organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

2-Chloro-4-{(E)-[(4-chloro­phen­yl)imino]­meth­yl}phenol

aDepartment of Physics, Faculty of Arts and Sciences, Ondokuz Mayıs University, Kurupelit, TR-55139 Samsun, Turkey
*Correspondence e-mail: sgul@omu.edu.tr

(Received 12 January 2012; accepted 6 February 2012; online 10 February 2012)

In the title Schiff base compound, C13H9Cl2NO, the dihedral angle between the mean planes of the benzene rings is 10.20 (10)°. The crystal structure is stabilized by O—H⋯N hydrogen bonds and weak ππ stacking inter­actions [centroid–centroid distance = 3.757 (1) Å].

Related literature

For Schiff bases related to coordination chemistry, see: Calligaris et al. (1972[Calligaris, M., Nardin, G. & Randaccio, L. (1972). Coord. Chem. Rev. 7, 385-403.]); Cozzi (2004[Cozzi, P. G. (2004). Chem. Soc. Rev. 33, 410-421.]); Curini et al. (2002[Curini, A., Epifano, F., Maltese, F. & Marcotullio, M. C. (2002). Tetrahedron Lett. 43, 3821-3823.]). For the anti­bacterial, anti­cancer, anti­inflammatory and antitoxic properties, see: Williams (1972[Williams, D. R. (1972). Chem. Rev. 72, 203-213.]); Karia & Parsania (1999[Karia, F. D. & Parsania, P. H. (1999). Asian J. Chem. 11, 991-995.]); Desai et al. (2001[Desai, S. B., Desai, P. B. & Desai, K. R. (2001). Heterocycl. Commun. 7, 83-90.]). For the industrial and biological properties of Schiff bases, see: Lozier et al. (1975[Lozier, R., Bogomolni, R. A. & Stoekenius, W. (1975). Biophys. J. 15, 955-962.]); Aydogan et al. (2001[Aydogan, F., Ocal, N., Turgut, Z. & Yolacan, C. (2001). Bull. Korean Chem. Soc. 22, 476-480.]). For structural studies of Schiff bases, see: Gül et al. (2007[Gül, Z. S., Erşah˙in, F., Ağar, E. & Işık, Ş. (2007). Acta Cryst. E63, o2854.]); Şahin et al. (2005[Şahin, O., Büyükgüngör, O., Albayrak, C. & Odabaşogˇlu, M. (2005). Acta Cryst. E61, o1288-o1290.]); Şahin, Ağar et al. (2009[Şahin, Z. S., Ağar, A. A., Erşahin, F. & Işık, Ş. (2009). Acta Cryst. E65, o718.]); Şahin, Erşahin et al. (2009[Şahin, Z. S., Erşahin, F., Ağar, A. A. & Işık, Ş. (2009). Acta Cryst. E65, o547.]); Şahin, Işık et al. (2009[Şahin, Z. S., Işık, Ş., Erşahin, F. & Ağar, E. (2009). Acta Cryst. E65, o811.]). For the classification of hydrogen-bonding patterns, see: Bernstein et al. (1995[Bernstein, J., Davis, R. E., Shimoni, L. & Chang, N.-L. (1995). Angew. Chem. Int. Ed. Engl. 34, 1555-1573.]).

[Scheme 1]

Experimental

Crystal data
  • C13H9Cl2NO

  • Mr = 266.11

  • Orthorhombic, P 21 21 2

  • a = 9.7438 (6) Å

  • b = 9.9953 (5) Å

  • c = 12.1342 (6) Å

  • V = 1181.78 (11) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.53 mm−1

  • T = 296 K

  • 0.42 × 0.34 × 0.24 mm

Data collection
  • Stoe IPDS II diffractometer

  • Absorption correction: integration (X-RED32; Stoe & Cie, 2002[Stoe & Cie (2002). X-RED and X-AREA. Stoe & Cie, Darmstadt, Germany.]) Tmin = 0.807, Tmax = 0.901

  • 11473 measured reflections

  • 2325 independent reflections

  • 1960 reflections with I > 2σ(I)

  • Rint = 0.049

Refinement
  • R[F2 > 2σ(F2)] = 0.031

  • wR(F2) = 0.064

  • S = 0.96

  • 2325 reflections

  • 154 parameters

  • H-atom parameters constrained

  • Δρmax = 0.12 e Å−3

  • Δρmin = −0.17 e Å−3

  • Absolute structure: Flack (1983[Flack, H. D. (1983). Acta Cryst. A39, 876-881.]), 968 Friedel pairs

  • Flack parameter: 0.02 (6)

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
O1—H1⋯N1i 0.82 1.96 2.778 (2) 176
Symmetry code: (i) [-x+{\script{1\over 2}}, y-{\script{1\over 2}}, -z+2].

Data collection: X-AREA (Stoe & Cie, 2002[Stoe & Cie (2002). X-RED and X-AREA. Stoe & Cie, Darmstadt, Germany.]); cell refinement: X-AREA; data reduction: X-RED32 (Stoe & Cie, 2002[Stoe & Cie (2002). X-RED and X-AREA. Stoe & Cie, Darmstadt, Germany.]); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: ORTEP-3 for Windows (Farrugia, 1997[Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.]); software used to prepare material for publication: WinGX (Farrugia, 1999[Farrugia, L. J. (1999). J. Appl. Cryst. 32, 837-838.]).

Supporting information


Comment top

Schiff bases are important in diverse fields of chemistry and biochemistry owing to their biological activites (Calligaris et al., 1972; Lozier et al., 1975). Most Schiff bases have antibacterial, anticancer, antinflammatory and antioxic properties (Williams, 1972). The present work is part of our structral study of Schiff bases (Gül et al., 2007; Şahin, Ağar et al., 2009; Şahin, Işık et al., 2009; Şahin, Erşahin et al., 2009) and we report here the structure of the title compound, C13H9Cl2NO, (I).

The dihedral angle between the mean planes of the two aromatic rings is 10.20° and the C12—C13—N1—C3 torsion angle is 175.96 (17)° (Fig. 1). All bond lenghs are within normal values. The N1—C13 double bond length (1.268 (2)Å) is similar to the corresponding bond lengths in E-2-Methoxy-6-[(2-trifluoromethylphenylimino) methyl]phenol (1.270 (5) Å) (Şahin et al., 2005) and E-4-Methyl-2-[3-(trifluoromethyl)-phenyliminomethyl]phenol (1.270 (3) Å] (Gül et al., 2007).

In the crystal, the molecules are linked into sheets by O—H···N hydrogen bonds (Table 1) generating C(8) chains (Bernstein et al.,1995) along (011)(Fig. 2). Weak, symmetry independent ππ stacking interactions are observed which may influence crystal stability . The perpendicular distance from Cg1 to Cg1ii [symmetry code: (ii) = -x, 1 - y, z] is 3.62 (0)Å. The centroid-to-centroid distance is 3.757 (1)Å.

Related literature top

For Schiff bases related to coordination chemistry, see: Calligaris et al. (1972). For the antibacterial, anticancer, antinflammatory and antioxic properties, see: Williams (1972). For the industrial and biological properties of Schiff bases, see: Lozier et al. (1975). For structural studies of Schiff bases, see: Gül et al. (2007); Şahin et al. (2005); Şahin, Ağar et al. (2009); Şahin, Erşahin et al. (2009); Şahin, Işık et al. (2009). For classification of the hydrogen-bonding patterns, see Bernstein et al. (1995). For analysis of the absolute structure, see: Flack (1983).

Experimental top

The title compound, (I), was prepared by refluxing a solution mixture containing 3-chloro-4-hydroxybenzaldehyde (0.008 g 0.051 mmol) in 20 ml ethanol and 4-chloroaniline (0.007 g 0.051 mmol) in 20 ml ethanol for 1 h. Crystals of (I) suitable for X-ray analysis were obtained from ethyl alcohol by slow evaporation (yield %54; m.p 441–442 K).

Refinement top

All H atoms were placed in calculated positions and constrained to ride on their parents atoms, with CH = 0.93Å and OH (hydroxyl) = 0.82Å with Uiso(H)=1.2Ueq(C, O).

Computing details top

Data collection: X-AREA (Stoe & Cie, 2002); cell refinement: X-AREA (Stoe & Cie, 2002); data reduction: X-RED32 (Stoe & Cie, 2002); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 for Windows (Farrugia, 1997); software used to prepare material for publication: WinGX (Farrugia, 1999).

Figures top
[Figure 1] Fig. 1. The molecular structure of the title compound, showing the atom-numbering scheme. Displacement ellipsoids are drawn at the 30% probability.
[Figure 2] Fig. 2. Molecular packing of the title compound, viewed along the b axis. O—H···N hydrogen bonds are shown as dashed lines. H atoms not involved in these interactions have been omitted for clarity.
2-Chloro-4-{(E)-[(4-chlorophenyl)imino]methyl}phenol top
Crystal data top
C13H9Cl2NOF(000) = 544
Mr = 266.11Dx = 1.496 Mg m3
Orthorhombic, P21212Mo Kα radiation, λ = 0.71073 Å
Hall symbol: P 2 2abCell parameters from 20026 reflections
a = 9.7438 (6) Åθ = 1.7–27.3°
b = 9.9953 (5) ŵ = 0.53 mm1
c = 12.1342 (6) ÅT = 296 K
V = 1181.78 (11) Å3Prism, yellow
Z = 40.42 × 0.34 × 0.24 mm
Data collection top
Stoe IPDS II
diffractometer
2325 independent reflections
Radiation source: fine-focus sealed tube1960 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.049
Detector resolution: 6.67 pixels mm-1θmax = 26.0°, θmin = 1.7°
ω scansh = 1112
Absorption correction: integration
(X-RED32; Stoe & Cie, 2002)
k = 1212
Tmin = 0.807, Tmax = 0.901l = 1414
11473 measured reflections
Refinement top
Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.031H-atom parameters constrained
wR(F2) = 0.064 w = 1/[σ2(Fo2) + (0.0363P)2]
where P = (Fo2 + 2Fc2)/3
S = 0.96(Δ/σ)max = 0.003
2325 reflectionsΔρmax = 0.12 e Å3
154 parametersΔρmin = 0.17 e Å3
0 restraintsAbsolute structure: Flack (1983), 968 Friedel pairs
Primary atom site location: structure-invariant direct methodsAbsolute structure parameter: 0.02 (6)
Crystal data top
C13H9Cl2NOV = 1181.78 (11) Å3
Mr = 266.11Z = 4
Orthorhombic, P21212Mo Kα radiation
a = 9.7438 (6) ŵ = 0.53 mm1
b = 9.9953 (5) ÅT = 296 K
c = 12.1342 (6) Å0.42 × 0.34 × 0.24 mm
Data collection top
Stoe IPDS II
diffractometer
2325 independent reflections
Absorption correction: integration
(X-RED32; Stoe & Cie, 2002)
1960 reflections with I > 2σ(I)
Tmin = 0.807, Tmax = 0.901Rint = 0.049
11473 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.031H-atom parameters constrained
wR(F2) = 0.064Δρmax = 0.12 e Å3
S = 0.96Δρmin = 0.17 e Å3
2325 reflectionsAbsolute structure: Flack (1983), 968 Friedel pairs
154 parametersAbsolute structure parameter: 0.02 (6)
0 restraints
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Cl10.02767 (6)0.22741 (7)0.73432 (4)0.06816 (19)
Cl20.78712 (7)1.02829 (7)0.54617 (5)0.0792 (2)
O10.01370 (14)0.20491 (15)0.96945 (11)0.0596 (4)
H10.03070.19831.03540.089*
N10.42961 (15)0.66841 (17)0.80818 (13)0.0474 (4)
C120.25372 (18)0.4980 (2)0.82414 (15)0.0491 (5)
C90.09145 (18)0.3021 (2)0.92525 (15)0.0475 (5)
C110.16101 (18)0.4218 (2)0.76339 (16)0.0532 (5)
H110.15280.43650.68800.064*
C60.6818 (2)0.9216 (2)0.62138 (17)0.0562 (5)
C80.1838 (2)0.3779 (2)0.98593 (16)0.0568 (5)
H80.19240.36311.06130.068*
C130.33844 (19)0.5943 (2)0.76529 (17)0.0541 (5)
H130.32450.60220.68970.065*
C10.68403 (19)0.9260 (2)0.73602 (17)0.0562 (5)
H1A0.74170.98500.77300.067*
C100.08170 (19)0.3259 (2)0.81251 (15)0.0487 (5)
C20.5999 (2)0.8419 (2)0.79293 (17)0.0596 (6)
H20.60140.84420.86950.072*
C40.5127 (2)0.7514 (2)0.62570 (17)0.0675 (6)
H40.45520.69250.58850.081*
C50.5955 (2)0.8342 (2)0.56650 (18)0.0685 (6)
H50.59400.83200.48990.082*
C70.2623 (2)0.4739 (2)0.93676 (16)0.0527 (5)
H70.32270.52410.97940.063*
C30.51177 (17)0.75259 (19)0.74034 (15)0.0469 (4)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Cl10.0696 (3)0.0808 (4)0.0541 (3)0.0187 (3)0.0139 (2)0.0002 (3)
Cl20.0909 (4)0.0874 (4)0.0592 (3)0.0312 (3)0.0115 (3)0.0010 (3)
O10.0660 (8)0.0659 (9)0.0468 (7)0.0123 (7)0.0010 (6)0.0061 (7)
N10.0488 (9)0.0486 (10)0.0448 (9)0.0033 (8)0.0035 (7)0.0006 (8)
C120.0462 (10)0.0534 (12)0.0477 (11)0.0029 (9)0.0022 (8)0.0021 (9)
C90.0450 (9)0.0526 (12)0.0447 (10)0.0002 (9)0.0026 (8)0.0009 (9)
C110.0550 (10)0.0667 (13)0.0379 (10)0.0020 (10)0.0040 (9)0.0050 (10)
C60.0606 (12)0.0551 (13)0.0528 (12)0.0015 (11)0.0068 (9)0.0004 (10)
C80.0636 (12)0.0680 (14)0.0387 (11)0.0075 (11)0.0017 (9)0.0044 (9)
C130.0536 (11)0.0650 (13)0.0438 (11)0.0004 (10)0.0004 (9)0.0027 (10)
C10.0545 (11)0.0591 (13)0.0549 (12)0.0096 (10)0.0027 (10)0.0073 (10)
C100.0464 (10)0.0563 (13)0.0433 (10)0.0008 (9)0.0038 (8)0.0006 (9)
C20.0635 (12)0.0741 (16)0.0413 (11)0.0017 (12)0.0010 (9)0.0027 (10)
C40.0827 (14)0.0689 (16)0.0510 (12)0.0199 (13)0.0014 (11)0.0100 (12)
C50.0920 (15)0.0728 (16)0.0406 (11)0.0281 (13)0.0017 (11)0.0082 (11)
C70.0552 (10)0.0596 (13)0.0432 (10)0.0070 (10)0.0054 (9)0.0026 (10)
C30.0482 (9)0.0446 (11)0.0480 (10)0.0051 (8)0.0021 (8)0.0001 (9)
Geometric parameters (Å, º) top
Cl1—C101.733 (2)C6—C11.392 (3)
Cl2—C61.738 (2)C8—C71.364 (3)
O1—C91.344 (2)C8—H80.9300
O1—H10.8200C13—H130.9300
N1—C131.268 (2)C1—C21.362 (3)
N1—C31.424 (2)C1—H1A0.9300
C12—C71.390 (3)C2—C31.394 (3)
C12—C111.392 (3)C2—H20.9300
C12—C131.456 (3)C4—C51.360 (3)
C9—C81.388 (3)C4—C31.391 (3)
C9—C101.392 (3)C4—H40.9300
C11—C101.368 (3)C5—H50.9300
C11—H110.9300C7—H70.9300
C6—C51.384 (3)
C9—O1—H1109.5C2—C1—H1A120.7
C13—N1—C3120.11 (16)C6—C1—H1A120.7
C7—C12—C11117.68 (18)C11—C10—C9120.60 (18)
C7—C12—C13124.26 (18)C11—C10—Cl1120.45 (15)
C11—C12—C13118.02 (17)C9—C10—Cl1118.90 (16)
O1—C9—C8123.27 (17)C1—C2—C3122.28 (19)
O1—C9—C10118.49 (17)C1—C2—H2118.9
C8—C9—C10118.21 (18)C3—C2—H2118.9
C10—C11—C12121.26 (18)C5—C4—C3121.8 (2)
C10—C11—H11119.4C5—C4—H4119.1
C12—C11—H11119.4C3—C4—H4119.1
C5—C6—C1120.6 (2)C4—C5—C6119.4 (2)
C5—C6—Cl2119.58 (16)C4—C5—H5120.3
C1—C6—Cl2119.77 (16)C6—C5—H5120.3
C7—C8—C9121.02 (19)C8—C7—C12121.22 (19)
C7—C8—H8119.5C8—C7—H7119.4
C9—C8—H8119.5C12—C7—H7119.4
N1—C13—C12125.60 (19)C4—C3—C2117.33 (18)
N1—C13—H13117.2C4—C3—N1125.25 (18)
C12—C13—H13117.2C2—C3—N1117.42 (16)
C2—C1—C6118.58 (19)
C7—C12—C11—C100.5 (3)C8—C9—C10—Cl1177.26 (15)
C13—C12—C11—C10177.53 (18)C6—C1—C2—C30.3 (3)
O1—C9—C8—C7178.76 (19)C3—C4—C5—C60.4 (4)
C10—C9—C8—C70.5 (3)C1—C6—C5—C40.3 (4)
C3—N1—C13—C12175.96 (17)Cl2—C6—C5—C4179.65 (19)
C7—C12—C13—N10.3 (3)C9—C8—C7—C120.8 (3)
C11—C12—C13—N1178.15 (18)C11—C12—C7—C80.7 (3)
C5—C6—C1—C20.3 (3)C13—C12—C7—C8177.13 (19)
Cl2—C6—C1—C2179.62 (16)C5—C4—C3—C20.3 (3)
C12—C11—C10—C90.2 (3)C5—C4—C3—N1179.3 (2)
C12—C11—C10—Cl1177.24 (16)C1—C2—C3—C40.3 (3)
O1—C9—C10—C11178.58 (17)C1—C2—C3—N1179.32 (18)
C8—C9—C10—C110.2 (3)C13—N1—C3—C47.7 (3)
O1—C9—C10—Cl11.1 (3)C13—N1—C3—C2173.35 (18)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O1—H1···N1i0.821.962.778 (2)176
Symmetry code: (i) x+1/2, y1/2, z+2.

Experimental details

Crystal data
Chemical formulaC13H9Cl2NO
Mr266.11
Crystal system, space groupOrthorhombic, P21212
Temperature (K)296
a, b, c (Å)9.7438 (6), 9.9953 (5), 12.1342 (6)
V3)1181.78 (11)
Z4
Radiation typeMo Kα
µ (mm1)0.53
Crystal size (mm)0.42 × 0.34 × 0.24
Data collection
DiffractometerStoe IPDS II
diffractometer
Absorption correctionIntegration
(X-RED32; Stoe & Cie, 2002)
Tmin, Tmax0.807, 0.901
No. of measured, independent and
observed [I > 2σ(I)] reflections
11473, 2325, 1960
Rint0.049
(sin θ/λ)max1)0.617
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.031, 0.064, 0.96
No. of reflections2325
No. of parameters154
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.12, 0.17
Absolute structureFlack (1983), 968 Friedel pairs
Absolute structure parameter0.02 (6)

Computer programs: X-AREA (Stoe & Cie, 2002), X-RED32 (Stoe & Cie, 2002), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), ORTEP-3 for Windows (Farrugia, 1997), WinGX (Farrugia, 1999).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O1—H1···N1i0.821.962.778 (2)175.8
Symmetry code: (i) x+1/2, y1/2, z+2.
 

Acknowledgements

The authors acknowledge the Faculty of Arts and Sciences of Ondokuz Mayıs University, Turkey, for the use of the Stoe IPDSII diffractometer (purchased under grant No. F279 of the University Research Grant of Ondokuz Mayıs University).

References

First citationAydogan, F., Ocal, N., Turgut, Z. & Yolacan, C. (2001). Bull. Korean Chem. Soc. 22, 476–480.  CAS Google Scholar
First citationBernstein, J., Davis, R. E., Shimoni, L. & Chang, N.-L. (1995). Angew. Chem. Int. Ed. Engl. 34, 1555–1573.  CrossRef CAS Web of Science Google Scholar
First citationCalligaris, M., Nardin, G. & Randaccio, L. (1972). Coord. Chem. Rev. 7, 385–403.  CrossRef CAS Web of Science Google Scholar
First citationCozzi, P. G. (2004). Chem. Soc. Rev. 33, 410–421.  Web of Science CrossRef PubMed CAS Google Scholar
First citationCurini, A., Epifano, F., Maltese, F. & Marcotullio, M. C. (2002). Tetrahedron Lett. 43, 3821–3823.  Web of Science CrossRef CAS Google Scholar
First citationDesai, S. B., Desai, P. B. & Desai, K. R. (2001). Heterocycl. Commun. 7, 83–90.  CrossRef CAS Google Scholar
First citationFarrugia, L. J. (1997). J. Appl. Cryst. 30, 565.  CrossRef IUCr Journals Google Scholar
First citationFarrugia, L. J. (1999). J. Appl. Cryst. 32, 837–838.  CrossRef CAS IUCr Journals Google Scholar
First citationFlack, H. D. (1983). Acta Cryst. A39, 876–881.  CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationGül, Z. S., Erşah˙in, F., Ağar, E. & Işık, Ş. (2007). Acta Cryst. E63, o2854.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationKaria, F. D. & Parsania, P. H. (1999). Asian J. Chem. 11, 991–995.  CAS Google Scholar
First citationLozier, R., Bogomolni, R. A. & Stoekenius, W. (1975). Biophys. J. 15, 955–962.  CrossRef PubMed CAS Web of Science Google Scholar
First citationŞahin, Z. S., Ağar, A. A., Erşahin, F. & Işık, Ş. (2009). Acta Cryst. E65, o718.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationŞahin, O., Büyükgüngör, O., Albayrak, C. & Odabaşogˇlu, M. (2005). Acta Cryst. E61, o1288–o1290.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationŞahin, Z. S., Erşahin, F., Ağar, A. A. & Işık, Ş. (2009). Acta Cryst. E65, o547.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationŞahin, Z. S., Işık, Ş., Erşahin, F. & Ağar, E. (2009). Acta Cryst. E65, o811.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationStoe & Cie (2002). X-RED and X-AREA. Stoe & Cie, Darmstadt, Germany.  Google Scholar
First citationWilliams, D. R. (1972). Chem. Rev. 72, 203–213.  CrossRef CAS PubMed Web of Science Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds