organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 68| Part 3| March 2012| Pages o847-o848

(3Z,3′Z)-3,3′-(3,5-Di­methyl­furan-2,4-diyl)bis­­(4-hy­dr­oxy­pent-3-en-2-one)

aMedicinal, Aromatic and Poisonous Plants Research Center (MAPPRC), College of Pharmacy, King Saud University, PO Box 2457, Riyadh 11451, Saudia Arabia, bCrystal Materials Research Unit, Department of Chemistry, Faculty of Science, Prince of Songkla University, Hat-Yai, Songkhla 90112, Thailand, and cX-ray Crystallography Unit, School of Physics, Universiti Sains Malaysia, 11800 USM, Penang, Malaysia
*Correspondence e-mail: hkfun@usm.my

(Received 18 February 2012; accepted 21 February 2012; online 24 February 2012)

In the title mol­ecule, C16H20O5, the two 4-hy­droxy­pent-3-en-2-one units are essentially planar, with r.m.s. deviations of 0.0183 (2) and 0.0134 (2) Å for the non-H atoms, and make dihedral angles of 81.20 (10) and 84.44 (10)° with the central furan ring. The dihedral angle between these two side units is 22.06 (9)°. Two intra­molecular O—H⋯O hydrogen bonds generate two S(6) ring motifs. A weak inter­molecular C—H⋯O inter­action is also observed.

Related literature

For bond-length data, see: Allen et al. (1987[Allen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1-19.]). For details of hydrogen-bond motifs, see: Bernstein et al. (1995[Bernstein, J., Davis, R. E., Shimoni, L. & Chang, N.-L. (1995). Angew. Chem. Int. Ed. Engl. 34, 1555-1573.]). For applications of heterocyclic compounds, see: Abdel-Hamid et al. (2011[Abdel-Hamid, H. F., Soliman, A., Helaly, F. M. & Ragab, S. (2011). Acta Pol. Pharm. Drug Res. 68, 499-505.]); Alqasoumi et al. (2010[Alqasoumi, S. I., Al-Taweel, A. M., Alafeefy, A. M., Ghorab, M. M. & Noaman, E. (2010). Eur. J. Med. Chem. 45, 1849-1853.]); Al-Said et al. (2010[Al-Said, M. S., Ghorab, M. M., Alqasoumi, S. I. & El-Hossary, E. M. (2010). Eur. J. Med. Chem. 45, 3011-3018.], 2011[Al-Said, M. S., Ghorab, M. M., Al-Dosari, M. S. & Hamed, M. M. (2011). Eur. J. Med. Chem. 46, 201-207.]); Ghorab et al. (2001[Ghorab, M. M., Abdel-Hamide, S. G. & Hala, A. F. (2001). Acta Pol. Pharm. Drug Res. 58, 175-184.]); Ghorab, Al-Said & El-Hossary (2011[Ghorab, M. M., Al-Said, M. S. & El-Hossary, E. M. (2011). J. Heterocycl. Chem. 48, 563-571.]); Ghorab, Ragab et al. (2011[Ghorab, M. M., Ragab, F. A., Heiba, H. I. & Bayomi, A. A. (2011). Arzneim. Forsch. Drug Res. 61, 527-531.], 2012[Ghorab, M. M., Ragab, F. A., Heiba, H. I., El-Gazzar, M. G. & El-Gazzar, M. G. (2012). Arzneim. Forsch. Drug Res. 62, 46-52.]).

[Scheme 1]

Experimental

Crystal data
  • C16H20O5

  • Mr = 292.32

  • Triclinic, [P \overline 1]

  • a = 7.2645 (2) Å

  • b = 8.5771 (2) Å

  • c = 13.0931 (5) Å

  • α = 88.384 (2)°

  • β = 76.390 (2)°

  • γ = 87.814 (1)°

  • V = 792.17 (4) Å3

  • Z = 2

  • Cu Kα radiation

  • μ = 0.75 mm−1

  • T = 296 K

  • 0.59 × 0.55 × 0.19 mm

Data collection
  • Bruker SMART APEXII CCD area-detector diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 2009[Bruker (2009). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]) Tmin = 0.665, Tmax = 0.868

  • 6643 measured reflections

  • 2597 independent reflections

  • 2344 reflections with I > 2σ(I)

  • Rint = 0.023

Refinement
  • R[F2 > 2σ(F2)] = 0.056

  • wR(F2) = 0.170

  • S = 1.04

  • 2597 reflections

  • 196 parameters

  • H-atom parameters constrained

  • Δρmax = 0.20 e Å−3

  • Δρmin = −0.25 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
O3—H3A⋯O2 0.82 1.71 2.457 (3) 150
O5—H5A⋯O4 0.82 1.73 2.470 (3) 148
C15—H15A⋯O3i 0.96 2.60 3.507 (3) 158
Symmetry code: (i) x-1, y-1, z.

Data collection: APEX2 (Bruker, 2009[Bruker (2009). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2009[Bruker (2009). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXTL; molecular graphics: SHELXTL; software used to prepare material for publication: SHELXTL and PLATON (Spek, 2009[Spek, A. L. (2009). Acta Cryst. D65, 148-155.]).

Supporting information


Comment top

Cancer is a disease of striking significance in the world today. It represents the second leading cause of human mortality after cardiovascular diseases. In order to develop more effective and reliable anticancer agents, a large number of compounds carrying oxygen or nitrogen heterocyclic skeletons have been discovered particularly and many of them exhibited excellent anticancer activities (Alqasoumi et al., 2010; Al-Said et al., 2010; Ghorab et al., 2001; Ghorab, Ragab et al., 2012). On the other hand, furan derivatives are important biologically active compounds showing anticancer activity. From the literature survey, it was found that furan derivatives have been intensively studied for their interesting pharmacological properties such as anticancer activity (Abdel-Hamid et al., 2011). In the light of these facts, and as a continuation of our research (Al-Said et al., 2011; Ghorab, Al-Said & El-Hossary, 2011; Ghorab, Ragab et al., 2011), the present investigation reports the design and synthesis of the title novel furan derivative (I) with the hope that this new compound might show significant anticancer activity. Herein its crystal structure is reported.

In Fig. 1, the molecule of (I), C16H20O5, has a ladder-like structure with the 3,5-dimethylfuran moiety in the middle between the two nearly parallel side chains of 4-hydroxypent-3-en-2-one moieties. The two units of 4-hydroxypent-3-en-2-one are planar with r.m.s. deviations of 0.0183 (2) and 0.0134 (2) Å for the seven non H atoms C5–C9/O2/O3 and C11–C15/O4/O5, respectively. Intramolecular O3—H3···O2 and O5—H5···O4 hydrogen bonds (Table 1) generate two S(6) ring motifs (Bernstein et al., 1995) which help to stabilize the planarity of these units. The C5—C8 [1.403 Å] and C11—C14 [1.386 Å] bond lengths are slightly longer than the usual CC double bond. However, the angles around atoms C5, C8, C11 and C14 [114.2-123.2 °] indicate the sp2 hybridization of these atoms. The furan ring makes the dihedral angles of 81.20 (10) and 84.44 (10)° with the mean planes of C5–C9/O2/O3 and C11–C15/O4/O5, respectively. Whereas the dihedral angle between these two planes is 22.06 (9)°. The two methyl groups are co-planar with the furan ring with an r.m.s. deviation of 0.0143 (2) Å for the seven non H atoms C1–C4/C10/C16/O1. The bond distances in (I) are within normal ranges (Allen et al., 1987). The crystal is consolidated by weak C···H···O interactions (Table 1). Even there is no hydrogen bond in the crystal packing but the crystal packing was shown in Fig. 2 to show the arrangement of the molecules.

Related literature top

For bond-length data, see: Allen et al. (1987). For details of hydrogen-bond motifs, see: Bernstein et al. (1995). For applications of heterocyclic compounds, see: Abdel-Hamid et al. (2011); Alqasoumi et al. (2010); Al-Said et al. (2010, 2011); Ghorab et al. (2001); Ghorab, Al-Said & El-Hossary (2011); Ghorab, Ragab et al. (2011, 2012).

Experimental top

Ethanol (30 ml) was converted to sodium ethoxide by portionwise addition of sodium (0.46 g, 0.02 mole) before a solution of diethyl oxalate (2.92 g, 0.02 mole) and 3-acetyl-2,5-dimethylfuran (1.38 g, 0.01 mole) in ethanol (30 ml) was added dropwise at room temperature. The reaction mixture was heated under reflux for 4 h. After cooling, the solvent was removed and the residue was taken up in water (100 ml) and acidified with concentrated HCl (3 ml). The aqueous mixture was extracted with diethylether (3 × 100 ml), dried over MgSO4. The obtained solid was recrystallized from ethanol to give the title compound. Colorless block-shaped single crystals suitable for an X-ray structural analysis was obtained by slowly evaporating from ethanol at room temperature.

Refinement top

All H atoms were placed in calculated positions with d(O—H) = 0.82 Å and d(C—H) = 0.96 Å. The Uiso(H) values were constrained to be 1.2Ueq of the carrier atom for hydroxy H atoms and 1.5Ueq for the methyl H atoms. A rotating group model was used for the methyl groups.

Computing details top

Data collection: APEX2 (Bruker, 2009); cell refinement: SAINT (Bruker, 2009); data reduction: SAINT (Bruker, 2009); program(s) used to solve structure: SHELXTL (Sheldrick, 2008); program(s) used to refine structure: SHELXTL (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008) and PLATON (Spek, 2009).

Figures top
[Figure 1] Fig. 1. The molecular structure of the title compound, showing 30% probability displacement ellipsoids and the atom-numbering scheme. The O—H···O hydrogen bonds are drawn as dash lines.
[Figure 2] Fig. 2. The crystal packing diagram of the title compound, viewed along the a axis.
(3Z,3'Z)-3,3'-(3,5-Dimethylfuran-2,4-diyl)bis(4-hydroxypent-3-en- 2-one) top
Crystal data top
C16H20O5Z = 2
Mr = 292.32F(000) = 312
Triclinic, P1Dx = 1.226 Mg m3
Hall symbol: -P 1Cu Kα radiation, λ = 1.54178 Å
a = 7.2645 (2) ÅCell parameters from 2597 reflections
b = 8.5771 (2) Åθ = 5.2–65.0°
c = 13.0931 (5) ŵ = 0.75 mm1
α = 88.384 (2)°T = 296 K
β = 76.390 (2)°Block, colorless
γ = 87.814 (1)°0.59 × 0.55 × 0.19 mm
V = 792.17 (4) Å3
Data collection top
Bruker SMART APEXII CCD area-detector
diffractometer
2597 independent reflections
Radiation source: fine-focus sealed tube2344 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.023
ϕ and ω scansθmax = 65.0°, θmin = 5.2°
Absorption correction: multi-scan
(SADABS; Bruker, 2009)
h = 87
Tmin = 0.665, Tmax = 0.868k = 1010
6643 measured reflectionsl = 1515
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.056Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.170H-atom parameters constrained
S = 1.04 w = 1/[σ2(Fo2) + (0.104P)2 + 0.160P]
where P = (Fo2 + 2Fc2)/3
2597 reflections(Δ/σ)max = 0.001
196 parametersΔρmax = 0.20 e Å3
0 restraintsΔρmin = 0.25 e Å3
Crystal data top
C16H20O5γ = 87.814 (1)°
Mr = 292.32V = 792.17 (4) Å3
Triclinic, P1Z = 2
a = 7.2645 (2) ÅCu Kα radiation
b = 8.5771 (2) ŵ = 0.75 mm1
c = 13.0931 (5) ÅT = 296 K
α = 88.384 (2)°0.59 × 0.55 × 0.19 mm
β = 76.390 (2)°
Data collection top
Bruker SMART APEXII CCD area-detector
diffractometer
2597 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 2009)
2344 reflections with I > 2σ(I)
Tmin = 0.665, Tmax = 0.868Rint = 0.023
6643 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0560 restraints
wR(F2) = 0.170H-atom parameters constrained
S = 1.04Δρmax = 0.20 e Å3
2597 reflectionsΔρmin = 0.25 e Å3
196 parameters
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > 2sigma(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
O10.02411 (17)0.56371 (13)0.31031 (9)0.0579 (4)
O20.2498 (3)0.88634 (18)0.05070 (13)0.0854 (5)
O30.5019 (2)0.8614 (2)0.14714 (14)0.0912 (5)
H3A0.43990.89660.10640.137*
O40.1552 (3)0.08978 (17)0.39756 (13)0.0854 (5)
O50.0968 (2)0.09275 (16)0.29980 (13)0.0825 (5)
H5A0.02400.12620.33510.124*
C10.1759 (3)0.5388 (2)0.22504 (14)0.0547 (4)
C20.2125 (2)0.38426 (19)0.21246 (13)0.0538 (4)
C30.0787 (2)0.30746 (19)0.29583 (13)0.0508 (4)
C40.0310 (3)0.4202 (2)0.35119 (14)0.0538 (4)
C50.2626 (3)0.6793 (2)0.16975 (14)0.0583 (5)
C60.1785 (3)0.7605 (2)0.09731 (15)0.0663 (5)
C70.0029 (4)0.7092 (3)0.0709 (2)0.0870 (7)
H7A0.08770.79500.07820.131*
H7B0.04910.62540.11770.131*
H7C0.03180.67390.00020.131*
C80.4249 (3)0.7383 (2)0.19331 (17)0.0690 (5)
C90.5166 (3)0.6632 (3)0.2732 (2)0.0892 (7)
H9A0.60960.73090.28720.134*
H9B0.57700.56610.24700.134*
H9C0.42240.64420.33680.134*
C100.3607 (3)0.3067 (3)0.12838 (17)0.0742 (6)
H10A0.42330.38430.07950.111*
H10B0.30210.23460.09210.111*
H10C0.45180.25160.15960.111*
C110.0602 (3)0.13679 (19)0.31678 (13)0.0547 (4)
C120.1725 (3)0.0557 (2)0.37746 (15)0.0659 (5)
C130.3133 (4)0.1371 (3)0.4210 (2)0.0940 (8)
H13A0.39390.06130.44600.141*
H13B0.24820.20120.47800.141*
H13C0.38870.20120.36690.141*
C140.0705 (3)0.0548 (2)0.27961 (15)0.0632 (5)
C150.1914 (4)0.1271 (3)0.2129 (2)0.0890 (7)
H15A0.29620.06160.21400.134*
H15B0.11790.13860.14200.134*
H15C0.23830.22770.23950.134*
C160.1966 (3)0.4172 (2)0.44325 (16)0.0697 (6)
H16A0.21660.31170.46880.105*
H16B0.30750.45770.42240.105*
H16C0.17240.48010.49790.105*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
O10.0659 (8)0.0415 (6)0.0592 (7)0.0044 (5)0.0001 (6)0.0031 (5)
O20.1097 (12)0.0637 (9)0.0794 (10)0.0191 (8)0.0158 (9)0.0265 (7)
O30.0894 (11)0.0805 (11)0.1025 (12)0.0404 (9)0.0176 (9)0.0250 (9)
O40.1135 (13)0.0554 (9)0.0822 (10)0.0142 (8)0.0179 (9)0.0180 (7)
O50.1042 (12)0.0466 (8)0.0954 (11)0.0176 (7)0.0198 (9)0.0084 (7)
C10.0564 (10)0.0486 (9)0.0544 (9)0.0075 (7)0.0030 (7)0.0045 (7)
C20.0551 (9)0.0474 (9)0.0555 (9)0.0046 (7)0.0065 (7)0.0054 (7)
C30.0552 (9)0.0426 (9)0.0536 (9)0.0053 (7)0.0105 (7)0.0059 (7)
C40.0601 (10)0.0446 (9)0.0537 (9)0.0077 (7)0.0071 (7)0.0064 (7)
C50.0633 (11)0.0469 (9)0.0587 (10)0.0095 (8)0.0013 (8)0.0044 (7)
C60.0791 (13)0.0561 (11)0.0582 (11)0.0090 (9)0.0047 (9)0.0049 (8)
C70.0965 (17)0.0908 (17)0.0779 (14)0.0173 (13)0.0279 (12)0.0123 (12)
C80.0658 (12)0.0605 (11)0.0736 (12)0.0148 (9)0.0010 (9)0.0074 (9)
C90.0727 (14)0.0967 (18)0.0993 (17)0.0199 (13)0.0222 (12)0.0210 (14)
C100.0751 (13)0.0631 (12)0.0720 (13)0.0052 (10)0.0058 (10)0.0032 (9)
C110.0643 (10)0.0420 (9)0.0531 (9)0.0006 (7)0.0054 (7)0.0060 (7)
C120.0771 (12)0.0568 (11)0.0590 (11)0.0070 (9)0.0090 (9)0.0088 (8)
C130.0952 (17)0.0977 (18)0.0954 (18)0.0016 (14)0.0378 (14)0.0198 (14)
C140.0750 (12)0.0458 (10)0.0640 (11)0.0068 (8)0.0064 (9)0.0040 (8)
C150.0996 (18)0.0742 (15)0.1048 (18)0.0193 (13)0.0461 (15)0.0119 (13)
C160.0741 (13)0.0586 (11)0.0650 (11)0.0026 (9)0.0056 (9)0.0070 (9)
Geometric parameters (Å, º) top
O1—C41.364 (2)C8—C91.486 (3)
O1—C11.387 (2)C9—H9A0.9600
O2—C61.289 (2)C9—H9B0.9600
O3—C81.281 (2)C9—H9C0.9600
O3—H3A0.8200C10—H10A0.9600
O4—C121.272 (2)C10—H10B0.9600
O5—C141.297 (2)C10—H10C0.9600
O5—H5A0.8200C11—C141.386 (3)
C1—C21.349 (2)C11—C121.418 (3)
C1—C51.472 (2)C12—C131.486 (3)
C2—C31.442 (2)C13—H13A0.9600
C2—C101.497 (2)C13—H13B0.9600
C3—C41.344 (2)C13—H13C0.9600
C3—C111.487 (2)C14—C151.486 (3)
C4—C161.490 (2)C15—H15A0.9600
C5—C61.401 (3)C15—H15B0.9600
C5—C81.403 (3)C15—H15C0.9600
C6—C71.483 (3)C16—H16A0.9600
C7—H7A0.9600C16—H16B0.9600
C7—H7B0.9600C16—H16C0.9600
C7—H7C0.9600
C4—O1—C1106.75 (13)H9B—C9—H9C109.5
C8—O3—H3A109.5C2—C10—H10A109.5
C14—O5—H5A109.5C2—C10—H10B109.5
C2—C1—O1109.76 (15)H10A—C10—H10B109.5
C2—C1—C5133.94 (17)C2—C10—H10C109.5
O1—C1—C5116.29 (15)H10A—C10—H10C109.5
C1—C2—C3106.28 (15)H10B—C10—H10C109.5
C1—C2—C10127.22 (17)C14—C11—C12118.74 (17)
C3—C2—C10126.50 (16)C14—C11—C3120.62 (16)
C4—C3—C2106.76 (15)C12—C11—C3120.62 (17)
C4—C3—C11125.75 (16)O4—C12—C11121.2 (2)
C2—C3—C11127.48 (15)O4—C12—C13117.37 (19)
C3—C4—O1110.43 (15)C11—C12—C13121.47 (19)
C3—C4—C16132.98 (16)C12—C13—H13A109.5
O1—C4—C16116.57 (15)C12—C13—H13B109.5
C6—C5—C8119.11 (17)H13A—C13—H13B109.5
C6—C5—C1120.53 (17)C12—C13—H13C109.5
C8—C5—C1120.27 (17)H13A—C13—H13C109.5
O2—C6—C5121.16 (19)H13B—C13—H13C109.5
O2—C6—C7116.34 (19)O5—C14—C11122.60 (19)
C5—C6—C7122.50 (18)O5—C14—C15114.18 (19)
C6—C7—H7A109.5C11—C14—C15123.22 (17)
C6—C7—H7B109.5C14—C15—H15A109.5
H7A—C7—H7B109.5C14—C15—H15B109.5
C6—C7—H7C109.5H15A—C15—H15B109.5
H7A—C7—H7C109.5C14—C15—H15C109.5
H7B—C7—H7C109.5H15A—C15—H15C109.5
O3—C8—C5121.5 (2)H15B—C15—H15C109.5
O3—C8—C9116.2 (2)C4—C16—H16A109.5
C5—C8—C9122.28 (18)C4—C16—H16B109.5
C8—C9—H9A109.5H16A—C16—H16B109.5
C8—C9—H9B109.5C4—C16—H16C109.5
H9A—C9—H9B109.5H16A—C16—H16C109.5
C8—C9—H9C109.5H16B—C16—H16C109.5
H9A—C9—H9C109.5
C4—O1—C1—C20.7 (2)C8—C5—C6—O21.4 (3)
C4—O1—C1—C5178.48 (15)C1—C5—C6—O2177.88 (17)
O1—C1—C2—C31.2 (2)C8—C5—C6—C7177.8 (2)
C5—C1—C2—C3177.8 (2)C1—C5—C6—C71.2 (3)
O1—C1—C2—C10178.20 (18)C6—C5—C8—O32.7 (3)
C5—C1—C2—C102.8 (4)C1—C5—C8—O3179.23 (18)
C1—C2—C3—C41.2 (2)C6—C5—C8—C9176.9 (2)
C10—C2—C3—C4178.19 (19)C1—C5—C8—C90.4 (3)
C1—C2—C3—C11179.96 (17)C4—C3—C11—C1482.7 (2)
C10—C2—C3—C110.6 (3)C2—C3—C11—C1495.9 (2)
C2—C3—C4—O10.8 (2)C4—C3—C11—C1295.7 (2)
C11—C3—C4—O1179.63 (15)C2—C3—C11—C1285.7 (2)
C2—C3—C4—C16177.7 (2)C14—C11—C12—O40.2 (3)
C11—C3—C4—C161.1 (3)C3—C11—C12—O4178.64 (17)
C1—O1—C4—C30.1 (2)C14—C11—C12—C13179.13 (19)
C1—O1—C4—C16178.72 (17)C3—C11—C12—C130.7 (3)
C2—C1—C5—C6101.3 (3)C12—C11—C14—O51.4 (3)
O1—C1—C5—C679.7 (2)C3—C11—C14—O5177.04 (17)
C2—C1—C5—C882.2 (3)C12—C11—C14—C15178.23 (19)
O1—C1—C5—C896.8 (2)C3—C11—C14—C153.4 (3)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O3—H3A···O20.821.712.457 (3)150
O5—H5A···O40.821.732.470 (3)148
C15—H15A···O3i0.962.603.507 (3)158
Symmetry code: (i) x1, y1, z.

Experimental details

Crystal data
Chemical formulaC16H20O5
Mr292.32
Crystal system, space groupTriclinic, P1
Temperature (K)296
a, b, c (Å)7.2645 (2), 8.5771 (2), 13.0931 (5)
α, β, γ (°)88.384 (2), 76.390 (2), 87.814 (1)
V3)792.17 (4)
Z2
Radiation typeCu Kα
µ (mm1)0.75
Crystal size (mm)0.59 × 0.55 × 0.19
Data collection
DiffractometerBruker SMART APEXII CCD area-detector
diffractometer
Absorption correctionMulti-scan
(SADABS; Bruker, 2009)
Tmin, Tmax0.665, 0.868
No. of measured, independent and
observed [I > 2σ(I)] reflections
6643, 2597, 2344
Rint0.023
(sin θ/λ)max1)0.588
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.056, 0.170, 1.04
No. of reflections2597
No. of parameters196
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.20, 0.25

Computer programs: APEX2 (Bruker, 2009), SAINT (Bruker, 2009), SHELXTL (Sheldrick, 2008) and PLATON (Spek, 2009).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O3—H3A···O20.821.712.457 (3)150
O5—H5A···O40.821.732.470 (3)148
C15—H15A···O3i0.962.603.507 (3)158
Symmetry code: (i) x1, y1, z.
 

Footnotes

Thomson Reuters ResearcherID: A-5085-2009.

§College of Pharmacy (Visiting Professor), King Saud University, PO Box 2457, Riyadh 11451, Saudi Arabia. Thomson Reuters ResearcherID: A-3561-2009.

Acknowledgements

The authors are grateful for the sponsorship of the Research Center, College of Pharmacy, and the Deanship of Scientific Research, King Saud University, Riyadh, Saudia Arabia. HKF and SC thank the Universiti Sains Malaysia for the Research University grant No. 1001/PFIZIK/811160. HKF also thanks the King Saud University, Riyadh, Saudi Arabia, for the award of a visiting professorship (23 December 2011 to 14 January 2012).

References

First citationAbdel-Hamid, H. F., Soliman, A., Helaly, F. M. & Ragab, S. (2011). Acta Pol. Pharm. Drug Res. 68, 499–505.  CAS Google Scholar
First citationAllen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1–19.  CrossRef Web of Science Google Scholar
First citationAlqasoumi, S. I., Al-Taweel, A. M., Alafeefy, A. M., Ghorab, M. M. & Noaman, E. (2010). Eur. J. Med. Chem. 45, 1849–1853.  Web of Science CrossRef CAS PubMed Google Scholar
First citationAl-Said, M. S., Ghorab, M. M., Al-Dosari, M. S. & Hamed, M. M. (2011). Eur. J. Med. Chem. 46, 201–207.  Web of Science CAS PubMed Google Scholar
First citationAl-Said, M. S., Ghorab, M. M., Alqasoumi, S. I. & El-Hossary, E. M. (2010). Eur. J. Med. Chem. 45, 3011–3018.  Web of Science CAS PubMed Google Scholar
First citationBernstein, J., Davis, R. E., Shimoni, L. & Chang, N.-L. (1995). Angew. Chem. Int. Ed. Engl. 34, 1555–1573.  CrossRef CAS Web of Science Google Scholar
First citationBruker (2009). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationGhorab, M. M., Abdel-Hamide, S. G. & Hala, A. F. (2001). Acta Pol. Pharm. Drug Res. 58, 175–184.  CAS Google Scholar
First citationGhorab, M. M., Al-Said, M. S. & El-Hossary, E. M. (2011). J. Heterocycl. Chem. 48, 563–571.  Web of Science CrossRef CAS Google Scholar
First citationGhorab, M. M., Ragab, F. A., Heiba, H. I. & Bayomi, A. A. (2011). Arzneim. Forsch. Drug Res. 61, 527–531.  Google Scholar
First citationGhorab, M. M., Ragab, F. A., Heiba, H. I., El-Gazzar, M. G. & El-Gazzar, M. G. (2012). Arzneim. Forsch. Drug Res. 62, 46–52.  CAS Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSpek, A. L. (2009). Acta Cryst. D65, 148–155.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 68| Part 3| March 2012| Pages o847-o848
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds