organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

3-(4-Bromo­phenyl­sulfin­yl)-2,5-di­methyl-1-benzo­furan

aDepartment of Chemistry, Dongeui University, San 24 Kaya-dong Busanjin-gu, Busan 614-714, Republic of Korea, and bDepartment of Chemistry, Pukyong National University, 599-1 Daeyeon 3-dong Nam-gu, Busan 608-737, Republic of Korea
*Correspondence e-mail: uklee@pknu.ac.kr

(Received 6 January 2012; accepted 21 January 2012; online 4 February 2012)

In the title compound, C16H13BrO2S, the 4-bromo­phenyl ring makes a dihedral angle of 87.87 (6)° with the mean plane of the benzofuran fragment. In the crystal, mol­ecules are linked by a weak ππ inter­action between the 4-bromo­phenyl rings [centroid-to-centroid distance = 3.907 (3) Å, inter­planar distance = 3.528 (3) Å and slippage = 1.679 (3) Å].

Related literature

For the pharmacological activity of benzofuran compounds, see: Aslam et al. (2009[Aslam, S. N., Stevenson, P. C., Kokubun, T. & Hall, D. R. (2009). Microbiol. Res. 164, 191-195.]); Galal et al. (2009[Galal, S. A., Abd El-All, A. S., Abdallah, M. M. & El-Diwani, H. I. (2009). Bioorg. Med. Chem. Lett. 19, 2420-2428.]); Khan et al. (2005[Khan, M. W., Alam, M. J., Rashid, M. A. & Chowdhury, R. (2005). Bioorg. Med. Chem. 13, 4796-4805.]). For natural products with benzofuran rings, see: Akgul & Anil (2003[Akgul, Y. Y. & Anil, H. (2003). Phytochemistry, 63, 939-943.]); Soekamto et al. (2003[Soekamto, N. H., Achmad, S. A., Ghisalberti, E. L., Hakim, E. H. & Syah, Y. M. (2003). Phytochemistry, 64, 831-834.]). For the crystal structures of related compounds, see: Choi et al. (2010a[Choi, H. D., Seo, P. J., Son, B. W. & Lee, U. (2010a). Acta Cryst. E66, o543.],b[Choi, H. D., Seo, P. J., Son, B. W. & Lee, U. (2010b). Acta Cryst. E66, o2551.]).

[Scheme 1]

Experimental

Crystal data
  • C16H13BrO2S

  • Mr = 349.23

  • Triclinic, [P \overline 1]

  • a = 6.4145 (3) Å

  • b = 10.0266 (5) Å

  • c = 11.7639 (6) Å

  • α = 101.606 (3)°

  • β = 92.240 (2)°

  • γ = 103.932 (2)°

  • V = 716.28 (6) Å3

  • Z = 2

  • Mo Kα radiation

  • μ = 3.01 mm−1

  • T = 173 K

  • 0.30 × 0.23 × 0.20 mm

Data collection
  • Bruker SMART APEXII CCD diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 2009[Bruker (2009). APEX2. SADABS and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]) Tmin = 0.518, Tmax = 0.746

  • 12848 measured reflections

  • 3507 independent reflections

  • 3048 reflections with I > 2σ(I)

  • Rint = 0.044

Refinement
  • R[F2 > 2σ(F2)] = 0.033

  • wR(F2) = 0.087

  • S = 1.04

  • 3507 reflections

  • 183 parameters

  • H-atom parameters constrained

  • Δρmax = 0.57 e Å−3

  • Δρmin = −0.59 e Å−3

Data collection: APEX2 (Bruker, 2009[Bruker (2009). APEX2. SADABS and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2009[Bruker (2009). APEX2. SADABS and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: ORTEP-3 (Farrugia, 1997[Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.]) and DIAMOND (Brandenburg, 1998[Brandenburg, K. (1998). DIAMOND. Crystal Impact GbR, Bonn, Germany.]); software used to prepare material for publication: SHELXL97.

Supporting information


Comment top

Many compounds involving a benzofuran ring have drawn much attention owing to their valuable biological properties such as antibacterial, antifungal, antitumor, and antiviral activities (Aslam et al., 2009; Galal et al., 2009; Khan et al., 2005). These benzofuran derivatives occur in a wide range of natural products (Akgul & Anil, 2003; Soekamto et al., 2003). As a part of our continuing study of 2,5-dimethyl-1-benzofuran derivatives containing either 3-(4-fluorophenylsulfinyl) (Choi et al., 2010a) or 3-(4-chlorophenylsufinyl) (Choi et al., 2010b) substituents, we report herein the crystal structure of the title compound.

In the title molecule (Fig. 1), the benzofuran unit is planar with the mean deviation of 0.006 (2) Å from the least-squares plane defined by the nine constituent atoms. The dihedral angle between the 4-bromophenyl ring and the mean plane of the benzofuran fragment is 87.87 (6)°. The crystal packing (Fig. 2) is further stabilised by a weak ππ interaction between the 4-bromophenyl rings of adjacent molecules, with a Cg···Cgi distance of 3.907 (3) Å and an interplanar distance of 3.528 (3) Å resulting in a slippage of 1.679 (3) Å (Cg is the centroid of the C11–C16 4-bromophenyl ring).

Related literature top

For the pharmacological activity of benzofuran compounds, see: Aslam et al. (2009); Galal et al. (2009); Khan et al. (2005). For natural products with benzofuran rings, see: Akgul & Anil (2003); Soekamto et al. (2003). For the crystal structures of related compounds, see: Choi et al. (2010a,b).

Experimental top

3-Chloroperoxybenzoic acid 77% (269 mg, 1.2 mmol) was added in small portions to a stirred solution of 3-(4-bromophenylsulfanyl)-2,5-dimethyl-1-benzofuran (366 mg, 1.1 mmol) in dichloromethane (40 ml) at 273 K. After being stirred at room temperature for 5 h, the mixture was washed with saturated sodium bicarbonate solution and the organic layer was separated, dried over magnesium sulfate, filtered and concentrated at reduced pressure. The residue was purified by column chromatography (hexane–ethyl acetate, 2:1 v/v) to afford the title compound as a colourless solid [yield 72%, m.p. 434–435 K; Rf = 0.49 (hexane–ethyl acetate, 2:1 v/v)]. Single crystals suitable for X-ray diffraction were prepared by slow evaporation of a solution of the title compound in ethyl acetate at room temperature.

Refinement top

All H atoms were positioned geometrically and refined using a riding model, with C—H = 0.95 Å for aryl and 0.98 Å for methyl H atoms. Uiso(H) = 1.2Ueq(C) for aryl and 1.5Ueq(C)for methyl H atoms.

Computing details top

Data collection: APEX2 (Bruker, 2009); cell refinement: SAINT (Bruker, 2009); data reduction: SAINT (Bruker, 2009); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 (Farrugia, 1997) and DIAMOND (Brandenburg, 1998); software used to prepare material for publication: SHELXL97 (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. The molecular structure of the title compound with the atom numbering scheme. Displacement ellipsoids are drawn at the 50% probability level. H atoms are presented as small spheres of arbitrary radius.
[Figure 2] Fig. 2. A view of the ππ interactions (dotted lines) in the crystal structure of the title compound. All H atoms were omitted for clarity. [Symmetry codes: (i) -x + 2, -y + 1, -z + 2].
3-(4-Bromophenylsulfinyl)-2,5-dimethyl-1-benzofuran top
Crystal data top
C16H13BrO2SZ = 2
Mr = 349.23F(000) = 352
Triclinic, P1Dx = 1.619 Mg m3
Hall symbol: -P 1Mo Kα radiation, λ = 0.71073 Å
a = 6.4145 (3) ÅCell parameters from 7068 reflections
b = 10.0266 (5) Åθ = 2.5–28.2°
c = 11.7639 (6) ŵ = 3.01 mm1
α = 101.606 (3)°T = 173 K
β = 92.240 (2)°Block, colourless
γ = 103.932 (2)°0.30 × 0.23 × 0.20 mm
V = 716.28 (6) Å3
Data collection top
Bruker SMART APEXII CCD
diffractometer
3507 independent reflections
Radiation source: rotating anode3048 reflections with I > 2σ(I)
Graphite multilayer monochromatorRint = 0.044
Detector resolution: 10.0 pixels mm-1θmax = 28.3°, θmin = 1.8°
ϕ and ω scansh = 88
Absorption correction: multi-scan
(SADABS; Bruker, 2009)
k = 1313
Tmin = 0.518, Tmax = 0.746l = 1515
12848 measured reflections
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.033Hydrogen site location: difference Fourier map
wR(F2) = 0.087H-atom parameters constrained
S = 1.04 w = 1/[σ2(Fo2) + (0.0431P)2 + 0.3244P]
where P = (Fo2 + 2Fc2)/3
3507 reflections(Δ/σ)max = 0.001
183 parametersΔρmax = 0.57 e Å3
0 restraintsΔρmin = 0.59 e Å3
Crystal data top
C16H13BrO2Sγ = 103.932 (2)°
Mr = 349.23V = 716.28 (6) Å3
Triclinic, P1Z = 2
a = 6.4145 (3) ÅMo Kα radiation
b = 10.0266 (5) ŵ = 3.01 mm1
c = 11.7639 (6) ÅT = 173 K
α = 101.606 (3)°0.30 × 0.23 × 0.20 mm
β = 92.240 (2)°
Data collection top
Bruker SMART APEXII CCD
diffractometer
3507 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 2009)
3048 reflections with I > 2σ(I)
Tmin = 0.518, Tmax = 0.746Rint = 0.044
12848 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0330 restraints
wR(F2) = 0.087H-atom parameters constrained
S = 1.04Δρmax = 0.57 e Å3
3507 reflectionsΔρmin = 0.59 e Å3
183 parameters
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > 2sigma(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Br11.23629 (4)0.91785 (2)0.915580 (19)0.04170 (10)
S10.69071 (9)0.27380 (6)0.84528 (4)0.03194 (13)
O10.8013 (2)0.10195 (16)0.53135 (13)0.0336 (3)
O20.4646 (3)0.2757 (2)0.86938 (15)0.0462 (4)
C10.6970 (3)0.2139 (2)0.69530 (17)0.0274 (4)
C20.5786 (3)0.2405 (2)0.59942 (17)0.0265 (4)
C30.4234 (4)0.3139 (2)0.5861 (2)0.0332 (5)
H30.37250.36330.65240.040*
C40.3442 (4)0.3134 (3)0.4742 (2)0.0396 (5)
C50.4239 (4)0.2411 (3)0.3781 (2)0.0453 (6)
H50.37090.24330.30220.054*
C60.5762 (4)0.1665 (3)0.3889 (2)0.0410 (5)
H60.62760.11690.32290.049*
C70.6492 (3)0.1686 (2)0.50126 (18)0.0303 (4)
C80.8253 (3)0.1306 (2)0.65040 (18)0.0298 (4)
C90.1740 (4)0.3903 (3)0.4573 (3)0.0570 (8)
H9A0.03390.32200.43380.086*
H9B0.21140.44370.39660.086*
H9C0.16600.45500.53050.086*
C100.9846 (4)0.0710 (3)0.7040 (2)0.0406 (5)
H10A1.13080.12230.69380.061*
H10B0.96120.02860.66640.061*
H10C0.96710.07970.78740.061*
C110.8359 (3)0.4538 (2)0.85581 (16)0.0277 (4)
C120.7417 (4)0.5610 (2)0.89976 (19)0.0334 (5)
H120.59630.53940.91830.040*
C130.8589 (4)0.7004 (2)0.91705 (19)0.0354 (5)
H130.79510.77470.94750.042*
C141.0693 (4)0.7290 (2)0.88928 (17)0.0304 (4)
C151.1664 (4)0.6220 (2)0.84572 (19)0.0344 (5)
H151.31170.64380.82690.041*
C161.0498 (4)0.4837 (2)0.83008 (19)0.0342 (5)
H161.11520.40940.80190.041*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Br10.05053 (18)0.03378 (14)0.03637 (14)0.00588 (11)0.00285 (10)0.00355 (9)
S10.0324 (3)0.0376 (3)0.0233 (2)0.0047 (2)0.0038 (2)0.0056 (2)
O10.0309 (8)0.0348 (8)0.0329 (8)0.0088 (7)0.0073 (6)0.0011 (6)
O20.0323 (9)0.0570 (11)0.0400 (9)0.0004 (8)0.0154 (7)0.0009 (8)
C10.0257 (10)0.0285 (10)0.0262 (9)0.0053 (8)0.0017 (8)0.0039 (8)
C20.0227 (10)0.0271 (10)0.0267 (9)0.0010 (8)0.0024 (7)0.0051 (8)
C30.0261 (11)0.0345 (11)0.0393 (12)0.0057 (9)0.0036 (9)0.0107 (9)
C40.0250 (11)0.0403 (12)0.0530 (14)0.0023 (9)0.0041 (10)0.0235 (11)
C50.0367 (13)0.0582 (16)0.0352 (12)0.0070 (11)0.0066 (10)0.0214 (11)
C60.0392 (13)0.0504 (14)0.0256 (10)0.0011 (11)0.0024 (9)0.0056 (9)
C70.0263 (11)0.0316 (10)0.0284 (10)0.0005 (8)0.0028 (8)0.0042 (8)
C80.0266 (11)0.0262 (10)0.0334 (10)0.0036 (8)0.0022 (8)0.0032 (8)
C90.0308 (14)0.0602 (17)0.086 (2)0.0058 (12)0.0083 (13)0.0402 (16)
C100.0327 (13)0.0368 (12)0.0536 (14)0.0123 (10)0.0005 (11)0.0092 (10)
C110.0273 (10)0.0342 (10)0.0201 (9)0.0073 (8)0.0007 (7)0.0029 (7)
C120.0263 (11)0.0439 (12)0.0320 (11)0.0135 (9)0.0066 (8)0.0065 (9)
C130.0388 (13)0.0388 (12)0.0316 (10)0.0182 (10)0.0056 (9)0.0038 (9)
C140.0350 (12)0.0308 (10)0.0224 (9)0.0061 (9)0.0023 (8)0.0026 (8)
C150.0263 (11)0.0395 (12)0.0358 (11)0.0090 (9)0.0052 (9)0.0035 (9)
C160.0303 (11)0.0372 (12)0.0344 (11)0.0117 (9)0.0079 (9)0.0011 (9)
Geometric parameters (Å, º) top
Br1—C141.895 (2)C8—C101.482 (3)
S1—O21.4927 (18)C9—H9A0.9800
S1—C11.751 (2)C9—H9B0.9800
S1—C111.798 (2)C9—H9C0.9800
O1—C81.367 (3)C10—H10A0.9800
O1—C71.381 (3)C10—H10B0.9800
C1—C81.357 (3)C10—H10C0.9800
C1—C21.439 (3)C11—C121.379 (3)
C2—C71.386 (3)C11—C161.391 (3)
C2—C31.395 (3)C12—C131.388 (3)
C3—C41.391 (3)C12—H120.9500
C3—H30.9500C13—C141.377 (3)
C4—C51.399 (4)C13—H130.9500
C4—C91.508 (3)C14—C151.389 (3)
C5—C61.382 (4)C15—C161.379 (3)
C5—H50.9500C15—H150.9500
C6—C71.380 (3)C16—H160.9500
C6—H60.9500
O2—S1—C1108.74 (10)C4—C9—H9B109.5
O2—S1—C11106.52 (10)H9A—C9—H9B109.5
C1—S1—C1197.81 (10)C4—C9—H9C109.5
C8—O1—C7106.09 (16)H9A—C9—H9C109.5
C8—C1—C2107.82 (18)H9B—C9—H9C109.5
C8—C1—S1122.92 (16)C8—C10—H10A109.5
C2—C1—S1129.26 (16)C8—C10—H10B109.5
C7—C2—C3119.4 (2)H10A—C10—H10B109.5
C7—C2—C1104.22 (18)C8—C10—H10C109.5
C3—C2—C1136.4 (2)H10A—C10—H10C109.5
C4—C3—C2118.9 (2)H10B—C10—H10C109.5
C4—C3—H3120.6C12—C11—C16120.6 (2)
C2—C3—H3120.6C12—C11—S1119.81 (17)
C3—C4—C5119.4 (2)C16—C11—S1119.33 (16)
C3—C4—C9120.0 (3)C11—C12—C13120.2 (2)
C5—C4—C9120.6 (2)C11—C12—H12119.9
C6—C5—C4122.9 (2)C13—C12—H12119.9
C6—C5—H5118.5C14—C13—C12118.8 (2)
C4—C5—H5118.5C14—C13—H13120.6
C7—C6—C5115.9 (2)C12—C13—H13120.6
C7—C6—H6122.0C13—C14—C15121.5 (2)
C5—C6—H6122.0C13—C14—Br1119.97 (16)
C6—C7—O1125.3 (2)C15—C14—Br1118.46 (17)
C6—C7—C2123.5 (2)C16—C15—C14119.3 (2)
O1—C7—C2111.16 (18)C16—C15—H15120.3
C1—C8—O1110.71 (18)C14—C15—H15120.3
C1—C8—C10133.1 (2)C15—C16—C11119.6 (2)
O1—C8—C10116.15 (19)C15—C16—H16120.2
C4—C9—H9A109.5C11—C16—H16120.2
O2—S1—C1—C8143.25 (19)C1—C2—C7—O10.3 (2)
C11—S1—C1—C8106.29 (19)C2—C1—C8—O10.8 (2)
O2—S1—C1—C237.3 (2)S1—C1—C8—O1178.83 (14)
C11—S1—C1—C273.2 (2)C2—C1—C8—C10178.7 (2)
C8—C1—C2—C70.3 (2)S1—C1—C8—C100.9 (4)
S1—C1—C2—C7179.30 (17)C7—O1—C8—C11.0 (2)
C8—C1—C2—C3178.9 (2)C7—O1—C8—C10179.27 (19)
S1—C1—C2—C31.5 (4)O2—S1—C11—C1210.2 (2)
C7—C2—C3—C40.3 (3)C1—S1—C11—C12122.51 (17)
C1—C2—C3—C4179.4 (2)O2—S1—C11—C16175.97 (17)
C2—C3—C4—C50.8 (3)C1—S1—C11—C1663.70 (18)
C2—C3—C4—C9179.1 (2)C16—C11—C12—C131.1 (3)
C3—C4—C5—C61.4 (4)S1—C11—C12—C13174.76 (16)
C9—C4—C5—C6178.5 (2)C11—C12—C13—C140.2 (3)
C4—C5—C6—C70.8 (4)C12—C13—C14—C150.6 (3)
C5—C6—C7—O1179.6 (2)C12—C13—C14—Br1178.34 (16)
C5—C6—C7—C20.4 (4)C13—C14—C15—C160.1 (3)
C8—O1—C7—C6179.9 (2)Br1—C14—C15—C16177.61 (17)
C8—O1—C7—C20.8 (2)C14—C15—C16—C111.3 (3)
C3—C2—C7—C60.9 (3)C12—C11—C16—C151.8 (3)
C1—C2—C7—C6179.7 (2)S1—C11—C16—C15175.56 (17)
C3—C2—C7—O1179.69 (18)

Experimental details

Crystal data
Chemical formulaC16H13BrO2S
Mr349.23
Crystal system, space groupTriclinic, P1
Temperature (K)173
a, b, c (Å)6.4145 (3), 10.0266 (5), 11.7639 (6)
α, β, γ (°)101.606 (3), 92.240 (2), 103.932 (2)
V3)716.28 (6)
Z2
Radiation typeMo Kα
µ (mm1)3.01
Crystal size (mm)0.30 × 0.23 × 0.20
Data collection
DiffractometerBruker SMART APEXII CCD
diffractometer
Absorption correctionMulti-scan
(SADABS; Bruker, 2009)
Tmin, Tmax0.518, 0.746
No. of measured, independent and
observed [I > 2σ(I)] reflections
12848, 3507, 3048
Rint0.044
(sin θ/λ)max1)0.667
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.033, 0.087, 1.04
No. of reflections3507
No. of parameters183
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.57, 0.59

Computer programs: APEX2 (Bruker, 2009), SAINT (Bruker, 2009), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), ORTEP-3 (Farrugia, 1997) and DIAMOND (Brandenburg, 1998).

 

Acknowledgements

This work was supported by the Blue-Bio Industry Regional Innovation Centre (grant No. RIC08-06-07) at Dongeui University as an RIC programme under the Ministry of Knowledge Economy and Busan city.

References

First citationAkgul, Y. Y. & Anil, H. (2003). Phytochemistry, 63, 939–943.  Web of Science CrossRef PubMed CAS Google Scholar
First citationAslam, S. N., Stevenson, P. C., Kokubun, T. & Hall, D. R. (2009). Microbiol. Res. 164, 191–195.  Web of Science CrossRef PubMed CAS Google Scholar
First citationBrandenburg, K. (1998). DIAMOND. Crystal Impact GbR, Bonn, Germany.  Google Scholar
First citationBruker (2009). APEX2. SADABS and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationChoi, H. D., Seo, P. J., Son, B. W. & Lee, U. (2010a). Acta Cryst. E66, o543.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationChoi, H. D., Seo, P. J., Son, B. W. & Lee, U. (2010b). Acta Cryst. E66, o2551.  CSD CrossRef IUCr Journals Google Scholar
First citationFarrugia, L. J. (1997). J. Appl. Cryst. 30, 565.  CrossRef IUCr Journals Google Scholar
First citationGalal, S. A., Abd El-All, A. S., Abdallah, M. M. & El-Diwani, H. I. (2009). Bioorg. Med. Chem. Lett. 19, 2420–2428.  Web of Science CrossRef PubMed CAS Google Scholar
First citationKhan, M. W., Alam, M. J., Rashid, M. A. & Chowdhury, R. (2005). Bioorg. Med. Chem. 13, 4796–4805.  Web of Science CrossRef PubMed CAS Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSoekamto, N. H., Achmad, S. A., Ghisalberti, E. L., Hakim, E. H. & Syah, Y. M. (2003). Phytochemistry, 64, 831–834.  Web of Science CrossRef PubMed CAS Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds