.9500
C4—H4A0.9500C16—C171.5039 (17)
C5—C61.3901 (13)C17—H17A0.9800
C5—H5A0.9500C17—H17B0.9800
C6—C71.5156 (13)C17—H17C0.9800
C7—C81.5464 (14)
C13—O1—H1O1107.2 (13)C7—C8—H8B111.2
C16—N1—N2122.28 (9)H8A—C8—H8B109.2
C16—N1—C7124.39 (8)N2—C9—C10120.49 (9)
N2—N1—C7113.28 (8)N2—C9—C8114.05 (9)
C9—N2—N1107.79 (8)C10—C9—C8125.46 (9)
C2—C1—C6120.88 (9)C15—C10—C11118.46 (9)
C2—C1—H1A119.6C15—C10—C9121.25 (9)
C6—C1—H1A119.6C11—C10—C9120.29 (9)
C3—C2—C1118.76 (10)C12—C11—C10121.07 (10)
C3—C2—H2A120.6C12—C11—H11A119.5
C1—C2—H2A120.6C10—C11—H11A119.5
C4—C3—C2121.58 (9)C11—C12—C13119.89 (10)
C4—C3—Cl1119.33 (8)C11—C12—H12A120.1
C2—C3—Cl1119.10 (9)C13—C12—H12A120.1
C3—C4—C5118.84 (9)O1—C13—C14118.50 (9)
C3—C4—H4A120.6O1—C13—C12121.97 (10)
C5—C4—H4A120.6C14—C13—C12119.53 (9)
C6—C5—C4120.85 (10)C15—C14—C13120.08 (10)
C6—C5—H5A119.6C15—C14—H14A120.0
C4—C5—H5A119.6C13—C14—H14A120.0
C5—C6—C1119.09 (9)C14—C15—C10120.93 (10)
C5—C6—C7120.59 (9)C14—C15—H15A119.5
C1—C6—C7120.31 (8)C10—C15—H15A119.5
N1—C7—C6111.39 (9)O2—C16—N1119.33 (10)
N1—C7—C8100.81 (7)O2—C16—C17122.34 (10)
C6—C7—C8114.01 (8)N1—C16—C17118.33 (9)
N1—C7—H7A110.1C16—C17—H17A109.5
C6—C7—H7A110.1C16—C17—H17B109.5
C8—C7—H7A110.1H17A—C17—H17B109.5
C9—C8—C7102.60 (8)C16—C17—H17C109.5
C9—C8—H8A111.2H17A—C17—H17C109.5
C7—C8—H8A111.2H17B—C17—H17C109.5
C9—C8—H8B111.2
C16—N1—N2—C9175.65 (9)N1—N2—C9—C10178.41 (8)
C7—N1—N2—C96.89 (11)N1—N2—C9—C81.56 (11)
C6—C1—C2—C30.00 (16)C7—C8—C9—N28.59 (11)
C1—C2—C3—C40.79 (16)C7—C8—C9—C10171.37 (9)
C1—C2—C3—Cl1178.98 (8)N2—C9—C10—C15178.72 (10)
C2—C3—C4—C51.16 (16)C8—C9—C10—C151.24 (15)
Cl1—C3—C4—C5178.61 (8)N2—C9—C10—C110.87 (14)
C3—C4—C5—C60.76 (16)C8—C9—C10—C11179.17 (10)
C4—C5—C6—C10.00 (15)C15—C10—C11—C121.49 (15)
C4—C5—C6—C7178.94 (10)C9—C10—C11—C12178.12 (9)
C2—C1—C6—C50.38 (15)C10—C11—C12—C130.15 (16)
C2—C1—C6—C7179.32 (9)C11—C12—C13—O1177.34 (9)
C16—N1—C7—C667.68 (12)C11—C12—C13—C141.79 (15)
N2—N1—C7—C6109.72 (9)O1—C13—C14—C15176.80 (10)
C16—N1—C7—C8171.01 (9)C12—C13—C14—C152.36 (16)
N2—N1—C7—C811.59 (11)C13—C14—C15—C101.01 (16)
C5—C6—C7—N1120.77 (10)C11—C10—C15—C140.91 (15)
C1—C6—C7—N160.30 (12)C9—C10—C15—C14178.69 (10)
C5—C6—C7—C8125.96 (10)N2—N1—C16—O2178.73 (9)
C1—C6—C7—C852.96 (13)C7—N1—C16—O24.09 (15)
N1—C7—C8—C911.08 (10)N2—N1—C16—C171.74 (15)
C6—C7—C8—C9108.36 (9)C7—N1—C16—C17175.43 (9)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O1—H1O1···O2i0.88 (2)1.82 (2)2.6971 (12)171 (2)
C8—H8A···N2ii0.992.563.5038 (14)160
C8—H8B···O1iii0.992.523.4887 (12)166
C12—H12A···O2i0.952.513.1982 (12)130
Symmetry codes: (i) x+3/2, y+2, z+1/2; (ii) x1, y, z; (iii) x1/2, y+3/2, z+1.

Experimental details

Crystal data
Chemical formulaC17H15ClN2O2
Mr314.76
Crystal system, space groupOrthorhombic, P212121
Temperature (K)100
a, b, c (Å)5.0213 (2), 15.6834 (5), 18.6368 (6)
V3)1467.67 (9)
Z4
Radiation typeMo Kα
µ (mm1)0.27
Crystal size (mm)0.43 × 0.36 × 0.22
Data collection
DiffractometerBruker SMART APEXII CCD area-detector
diffractometer
Absorption correctionMulti-scan
(SADABS; Bruker, 2009)
Tmin, Tmax0.892, 0.944
No. of measured, independent and
observed [I > 2σ(I)] reflections
21739, 5194, 4925
Rint0.019
(sin θ/λ)max1)0.761
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.030, 0.082, 1.05
No. of reflections5194
No. of parameters205
H-atom treatmentH atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å3)0.33, 0.26
Absolute structureFlack (1983), 2089 Friedel pairs
Absolute structure parameter0.28 (4)

Computer programs: APEX2 (Bruker, 2009), SAINT (Bruker, 2009), SHELXTL (Sheldrick, 2008) and PLATON (Spek, 2009).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O1—H1O1···O2i0.88 (2)1.82 (2)2.6971 (12)171 (2)
C8—H8A···N2ii0.992.563.5038 (14)160
C8—H8B···O1iii0.992.523.4887 (12)166
C12—H12A···O2i0.952.513.1982 (12)130
Symmetry codes: (i) x+3/2, y+2, z+1/2; (ii) x1, y, z; (iii) x1/2, y+3/2, z+1.
 

Footnotes

Thomson Reuters ResearcherID: A-3561-2009.

§Thomson Reuters ResearcherID: A-5525-2009.

Acknowledgements

The authors would like to thank Universiti Sains Malaysia (USM) for a Research University Grant (No. 1001/PFIZIK/811160). BN thanks the UGC for financial assistance through SAP and BSR one-time grant for the purchase of chemicals.

References

First citationAllen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1–19.  CrossRef Web of Science Google Scholar
First citationBruker (2009). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationCosier, J. & Glazer, A. M. (1986). J. Appl. Cryst. 19, 105–107.  CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationFlack, H. D. (1983). Acta Cryst. A39, 876–881.  CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationFun, H.-K., Hemamalini, M., Samshuddin, S., Narayana, B. & Yathirajan, H. S. (2010). Acta Cryst. E66, o582–o583.  Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
First citationSamshuddin, S., Narayana, B., Sarojini, B. K., Khan, M. T. H., Yathirajan, H. S., Raj, C. G. D. & Raghavendra, R. (2011). Med. Chem. Res. doi:10.1007/s00044-011-9735-9.  Google Scholar
First citationSarojini, B. K., Vidyagayatri, M., Darshanraj, C. G., Bharath, B. R. & Manjunatha, H. (2010). Lett. Drug Des. Discov. 7, 214–224.  CrossRef Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSpek, A. L. (2009). Acta Cryst. D65, 148–155.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds