organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

1,2-Bis[(3,6,9-tri­methyl-3,12-ep­­oxy-3,4,5,5a,6,7,8,8a,9,10,12,12a-dodeca­hydro­pyrano[4,3-j][1,2]benzodioxepin-4-yl)­­oxy]ethane

aSchool of Pharmacy, Heilongjiang University of Chinese Medicine, Harbin 150040, People's Republic of China, bSchool of Chemistry and Materials Science, Heilongjiang University, Harbin 150080, People's Republic of China, and cHeilongjiang Environmental Monitoring Central Station, Harbin 150056, People's Republic of China
*Correspondence e-mail: wsjlw@yahoo.cn

(Received 27 December 2011; accepted 5 February 2012; online 10 February 2012)

The title compound, C32H50O10, prepared from a mixture of α- and β-dihydro­artemisinin, has two β-arteether moieties linked via an –OCH2CH2O– bridge, so that the mol­ecule is symmetric about the bridge. Each asymmetric unit contains a β-arteether moiety and an –OCH2 group, which is only one-half of the mol­ecule. The endo-peroxide bridges of the parent compounds have been retained in each half of the diol-bridged dimer. The rings exhibit chair and twist-boat conformations.

Related literature

For related literature and structures, see: Brossi et al. (1988[Brossi, A., Venugopalan, B., Dominguez Gerpe, L., Yeh, H. J. C., Flippen-Anderson, J. L., Buchs, P., Luo, X. D., Milhous, W. & Peters, W. (1988). J. Med. Chem. 31, 645-650.]); Dominguez Gerpe et al. (1988[Dominguez Gerpe, L., Yeh, H. J. C., Brossi, A. & Flippen-Anderson, J. L. (1988). Heterocycles, 27, 897-901.]); Flack & Bernardinelli (2000[Flack, H. D. & Bernardinelli, G. (2000). J. Appl. Cryst. 33, 1143-1148.]); Flippen-Anderson et al. (1989[Flippen-Anderson, J. L., George, C., Gilardi, R., Yu, Q.-S., Dominguez, L. & Brossi, A. (1989). Acta Cryst. C45, 292-294.]); Haynes et al. (2002[Haynes, R. K., Chan, H. W., Cheung, M. K., Lam, W. L., Soo, M. K., Tsang, H. W., Voerste, A. & Williams, I. D. (2002). Eur. J. Org. Chem. pp. 113-132.]); Luo et al. (1984[Luo, X. D., Yeh, H. J. C., Brossi, A., Flippen-Anderson, J. L. & Gilardi, R. (1984). Helv. Chim. Acta, 67, 1515-1522.]); Paik et al. (2006[Paik, I.-H., Xie, S., Shapiro, T. A., Labonte, T., Amy, A., Sarjeant, N., Baege, A. C. & Posner, G. H. (2006). J. Med. Chem. 49, 2731-2734.]); Qinghaosu Research Group (1980[Qinghaosu Research Group (1980). Sci. Sin. (Engl. Ed.), 23, 380-396.]); Venugopalan et al. (1995[Venugopalan, B., Karnik, P. J., Bapat, C. P., Catterjee, D. K., Iyer, N. & Lepcha, D. (1995). Eur. J. Med. Chem. 30, 697-706.]); Woerdenbag et al. (1993[Woerdenbag, H. J., Moskal, T. A., Pras, N., Malingre, T. M., El-Feraly, F. S., Kampinga, H. H. & Konings, A. W. T. (1993). J. Nat. Prod. 56, 849-856.]); Yue et al. (2006[Yue, Z.-Y., Li, S.-H., Gao, P., Zhang, J.-H. & Yan, P.-F. (2006). Acta Cryst. C62, o281-o282.]). For the synthesis, see: Posner et al. (1997[Posner, G. H., Ploypradith, P., Hapangama, W., Wang, D., Cumming, J. N., Dolan, P., Kensler, T. W., Klinedinst, D., Shapiro, T. A., Zheng, Q. Y., Murray, C. K., Pilkington, L. G., Jayasinghe, L. R., Bray, J. F. & Daughenbaugh, R. (1997). Bioorg. Med. Chem. 5, 1257-1265.]). For puckering parameters, see: Cremer & Pople (1975[Cremer, D. & Pople, J. A. (1975). J. Am. Chem. Soc. 97, 1354-1358.]).

[Scheme 1]

Experimental

Crystal data
  • C32H50O10

  • Mr = 594.72

  • Monoclinic, C 2

  • a = 18.033 (4) Å

  • b = 9.3127 (19) Å

  • c = 11.061 (2) Å

  • β = 123.58 (3)°

  • V = 1547.5 (8) Å3

  • Z = 2

  • Mo Kα radiation

  • μ = 0.09 mm−1

  • T = 295 K

  • 0.42 × 0.38 × 0.31 mm

Data collection
  • Rigaku R-AXIS RAPID diffractometer

  • Absorption correction: multi-scan (ABSCOR; Higashi, 1995[Higashi, T. (1995). ABSCOR. Rigaku Corporation, Tokyo, Japan.]) Tmin = 0.962, Tmax = 0.972

  • 6717 measured reflections

  • 1614 independent reflections

  • 1195 reflections with I > 2σ(I)

  • Rint = 0.043

Refinement
  • R[F2 > 2σ(F2)] = 0.042

  • wR(F2) = 0.129

  • S = 1.10

  • 1614 reflections

  • 194 parameters

  • 1 restraint

  • H-atom parameters constrained

  • Δρmax = 0.20 e Å−3

  • Δρmin = −0.20 e Å−3

Data collection: RAPID-AUTO (Rigaku, 1998[Rigaku (1998). RAPID-AUTO. Rigaku Corporation, Tokyo, Japan.]); cell refinement: RAPID-AUTO; data reduction: CrystalStructure (Rigaku/MSC, 2002[Rigaku/MSC (2002). CrystalStructure. Rigaku/MSC Inc., The Woodlands, Texas, USA.]); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: ORTEPII (Johnson, 1976[Johnson, C. K. (1976). ORTEPII. Report ORNL-5138. Oak Ridge National Laboratory, Tennessee, USA.]); software used to prepare material for publication: SHELXL97.

Supporting information


Comment top

Dihydroartemisinin is reported to be more therapeutically active than the parent compound. Some trioxane dimers have been found to possess high antimalarial activities (Venugopalan et al., 1995) and moderate antitumor activities. (Woerdenbag et al., 1993). The dihydroartemisinin triethylene glycol dimers, have strong in vitro growth-inhibitory activity. The dimer with β-stereochemistry at both of the lactol acetal positions is very active and highly antiproliferative (Posner et al., 1997). We conclude, therefore, that the stereochemistry of the diol linkage is an important determinant for cytotoxicity. We chose the simplified analogue, the title compound, whose structure and activity have not been reported, to find out the relationship between the activity and stereo-structure. Hence, knowledge of the structure of the title compound is of interest and is reported here.

The X-ray structures of artemisinin and artemisinin derivatives have been reported, including dihydroartemisinin, artemether, artesunic acid (Luo et al., 1984), both cis-deoxyarteether (Brossi et al., 1988) and trans-deoxyarteether (Dominguez Gerpe et al., 1988), α-artesunate, β-artesunate (Haynes et al., 2002), the symmetric form of the ether dimer of deoxydihydroartemisinin (Flippen-Anderson et al.,1989), the asymmetric form of the ether dimer of dihydroartemisinin (Yue et al., 2006), and the phthalate dimer (Paik et al. 2006). Although the endoperoxide group is an important determinant for cytotoxicity, no crystal structure of a diol dimer of dihydroartemisinin with a peroxy unit has been reported previously. We report here the crystal structure of a diol dimer of dihydroartemisinin, the title compound, which is a diol dimer of dihydroartemisinin with a unique 1,2,4-trioxane peroxy bridge.

The title molecule is symmetrical. Each moiety of the dimer is totally the same, hence we describe only the asymmetric unit here.

The seven-membered ring A(C1/C2/C3/C4/C12/O2/O1) includes key peroxy linkages [O1—O2 = 1.463 (3) Å]. The length of peroxy linkages is very close to that of the ether dimer of dihydroartemisinin (1.467 (4) Å and 1.461 (3) Å respectively) (Yue et al.,2006). The six-membered ring B(C4/C5/C6/C7/C8/C12) has a distorted chair conformation, with Cremer & Pople (1975) puckering parameters Q, θ and ϕ of 0.5422 (42) Å, 8.33 (43)° and 150 (3)°. For an ideal chair, θ has a value of 0 or 180°. The six-membered ring C(O4/C10/C9/C8/C12/C11) also has a distorted chair conformation, with puckering parameters Q, θ and ϕ of 0.5157 (39) Å, 179.09 (44)°, 93 (20)°. Similar conformations were found in the corresponding six-membered rings of dihydroartemisinin(Luo et al., 1984). The six-membered ring involving the endoperoxide bridges D(C1/O1/O2/C12/C11/O3), is best described by a twist-boat conformation, for which the puckering parameters Q, θ and ϕ are 0.7463 (38) Å, 85.77 (27)°, 335.6 (3)°. For an ideal twist-boat conformation, θ and ϕ are 90 and (60n + 30)° respectively. In contrast, the six-membered ring formed by the endoperoxide bridge in dihydroartemisinin has a distorted boat conformation.

Related literature top

For related literature and structures, see: Brossi et al. (1988); Dominguez Gerpe et al. (1988); Flack & Bernardinelli (2000); Flippen-Anderson et al. (1989); Haynes et al. (2002); Luo et al. (1984); Paik et al. (2006); Qinghaosu Research Group (1980); Venugopalan et al. (1995); Woerdenbag et al. (1993); Yue et al. (2006). For the synthesis, see: Posner et al. (1997). For puckering parameters, see: Cremer & Pople (1975).

Experimental top

The title compound has been prepared according to a literature procedure (Posner et al., 1997). To a solution of dihydroartemisinin (297 mg, 1.05 mmol) in toluene (30 mL) at 293~298 K, glycol (0.029 mL, 0.53 mmol) was added followed by BF3Et2O (0.032 mL, 0.26 mmol). The reaction was stirred at the same temperature for 3 h. The mixture was then diluted with methylene chloride and was washed twice with water. The organic portions were collected, dried over (MgSO4) and concentrated. The crude product was purified by column chromatography (flash, 7–20% ethyl acetate/petro ether) to produce the title compound (50.7 mg, 0.085 mmol, yield 17%). Crystals were obtained from ether, diffused with hexane at room temperature.

Refinement top

The methyl H atoms were constrained to an ideal geometry (C—H = 0.96 Å) with Uiso(H) = 1.5Ueq(C), but were allowed to rotate freely about the C—C bonds. All other H atoms were placed in geometrically idealized positions and constrained to ride on their parent C atoms at distances of 0.97 or 0.98 Å for methylene or methine groups, respectively, and with Uiso(H) = 1.2Ueq(C). As there are no significant anomalous scatterers in the molecule, attempts to confirm the absolute structure by refinement of the Flack parameter (Flack & Bernardinelli, 2000) in the presence of 1614 sets of Friedel equivalents led to an inconclusive value for the parameter. Therefore, the Friedel pairs were merged before the final refinement and the absolute configuration was assigned to correspond to that determined for artemisinin (Qinghaosu Research Group, 1980).

Computing details top

Data collection: RAPID-AUTO (Rigaku, 1998); cell refinement: RAPID-AUTO (Rigaku, 1998); data reduction: CrystalStructure (Rigaku/MSC, 2002); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEPII (Johnson, 1976); software used to prepare material for publication: SHELXL97 (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. View of the asymmetric unit showing with the atom-labeling and with displacement ellipsoids drawn at the 30% probability level.
1,2-Bis[(3,6,9-trimethyl-3,12-epoxy-3,4,5,5a,6,7,8,8a,9,10,12,12a- dodecahydropyrano[4,3-j][1,2]benzodioxepin-4-yl)oxy]ethane top
Crystal data top
C32H50O10F(000) = 644
Mr = 594.72Dx = 1.276 Mg m3
Monoclinic, C2Mo Kα radiation, λ = 0.71073 Å
Hall symbol: C 2yCell parameters from 5507 reflections
a = 18.033 (4) Åθ = 3.7–26.0°
b = 9.3127 (19) ŵ = 0.09 mm1
c = 11.061 (2) ÅT = 295 K
β = 123.58 (3)°Prism, colorless
V = 1547.5 (8) Å30.42 × 0.38 × 0.31 mm
Z = 2
Data collection top
Rigaku R-AXIS RAPID
diffractometer
1614 independent reflections
Radiation source: fine-focus sealed tube1195 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.043
Detector resolution: 10.000 pixels mm-1θmax = 26.0°, θmin = 3.7°
ω scansh = 2222
Absorption correction: multi-scan
(ABSCOR; Higashi, 1995)
k = 119
Tmin = 0.962, Tmax = 0.972l = 1313
6717 measured reflections
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.042Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.129H-atom parameters constrained
S = 1.10 w = 1/[σ2(Fo2) + (0.0715P)2 + 0.1671P]
where P = (Fo2 + 2Fc2)/3
1614 reflections(Δ/σ)max < 0.001
194 parametersΔρmax = 0.20 e Å3
1 restraintΔρmin = 0.20 e Å3
Crystal data top
C32H50O10V = 1547.5 (8) Å3
Mr = 594.72Z = 2
Monoclinic, C2Mo Kα radiation
a = 18.033 (4) ŵ = 0.09 mm1
b = 9.3127 (19) ÅT = 295 K
c = 11.061 (2) Å0.42 × 0.38 × 0.31 mm
β = 123.58 (3)°
Data collection top
Rigaku R-AXIS RAPID
diffractometer
1614 independent reflections
Absorption correction: multi-scan
(ABSCOR; Higashi, 1995)
1195 reflections with I > 2σ(I)
Tmin = 0.962, Tmax = 0.972Rint = 0.043
6717 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0421 restraint
wR(F2) = 0.129H-atom parameters constrained
S = 1.10Δρmax = 0.20 e Å3
1614 reflectionsΔρmin = 0.20 e Å3
194 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
O10.85534 (15)0.7920 (3)0.4203 (3)0.0696 (7)
O20.81128 (13)0.6711 (3)0.4401 (2)0.0638 (7)
O30.76331 (14)0.7918 (3)0.1695 (2)0.0578 (6)
O40.68018 (14)0.8818 (2)0.2453 (3)0.0600 (6)
O50.52997 (15)0.8430 (3)0.1553 (3)0.0655 (7)
C10.8536 (2)0.7701 (5)0.2924 (4)0.0638 (9)
C20.8844 (2)0.6212 (5)0.2839 (5)0.0741 (11)
H2A0.91720.62840.23820.089*
H2B0.92510.58580.38180.089*
C30.8104 (2)0.5128 (4)0.2012 (5)0.0694 (10)
H3A0.83690.42110.20410.083*
H3B0.77400.54270.10050.083*
C40.7496 (2)0.4904 (4)0.2559 (4)0.0590 (8)
H4A0.78360.43070.34310.071*
C50.6668 (2)0.4016 (4)0.1475 (4)0.0652 (9)
H50.63360.45460.05570.078*
C60.6066 (2)0.3825 (4)0.2020 (4)0.0700 (10)
H6A0.55350.33080.12980.084*
H6B0.63710.32550.29010.084*
C70.5804 (2)0.5246 (4)0.2323 (4)0.0642 (9)
H7A0.54080.50850.26450.077*
H7B0.54850.58050.14350.077*
C80.6620 (2)0.6093 (4)0.3487 (4)0.0576 (8)
H80.69170.54950.43620.069*
C90.6407 (2)0.7511 (4)0.3906 (4)0.0634 (9)
H90.69640.78250.47860.076*
C100.6163 (2)0.8677 (4)0.2800 (4)0.0643 (9)
H100.61470.95860.32310.077*
C110.6992 (2)0.7533 (3)0.1973 (4)0.0505 (7)
H110.64520.72320.10590.061*
C120.72923 (18)0.6310 (4)0.3060 (3)0.0497 (7)
C130.9078 (3)0.8911 (6)0.2898 (5)0.0916 (15)
H13A0.89080.97960.31250.137*
H13B0.89740.89770.19500.137*
H13C0.96980.87320.36030.137*
C140.6926 (4)0.2560 (5)0.1183 (6)0.0950 (14)
H14A0.72750.20400.20780.143*
H14B0.72690.27000.07680.143*
H14C0.63980.20250.05200.143*
C150.5731 (3)0.7405 (6)0.4325 (5)0.0923 (15)
H15A0.51620.71370.34900.138*
H15B0.56840.83180.46800.138*
H15C0.59240.66930.50700.138*
C160.4917 (3)0.9620 (4)0.0595 (5)0.0737 (10)
H16A0.51561.04980.11520.088*
H16B0.42800.96190.01620.088*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
O10.0611 (13)0.0951 (18)0.0531 (14)0.0343 (13)0.0319 (11)0.0154 (14)
O20.0523 (11)0.0890 (17)0.0424 (12)0.0224 (12)0.0214 (9)0.0031 (12)
O30.0544 (11)0.0700 (15)0.0532 (13)0.0115 (10)0.0324 (10)0.0023 (11)
O40.0605 (13)0.0547 (13)0.0710 (16)0.0134 (11)0.0401 (12)0.0100 (12)
O50.0583 (12)0.0607 (14)0.0762 (17)0.0088 (11)0.0364 (12)0.0090 (13)
C10.0488 (17)0.091 (2)0.0528 (19)0.0159 (17)0.0287 (15)0.0025 (19)
C20.0547 (19)0.098 (3)0.073 (3)0.002 (2)0.0372 (18)0.007 (2)
C30.067 (2)0.078 (3)0.067 (2)0.0031 (18)0.0399 (19)0.002 (2)
C40.0566 (17)0.061 (2)0.050 (2)0.0021 (15)0.0237 (15)0.0081 (16)
C50.073 (2)0.056 (2)0.055 (2)0.0097 (17)0.0284 (18)0.0009 (17)
C60.073 (2)0.060 (2)0.062 (2)0.0256 (18)0.0282 (18)0.0002 (19)
C70.0589 (18)0.068 (2)0.065 (2)0.0213 (16)0.0337 (17)0.0048 (18)
C80.0548 (17)0.071 (2)0.0455 (18)0.0178 (15)0.0267 (15)0.0040 (17)
C90.0580 (18)0.086 (2)0.054 (2)0.0178 (17)0.0354 (16)0.0146 (19)
C100.0571 (17)0.068 (2)0.074 (2)0.0143 (17)0.0399 (17)0.020 (2)
C110.0509 (17)0.0509 (17)0.0500 (18)0.0146 (13)0.0281 (15)0.0052 (14)
C120.0446 (14)0.0619 (19)0.0361 (15)0.0144 (13)0.0183 (12)0.0016 (14)
C130.073 (2)0.129 (4)0.079 (3)0.044 (3)0.046 (2)0.013 (3)
C140.116 (3)0.066 (3)0.100 (4)0.009 (2)0.057 (3)0.013 (3)
C150.087 (3)0.129 (4)0.086 (3)0.030 (3)0.063 (3)0.024 (3)
C160.071 (2)0.0533 (19)0.093 (3)0.0042 (17)0.043 (2)0.005 (2)
Geometric parameters (Å, º) top
O1—C11.412 (4)C6—H6B0.9700
O1—O21.463 (3)C7—C81.532 (4)
O2—C121.450 (3)C7—H7A0.9700
O3—C111.397 (3)C7—H7B0.9700
O3—C11.446 (4)C8—C91.518 (5)
O4—C101.407 (4)C8—C121.538 (4)
O4—C111.426 (4)C8—H80.9800
O5—C101.416 (4)C9—C101.508 (5)
O5—C161.421 (5)C9—C151.528 (5)
C1—C131.502 (5)C9—H90.9800
C1—C21.516 (6)C10—H100.9800
C2—C31.512 (6)C11—C121.522 (4)
C2—H2A0.9700C11—H110.9800
C2—H2B0.9700C13—H13A0.9600
C3—C41.532 (5)C13—H13B0.9600
C3—H3A0.9700C13—H13C0.9600
C3—H3B0.9700C14—H14A0.9600
C4—C51.539 (5)C14—H14B0.9600
C4—C121.544 (5)C14—H14C0.9600
C4—H4A0.9800C15—H15A0.9600
C5—C61.515 (5)C15—H15B0.9600
C5—C141.525 (6)C15—H15C0.9600
C5—H50.9800C16—C16i1.504 (9)
C6—C71.504 (5)C16—H16A0.9700
C6—H6A0.9700C16—H16B0.9700
C1—O1—O2109.0 (2)C7—C8—H8106.5
C12—O2—O1112.1 (2)C12—C8—H8106.5
C11—O3—C1113.3 (2)C10—C9—C8112.8 (3)
C10—O4—C11115.2 (2)C10—C9—C15111.6 (3)
C10—O5—C16114.8 (3)C8—C9—C15114.6 (3)
O1—C1—O3108.1 (3)C10—C9—H9105.6
O1—C1—C13104.9 (3)C8—C9—H9105.6
O3—C1—C13106.5 (3)C15—C9—H9105.6
O1—C1—C2112.8 (3)O4—C10—O5112.0 (3)
O3—C1—C2109.3 (3)O4—C10—C9111.9 (3)
C13—C1—C2114.8 (3)O5—C10—C9110.1 (3)
C3—C2—C1114.7 (3)O4—C10—H10107.6
C3—C2—H2A108.6O5—C10—H10107.6
C1—C2—H2A108.6C9—C10—H10107.6
C3—C2—H2B108.6O3—C11—O4105.4 (2)
C1—C2—H2B108.6O3—C11—C12113.0 (2)
H2A—C2—H2B107.6O4—C11—C12112.8 (2)
C2—C3—C4115.9 (3)O3—C11—H11108.5
C2—C3—H3A108.3O4—C11—H11108.5
C4—C3—H3A108.3C12—C11—H11108.5
C2—C3—H3B108.3O2—C12—C11109.4 (2)
C4—C3—H3B108.3O2—C12—C8104.6 (2)
H3A—C3—H3B107.4C11—C12—C8110.1 (2)
C3—C4—C5111.3 (3)O2—C12—C4106.0 (2)
C3—C4—C12113.0 (3)C11—C12—C4113.7 (2)
C5—C4—C12114.5 (3)C8—C12—C4112.5 (2)
C3—C4—H4A105.7C1—C13—H13A109.5
C5—C4—H4A105.7C1—C13—H13B109.5
C12—C4—H4A105.7H13A—C13—H13B109.5
C6—C5—C14110.4 (3)C1—C13—H13C109.5
C6—C5—C4110.7 (3)H13A—C13—H13C109.5
C14—C5—C4111.3 (3)H13B—C13—H13C109.5
C6—C5—H5108.1C5—C14—H14A109.5
C14—C5—H5108.1C5—C14—H14B109.5
C4—C5—H5108.1H14A—C14—H14B109.5
C7—C6—C5111.5 (3)C5—C14—H14C109.5
C7—C6—H6A109.3H14A—C14—H14C109.5
C5—C6—H6A109.3H14B—C14—H14C109.5
C7—C6—H6B109.3C9—C15—H15A109.5
C5—C6—H6B109.3C9—C15—H15B109.5
H6A—C6—H6B108.0H15A—C15—H15B109.5
C6—C7—C8111.5 (3)C9—C15—H15C109.5
C6—C7—H7A109.3H15A—C15—H15C109.5
C8—C7—H7A109.3H15B—C15—H15C109.5
C6—C7—H7B109.3O5—C16—C16i113.8 (3)
C8—C7—H7B109.3O5—C16—H16A108.8
H7A—C7—H7B108.0C16i—C16—H16A108.8
C9—C8—C7114.6 (3)O5—C16—H16B108.8
C9—C8—C12110.8 (3)C16i—C16—H16B108.8
C7—C8—C12111.3 (3)H16A—C16—H16B107.7
C9—C8—H8106.5
C1—O1—O2—C1244.0 (3)C8—C9—C10—O451.6 (4)
O2—O1—C1—O372.2 (3)C15—C9—C10—O4177.6 (3)
O2—O1—C1—C13174.5 (3)C8—C9—C10—O573.6 (3)
O2—O1—C1—C248.8 (3)C15—C9—C10—O557.2 (4)
C11—O3—C1—O131.6 (4)C1—O3—C11—O492.6 (3)
C11—O3—C1—C13143.8 (3)C1—O3—C11—C1231.0 (4)
C11—O3—C1—C291.6 (3)C10—O4—C11—O3180.0 (3)
O1—C1—C2—C394.4 (4)C10—O4—C11—C1256.3 (3)
O3—C1—C2—C325.9 (4)O1—O2—C12—C1117.4 (3)
C13—C1—C2—C3145.5 (4)O1—O2—C12—C8135.4 (2)
C1—C2—C3—C456.7 (5)O1—O2—C12—C4105.6 (3)
C2—C3—C4—C5168.8 (3)O3—C11—C12—O257.2 (3)
C2—C3—C4—C1238.4 (4)O4—C11—C12—O262.2 (3)
C3—C4—C5—C6179.1 (3)O3—C11—C12—C8171.6 (3)
C12—C4—C5—C649.4 (4)O4—C11—C12—C852.2 (3)
C3—C4—C5—C1457.7 (4)O3—C11—C12—C461.0 (3)
C12—C4—C5—C14172.7 (3)O4—C11—C12—C4179.6 (2)
C14—C5—C6—C7179.8 (3)C9—C8—C12—O268.0 (3)
C4—C5—C6—C756.0 (4)C7—C8—C12—O2163.2 (3)
C5—C6—C7—C860.4 (4)C9—C8—C12—C1149.4 (3)
C6—C7—C8—C9177.2 (3)C7—C8—C12—C1179.4 (3)
C6—C7—C8—C1256.1 (4)C9—C8—C12—C4177.4 (3)
C7—C8—C9—C1077.1 (3)C7—C8—C12—C448.6 (4)
C12—C8—C9—C1049.9 (4)C3—C4—C12—O271.1 (3)
C7—C8—C9—C1552.1 (4)C5—C4—C12—O2160.1 (3)
C12—C8—C9—C15179.1 (3)C3—C4—C12—C1149.1 (4)
C11—O4—C10—O569.3 (4)C5—C4—C12—C1179.8 (3)
C11—O4—C10—C954.9 (4)C3—C4—C12—C8175.2 (3)
C16—O5—C10—O469.2 (4)C5—C4—C12—C846.4 (4)
C16—O5—C10—C9165.7 (3)C10—O5—C16—C16i92.8 (4)
Symmetry code: (i) x+1, y, z.

Experimental details

Crystal data
Chemical formulaC32H50O10
Mr594.72
Crystal system, space groupMonoclinic, C2
Temperature (K)295
a, b, c (Å)18.033 (4), 9.3127 (19), 11.061 (2)
β (°) 123.58 (3)
V3)1547.5 (8)
Z2
Radiation typeMo Kα
µ (mm1)0.09
Crystal size (mm)0.42 × 0.38 × 0.31
Data collection
DiffractometerRigaku R-AXIS RAPID
diffractometer
Absorption correctionMulti-scan
(ABSCOR; Higashi, 1995)
Tmin, Tmax0.962, 0.972
No. of measured, independent and
observed [I > 2σ(I)] reflections
6717, 1614, 1195
Rint0.043
(sin θ/λ)max1)0.617
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.042, 0.129, 1.10
No. of reflections1614
No. of parameters194
No. of restraints1
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.20, 0.20

Computer programs: RAPID-AUTO (Rigaku, 1998), CrystalStructure (Rigaku/MSC, 2002), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), ORTEPII (Johnson, 1976).

 

References

First citationBrossi, A., Venugopalan, B., Dominguez Gerpe, L., Yeh, H. J. C., Flippen-Anderson, J. L., Buchs, P., Luo, X. D., Milhous, W. & Peters, W. (1988). J. Med. Chem. 31, 645–650.  CSD CrossRef CAS PubMed Web of Science Google Scholar
First citationCremer, D. & Pople, J. A. (1975). J. Am. Chem. Soc. 97, 1354–1358.  CrossRef CAS Web of Science Google Scholar
First citationDominguez Gerpe, L., Yeh, H. J. C., Brossi, A. & Flippen-Anderson, J. L. (1988). Heterocycles, 27, 897–901.  CAS Google Scholar
First citationFlack, H. D. & Bernardinelli, G. (2000). J. Appl. Cryst. 33, 1143–1148.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationFlippen-Anderson, J. L., George, C., Gilardi, R., Yu, Q.-S., Dominguez, L. & Brossi, A. (1989). Acta Cryst. C45, 292–294.  CSD CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationHaynes, R. K., Chan, H. W., Cheung, M. K., Lam, W. L., Soo, M. K., Tsang, H. W., Voerste, A. & Williams, I. D. (2002). Eur. J. Org. Chem. pp. 113–132.  CSD CrossRef Google Scholar
First citationHigashi, T. (1995). ABSCOR. Rigaku Corporation, Tokyo, Japan.  Google Scholar
First citationJohnson, C. K. (1976). ORTEPII. Report ORNL–5138. Oak Ridge National Laboratory, Tennessee, USA.  Google Scholar
First citationLuo, X. D., Yeh, H. J. C., Brossi, A., Flippen-Anderson, J. L. & Gilardi, R. (1984). Helv. Chim. Acta, 67, 1515–1522.  CSD CrossRef CAS Web of Science Google Scholar
First citationPaik, I.-H., Xie, S., Shapiro, T. A., Labonte, T., Amy, A., Sarjeant, N., Baege, A. C. & Posner, G. H. (2006). J. Med. Chem. 49, 2731–2734.  Web of Science CSD CrossRef PubMed CAS Google Scholar
First citationPosner, G. H., Ploypradith, P., Hapangama, W., Wang, D., Cumming, J. N., Dolan, P., Kensler, T. W., Klinedinst, D., Shapiro, T. A., Zheng, Q. Y., Murray, C. K., Pilkington, L. G., Jayasinghe, L. R., Bray, J. F. & Daughenbaugh, R. (1997). Bioorg. Med. Chem. 5, 1257–1265.  CrossRef CAS PubMed Web of Science Google Scholar
First citationQinghaosu Research Group (1980). Sci. Sin. (Engl. Ed.), 23, 380–396.  Google Scholar
First citationRigaku (1998). RAPID-AUTO. Rigaku Corporation, Tokyo, Japan.  Google Scholar
First citationRigaku/MSC (2002). CrystalStructure. Rigaku/MSC Inc., The Woodlands, Texas, USA.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationVenugopalan, B., Karnik, P. J., Bapat, C. P., Catterjee, D. K., Iyer, N. & Lepcha, D. (1995). Eur. J. Med. Chem. 30, 697–706.  CrossRef CAS Web of Science Google Scholar
First citationWoerdenbag, H. J., Moskal, T. A., Pras, N., Malingre, T. M., El-Feraly, F. S., Kampinga, H. H. & Konings, A. W. T. (1993). J. Nat. Prod. 56, 849–856.  CrossRef CAS PubMed Web of Science Google Scholar
First citationYue, Z.-Y., Li, S.-H., Gao, P., Zhang, J.-H. & Yan, P.-F. (2006). Acta Cryst. C62, o281–o282.  Web of Science CSD CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds