organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 68| Part 3| March 2012| Pages o845-o846

3,3′-[1,4-Phenyl­enebis(methyl­ene)]­bis­­(1-propyl­benzimidazolium) dichloride dihydrate

aSchool of Chemical Sciences, Universiti Sains Malaysia, 11800 USM, Penang, Malaysia, bDepartment of Chemistry, College of Education Samarra, University of Tikrit, Tikrit 43001, Iraq, and cX-ray Crystallography Unit, School of Physics, Universiti Sains Malaysia, 11800 USM, Penang, Malaysia
*Correspondence e-mail: hkfun@usm.my

(Received 18 February 2012; accepted 21 February 2012; online 24 February 2012)

The asymmetric unit of the title compound, C28H32N42+·2Cl·2H2O, contains half of a 3,3′-[1,4-phenyl­enebis(methyl­ene)]bis­(1-propyl­benzimidazolium) cation, one chloride anion and one water mol­ecule. The complete cation is generated by a crystallographic inversion center. The central benzene ring forms a dihedral angle of 66.06 (11)° with its adjacent benzimidazolium ring system. In the crystal, the cations, anions and water mol­ecules are linked by O—H⋯Cl, C—H⋯O and C—H⋯Cl hydrogen bonds into a three-dimensional network. The crystal packing is further stabilized by ππ inter­actions, with centroid–centroid distances of 3.5561 (15) and 3.6708 (15) Å.

Related literature

For details and applications of benzimidazole derivatives, see: Narasimhan et al. (2012[Narasimhan, B., Sharma, D. & Kumar, P. (2012). Med. Chem. Res. 21, 269-283.]). For related structures, see: Haque et al. (2011[Haque, R. A., Iqbal, M. A., Hemamalini, M. & Fun, H.-K. (2011). Acta Cryst. E67, o1814-o1815.], 2012[Haque, R. A., Iqbal, M. A., Budagumpi, S., Hemamalini, M. & Fun, H.-K. (2012). Acta Cryst. E68, o573.]); Iqbal et al. (2012[Iqbal, M. A., Haque, R. A., Fun, H.-K. & Chia, T. S. (2012). Acta Cryst. E68, o466-o467.]). For reference bond lengths, see: Allen et al. (1987[Allen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1-19.]). For the stability of the temperature controller used for data collection, see: Cosier & Glazer (1986[Cosier, J. & Glazer, A. M. (1986). J. Appl. Cryst. 19, 105-107.]).

[Scheme 1]

Experimental

Crystal data
  • C28H32N42+·2Cl·2H2O

  • Mr = 531.51

  • Monoclinic, P 21 /c

  • a = 8.1177 (5) Å

  • b = 9.1042 (5) Å

  • c = 18.3548 (11) Å

  • β = 94.323 (2)°

  • V = 1352.66 (14) Å3

  • Z = 2

  • Mo Kα radiation

  • μ = 0.27 mm−1

  • T = 100 K

  • 0.47 × 0.23 × 0.14 mm

Data collection
  • Bruker SMART APEXII CCD area-detector diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 2009[Bruker (2009). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]) Tmin = 0.882, Tmax = 0.962

  • 11942 measured reflections

  • 3085 independent reflections

  • 2660 reflections with I > 2σ(I)

  • Rint = 0.053

Refinement
  • R[F2 > 2σ(F2)] = 0.061

  • wR(F2) = 0.196

  • S = 1.08

  • 3085 reflections

  • 172 parameters

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.86 e Å−3

  • Δρmin = −0.48 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
O1W—H1W1⋯Cl1 0.93 (4) 2.29 (4) 3.200 (3) 166 (4)
O1W—H2W1⋯Cl1i 0.84 (5) 2.30 (4) 3.130 (3) 170 (4)
C1—H1A⋯Cl1ii 0.95 2.81 3.677 (3) 153
C4—H4B⋯Cl1i 0.99 2.77 3.741 (3) 167
C6—H6A⋯Cl1ii 0.95 2.76 3.691 (3) 165
C11—H11A⋯O1W 0.95 2.14 3.059 (4) 163
C12—H12A⋯Cl1 0.99 2.79 3.747 (3) 164
C12—H12B⋯Cl1iii 0.99 2.75 3.740 (3) 175
Symmetry codes: (i) [-x+1, y+{\script{1\over 2}}, -z+{\script{1\over 2}}]; (ii) [x, -y+{\script{3\over 2}}, z-{\script{1\over 2}}]; (iii) [-x+1, y-{\script{1\over 2}}, -z+{\script{1\over 2}}].

Data collection: APEX2 (Bruker, 2009[Bruker (2009). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2009[Bruker (2009). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXTL; molecular graphics: SHELXTL; software used to prepare material for publication: SHELXTL and PLATON (Spek, 2009[Spek, A. L. (2009). Acta Cryst. D65, 148-155.]).

Supporting information


Comment top

Benzimidazole constituted compounds have diverse biological and clinical applications (Narasimhan et al., 2012). Previously, we have reported crystal structures of ortho-xylyl linked bis-benzimidazolium salts with heptyl (Haque et al., 2011), propyl (Iqbal et al., 2012), and ethyl (Haque et al., 2012) substitutions. In this report, we describe the crystal structure of a para-xylyl linked bis-benzimidazolium salt with propyl substitutions.

The molecular structure of the title compound is shown in Fig. 1. The asymmetric unit of the title compound, C28H32N42+.2Cl-.2H2O, consists of one half-molecule of 3,3'-[1,4-phenylenebis(methylene)]bis(1-propyl-benzimidazolium) cation, one chlorine anion and one water molecule. The complete cation is generated by a crystallographic inversion center (-x, -y + 2, -z). The central benzene ring (C1–C3/C1A–C3A) forms a dihedral angle of 66.06 (11)° with its adjacent benzimidazolium ring (N1/N2/C5–C11) [maximum deviation = 0.031 (2) Å at atom C5]. Bond lengths (Allen et al., 1987) and angles are within normal ranges and are comparable to related structures (Haque et al., 2011,2012; Iqbal et al., 2012).

In the crystal structure, (Fig. 2), the cations, anions and water molecules are linked by intermolecular O1W—H1W1···Cl1, O1W—H2W1···Cl1, C1—H1A···Cl1, C4—H4B···Cl1, C6—H6A···Cl1, C11—H11A···O1W, C12—H12A···Cl1, and C12—H12B···Cl1 hydrogen bonds (Table 1) into a three-dimensional network. The crystal packing is further stabilized by ππ interactions with Cg1···Cg3 (1-x, 1-y, -z) distance = 3.5561 (15) Å and Cg3···Cg3 (1-x, 1-y, -z) distance = 3.6708 (15) Å, where Cg1 and Cg3 are the centroids of N1/N2/C5/C10/C11 and C5–C10 rings, respectively.

Related literature top

For details and applications of benzimidazole derivatives, see: Narasimhan et al. (2012). For related structures, see: Haque et al. (2011, 2012); Iqbal et al. (2012). For reference bond lengths, see: Allen et al. (1987). For the stability of the temperature controller used for data collection, see: Cosier & Glazer (1986).

Experimental top

A mixture of benzimidazole (2.95 g, 25 mmol) and finely ground potassium hydroxide (2.36 g, 30 mmol) in 30 ml of DMSO was stirred at room temperature (27–28 °C) for 30 min. 1-Bromopropane (2.27 ml, 25 mmol) was added drop-wise into this consistently stirred mixture with further stirring for 2 h at the same temperature. The mixture was then poured into water (400 ml) and was extracted by chloroform (5 x 20 ml). The extract was dried by magnesium sulfate and evaporated under reduced pressure to get N-ethylbenzimidazole (1) as a thick yellowish fluid. Furthermore, a mixture of 1 (1.60 g, 10 mmol) and 1,4-bis(chloromethyl)benzene (0.88 g, 5 mmol) in dioxane (30 ml) was refluxed at 100 °C for 18 h. This desired compound (2.2Cl) appeared as white precipitates in the light brown solution. The mixture was filtered and the precipitates were washed with fresh dioxane (3 × 5 ml), dried at room temperature for 24 h, and the soft lumps obtained were ground into a fine powder (2.15 g, 87%). Saturated solution of 2.2Cl in methanol (0.5 ml) was exposed to diethyl ether vapours (vapour diffusion) at room temperature overnight to get single crystals suitable for X-ray diffraction study.

Refinement top

Atoms H1W1 and H2W1 were located in a difference Fourier map and refined freely. The remaining H atoms were positioned geometrically [C—H = 0.95, 0.98 or 0.99 Å] and refined using a riding model with Uiso(H) = 1.2 or 1.5Ueq(C). A rotating group model was applied to the methyl group.

Computing details top

Data collection: APEX2 (Bruker, 2009); cell refinement: SAINT (Bruker, 2009); data reduction: SAINT (Bruker, 2009); program(s) used to solve structure: SHELXTL (Sheldrick, 2008); program(s) used to refine structure: SHELXTL (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008) and PLATON (Spek, 2009).

Figures top
[Figure 1] Fig. 1. The molecular structure of the title compound with atom labels and 50% probability displacement ellipsoids. Atoms with suffix A were generated by symmetry code -x, -y + 2, -z.
[Figure 2] Fig. 2. The crystal packing of the title compound. Intermolecular hydrogen bonds are shown as dashed lines. H atoms not involved in the hydrogen bonds have been omitted for clarity.
3,3'-[1,4-Phenylenebis(methylene)]bis(1-propylbenzimidazolium) dichloride dihydrate top
Crystal data top
C28H32N42+·2Cl·2H2OF(000) = 564
Mr = 531.51Dx = 1.305 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ybcCell parameters from 5809 reflections
a = 8.1177 (5) Åθ = 2.5–32.5°
b = 9.1042 (5) ŵ = 0.27 mm1
c = 18.3548 (11) ÅT = 100 K
β = 94.323 (2)°Block, colourless
V = 1352.66 (14) Å30.47 × 0.23 × 0.14 mm
Z = 2
Data collection top
Bruker SMART APEXII CCD area-detector
diffractometer
3085 independent reflections
Radiation source: fine-focus sealed tube2660 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.053
ϕ and ω scansθmax = 27.5°, θmin = 2.2°
Absorption correction: multi-scan
(SADABS; Bruker, 2009)
h = 1010
Tmin = 0.882, Tmax = 0.962k = 1111
11942 measured reflectionsl = 2223
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.061Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.196H atoms treated by a mixture of independent and constrained refinement
S = 1.08 w = 1/[σ2(Fo2) + (0.1065P)2 + 2.1866P]
where P = (Fo2 + 2Fc2)/3
3085 reflections(Δ/σ)max < 0.001
172 parametersΔρmax = 0.86 e Å3
0 restraintsΔρmin = 0.48 e Å3
Crystal data top
C28H32N42+·2Cl·2H2OV = 1352.66 (14) Å3
Mr = 531.51Z = 2
Monoclinic, P21/cMo Kα radiation
a = 8.1177 (5) ŵ = 0.27 mm1
b = 9.1042 (5) ÅT = 100 K
c = 18.3548 (11) Å0.47 × 0.23 × 0.14 mm
β = 94.323 (2)°
Data collection top
Bruker SMART APEXII CCD area-detector
diffractometer
3085 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 2009)
2660 reflections with I > 2σ(I)
Tmin = 0.882, Tmax = 0.962Rint = 0.053
11942 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0610 restraints
wR(F2) = 0.196H atoms treated by a mixture of independent and constrained refinement
S = 1.08Δρmax = 0.86 e Å3
3085 reflectionsΔρmin = 0.48 e Å3
172 parameters
Special details top

Experimental. The crystal was placed in the cold stream of an Oxford Cryosystems Cobra open-flow nitrogen cryostat (Cosier & Glazer, 1986) operating at 100.0 (1) K.

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Cl10.45230 (8)0.59270 (7)0.33489 (4)0.0240 (2)
O1W0.3206 (3)0.8654 (3)0.23712 (12)0.0269 (5)
N10.2941 (3)0.6933 (2)0.04689 (12)0.0175 (5)
N20.2605 (3)0.4951 (2)0.11124 (12)0.0179 (5)
C10.0921 (3)0.9600 (3)0.05784 (15)0.0201 (5)
H1A0.15490.93290.09740.024*
C20.1507 (3)0.9274 (3)0.01358 (15)0.0175 (5)
C30.0581 (3)0.9677 (3)0.07154 (15)0.0201 (5)
H3A0.09770.94580.12030.024*
C40.3152 (3)0.8500 (3)0.02876 (15)0.0206 (5)
H4A0.37960.85790.01480.025*
H4B0.37860.89940.06990.025*
C50.2927 (3)0.5759 (3)0.00194 (15)0.0170 (5)
C60.3152 (3)0.5696 (3)0.07626 (15)0.0194 (5)
H6A0.33060.65570.10420.023*
C70.3140 (3)0.4312 (3)0.10732 (15)0.0199 (5)
H7A0.32850.42230.15800.024*
C80.2918 (3)0.3032 (3)0.06619 (15)0.0206 (5)
H8A0.29170.21040.08980.025*
C90.2701 (3)0.3095 (3)0.00817 (15)0.0199 (5)
H9A0.25530.22350.03620.024*
C100.2715 (3)0.4492 (3)0.03924 (14)0.0172 (5)
C110.2750 (3)0.6401 (3)0.11360 (15)0.0197 (5)
H11A0.27220.69790.15660.024*
C120.2412 (3)0.3977 (3)0.17406 (14)0.0197 (5)
H12A0.27310.45150.21980.024*
H12B0.31640.31250.17130.024*
C130.0641 (3)0.3427 (3)0.17592 (14)0.0208 (5)
H13A0.02670.30060.12780.025*
H13B0.00930.42620.18560.025*
C140.0517 (4)0.2262 (3)0.23502 (16)0.0276 (6)
H14A0.06070.18650.23240.041*
H14B0.07790.27050.28320.041*
H14C0.13010.14680.22740.041*
H1W10.377 (6)0.792 (5)0.264 (2)0.050 (12)*
H2W10.392 (6)0.920 (5)0.220 (2)0.046 (12)*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Cl10.0237 (4)0.0186 (4)0.0300 (4)0.0012 (2)0.0043 (3)0.0029 (2)
O1W0.0269 (11)0.0265 (12)0.0276 (11)0.0050 (9)0.0037 (8)0.0007 (9)
N10.0159 (10)0.0109 (10)0.0254 (11)0.0014 (8)0.0009 (8)0.0022 (8)
N20.0163 (10)0.0152 (11)0.0219 (11)0.0002 (8)0.0001 (8)0.0025 (8)
C10.0189 (12)0.0129 (12)0.0289 (14)0.0010 (9)0.0052 (10)0.0004 (10)
C20.0162 (11)0.0066 (11)0.0300 (14)0.0004 (8)0.0041 (9)0.0003 (9)
C30.0210 (12)0.0111 (12)0.0281 (13)0.0007 (9)0.0024 (10)0.0003 (10)
C40.0173 (12)0.0119 (12)0.0328 (14)0.0002 (9)0.0032 (10)0.0003 (10)
C50.0116 (11)0.0110 (12)0.0280 (13)0.0000 (8)0.0012 (9)0.0017 (9)
C60.0154 (12)0.0143 (12)0.0281 (14)0.0004 (9)0.0010 (9)0.0032 (10)
C70.0184 (12)0.0169 (13)0.0242 (13)0.0016 (9)0.0004 (9)0.0020 (10)
C80.0204 (12)0.0159 (13)0.0251 (13)0.0017 (10)0.0010 (9)0.0038 (10)
C90.0171 (11)0.0124 (12)0.0301 (14)0.0004 (9)0.0013 (9)0.0013 (10)
C100.0122 (11)0.0168 (13)0.0224 (13)0.0013 (9)0.0010 (9)0.0009 (10)
C110.0142 (11)0.0191 (13)0.0257 (13)0.0028 (9)0.0001 (9)0.0029 (10)
C120.0186 (12)0.0179 (13)0.0223 (13)0.0027 (9)0.0013 (9)0.0042 (10)
C130.0175 (12)0.0221 (14)0.0227 (13)0.0023 (10)0.0017 (9)0.0001 (10)
C140.0257 (14)0.0284 (16)0.0291 (15)0.0031 (11)0.0054 (11)0.0054 (12)
Geometric parameters (Å, º) top
O1W—H1W10.93 (5)C6—C71.382 (4)
O1W—H2W10.84 (5)C6—H6A0.9500
N1—C111.337 (3)C7—C81.407 (4)
N1—C51.395 (3)C7—H7A0.9500
N1—C41.478 (3)C8—C91.390 (4)
N2—C111.326 (4)C8—H8A0.9500
N2—C101.395 (3)C9—C101.393 (4)
N2—C121.472 (3)C9—H9A0.9500
C1—C3i1.392 (4)C11—H11A0.9500
C1—C21.393 (4)C12—C131.526 (4)
C1—H1A0.9500C12—H12A0.9900
C2—C31.397 (4)C12—H12B0.9900
C2—C41.517 (3)C13—C141.526 (4)
C3—C1i1.392 (4)C13—H13A0.9900
C3—H3A0.9500C13—H13B0.9900
C4—H4A0.9900C14—H14A0.9800
C4—H4B0.9900C14—H14B0.9800
C5—C61.391 (4)C14—H14C0.9800
C5—C101.397 (4)
H1W1—O1W—H2W1107 (4)C9—C8—C7121.6 (2)
C11—N1—C5108.4 (2)C9—C8—H8A119.2
C11—N1—C4125.4 (2)C7—C8—H8A119.2
C5—N1—C4126.2 (2)C8—C9—C10116.2 (2)
C11—N2—C10108.5 (2)C8—C9—H9A121.9
C11—N2—C12126.1 (2)C10—C9—H9A121.9
C10—N2—C12125.4 (2)C9—C10—N2131.5 (2)
C3i—C1—C2120.2 (2)C9—C10—C5122.0 (2)
C3i—C1—H1A119.9N2—C10—C5106.5 (2)
C2—C1—H1A119.9N2—C11—N1110.3 (2)
C1—C2—C3119.7 (2)N2—C11—H11A124.8
C1—C2—C4120.4 (2)N1—C11—H11A124.8
C3—C2—C4119.9 (2)N2—C12—C13111.8 (2)
C1i—C3—C2120.1 (3)N2—C12—H12A109.3
C1i—C3—H3A120.0C13—C12—H12A109.3
C2—C3—H3A120.0N2—C12—H12B109.3
N1—C4—C2112.0 (2)C13—C12—H12B109.3
N1—C4—H4A109.2H12A—C12—H12B107.9
C2—C4—H4A109.2C12—C13—C14110.9 (2)
N1—C4—H4B109.2C12—C13—H13A109.5
C2—C4—H4B109.2C14—C13—H13A109.5
H4A—C4—H4B107.9C12—C13—H13B109.5
C6—C5—N1131.8 (2)C14—C13—H13B109.5
C6—C5—C10121.8 (2)H13A—C13—H13B108.1
N1—C5—C10106.3 (2)C13—C14—H14A109.5
C7—C6—C5116.4 (2)C13—C14—H14B109.5
C7—C6—H6A121.8H14A—C14—H14B109.5
C5—C6—H6A121.8C13—C14—H14C109.5
C6—C7—C8122.0 (2)H14A—C14—H14C109.5
C6—C7—H7A119.0H14B—C14—H14C109.5
C8—C7—H7A119.0
C3i—C1—C2—C30.1 (4)C8—C9—C10—N2177.0 (2)
C3i—C1—C2—C4179.4 (2)C8—C9—C10—C50.2 (4)
C1—C2—C3—C1i0.1 (4)C11—N2—C10—C9177.2 (3)
C4—C2—C3—C1i179.4 (2)C12—N2—C10—C91.1 (4)
C11—N1—C4—C286.9 (3)C11—N2—C10—C50.3 (3)
C5—N1—C4—C294.0 (3)C12—N2—C10—C5178.6 (2)
C1—C2—C4—N1103.9 (3)C6—C5—C10—C90.6 (4)
C3—C2—C4—N176.9 (3)N1—C5—C10—C9177.7 (2)
C11—N1—C5—C6176.6 (3)C6—C5—C10—N2177.2 (2)
C4—N1—C5—C62.6 (4)N1—C5—C10—N20.1 (3)
C11—N1—C5—C100.1 (3)C10—N2—C11—N10.3 (3)
C4—N1—C5—C10179.3 (2)C12—N2—C11—N1178.6 (2)
N1—C5—C6—C7176.8 (2)C5—N1—C11—N20.3 (3)
C10—C5—C6—C70.6 (4)C4—N1—C11—N2179.5 (2)
C5—C6—C7—C80.2 (4)C11—N2—C12—C13104.6 (3)
C6—C7—C8—C90.1 (4)C10—N2—C12—C1377.4 (3)
C7—C8—C9—C100.1 (4)N2—C12—C13—C14172.3 (2)
Symmetry code: (i) x, y+2, z.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O1W—H1W1···Cl10.93 (4)2.29 (4)3.200 (3)166 (4)
O1W—H2W1···Cl1ii0.84 (5)2.30 (4)3.130 (3)170 (4)
C1—H1A···Cl1iii0.952.813.677 (3)153
C4—H4B···Cl1ii0.992.773.741 (3)167
C6—H6A···Cl1iii0.952.763.691 (3)165
C11—H11A···O1W0.952.143.059 (4)163
C12—H12A···Cl10.992.793.747 (3)164
C12—H12B···Cl1iv0.992.753.740 (3)175
Symmetry codes: (ii) x+1, y+1/2, z+1/2; (iii) x, y+3/2, z1/2; (iv) x+1, y1/2, z+1/2.

Experimental details

Crystal data
Chemical formulaC28H32N42+·2Cl·2H2O
Mr531.51
Crystal system, space groupMonoclinic, P21/c
Temperature (K)100
a, b, c (Å)8.1177 (5), 9.1042 (5), 18.3548 (11)
β (°) 94.323 (2)
V3)1352.66 (14)
Z2
Radiation typeMo Kα
µ (mm1)0.27
Crystal size (mm)0.47 × 0.23 × 0.14
Data collection
DiffractometerBruker SMART APEXII CCD area-detector
diffractometer
Absorption correctionMulti-scan
(SADABS; Bruker, 2009)
Tmin, Tmax0.882, 0.962
No. of measured, independent and
observed [I > 2σ(I)] reflections
11942, 3085, 2660
Rint0.053
(sin θ/λ)max1)0.650
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.061, 0.196, 1.08
No. of reflections3085
No. of parameters172
H-atom treatmentH atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å3)0.86, 0.48

Computer programs: APEX2 (Bruker, 2009), SAINT (Bruker, 2009), SHELXTL (Sheldrick, 2008) and PLATON (Spek, 2009).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O1W—H1W1···Cl10.93 (4)2.29 (4)3.200 (3)166 (4)
O1W—H2W1···Cl1i0.84 (5)2.30 (4)3.130 (3)170 (4)
C1—H1A···Cl1ii0.952.813.677 (3)153
C4—H4B···Cl1i0.992.773.741 (3)167
C6—H6A···Cl1ii0.952.763.691 (3)165
C11—H11A···O1W0.952.143.059 (4)163
C12—H12A···Cl10.992.793.747 (3)164
C12—H12B···Cl1iii0.992.753.740 (3)175
Symmetry codes: (i) x+1, y+1/2, z+1/2; (ii) x, y+3/2, z1/2; (iii) x+1, y1/2, z+1/2.
 

Footnotes

Thomson Reuters ResearcherID: A-3561-2009.

Acknowledgements

RAH thanks Universiti Sains Malaysia (USM) for the Research University (RU) grants Nos. 1001/PKIMIA/811157 and 1001/PKIMIA/823082. MAI is grateful to (IPS) USM for financial support [fellowship USM.IPS/JWT/1/19 (JLD 6)] and a research attachment fund [P-KM0018/10(R) − 308/AIPS/415401]. HKF and TSC thank USM for the RU grant No. 1001/PFIZIK/811160. TSC thanks the Malaysian Government and USM for the award of the post of Research Officer under the RU grant No. 1001/PSKBP/8630013.

References

First citationAllen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1–19.  CrossRef Web of Science Google Scholar
First citationBruker (2009). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationCosier, J. & Glazer, A. M. (1986). J. Appl. Cryst. 19, 105–107.  CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationHaque, R. A., Iqbal, M. A., Budagumpi, S., Hemamalini, M. & Fun, H.-K. (2012). Acta Cryst. E68, o573.  CSD CrossRef IUCr Journals Google Scholar
First citationHaque, R. A., Iqbal, M. A., Hemamalini, M. & Fun, H.-K. (2011). Acta Cryst. E67, o1814–o1815.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationIqbal, M. A., Haque, R. A., Fun, H.-K. & Chia, T. S. (2012). Acta Cryst. E68, o466–o467.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationNarasimhan, B., Sharma, D. & Kumar, P. (2012). Med. Chem. Res. 21, 269–283.  Web of Science CrossRef CAS Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSpek, A. L. (2009). Acta Cryst. D65, 148–155.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 68| Part 3| March 2012| Pages o845-o846
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds