organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

(E)-1-(2,5-Di­chloro­thio­phen-3-yl)ethan­one [8-(tri­fluoro­meth­yl)quinolin-4-yl]hydrazone

aDepartment of Studies in Chemistry, University of Mysore, Manasagangotri, Mysore 570 006, India, bDepartment of Chemistry, University of Aberdeen, Aberdeen AB24 3UE, Scotland, and cSchool of Chemistry, University of St Andrews, St Andrews KY16 9ST, Scotland
*Correspondence e-mail: yathirajan@hotmail.com

(Received 17 January 2012; accepted 8 February 2012; online 24 February 2012)

In the title compound, C16H10Cl2F3N3S, the dihedral angle between the quinoline and thio­phene ring systems is 4.94 (10)°. The NH group of the hydrazone moiety does not form a hydrogen bond, due to a steric crowding. In the crystal, the thio­phene ring takes part in weak ππ stacking inter­actions with the pyridine ring [centroid-to-centroid separation = 3.7553 (19) Å and inter­planar angle = 5.48 (12)°] and the benzene ring [3.7927 (19) Å and 4.58 (12)°]. Together, these lead to [100] stacks of mol­ecules in an alternating head-to-tail arrangement, with two ππ stacking contacts between each adjacent pair.

Related literature

For related structures derived from 4-hydrazinyl-8-(trifluoro­meth­yl)quinoline and background to Schiff bases, see; Jasinski et al. (2010[Jasinski, J. P., Butcher, R. J., Mayekar, A. N., Yathirajan, H. S., Narayana, B. & Sarojini, B. K. (2010). J. Mol. Struct. 980, 172-181.]); Dutkiewicz et al. (2010[Dutkiewicz, G., Mayekar, A. N., Yathirajan, H. S., Narayana, B. & Kubicki, M. (2010). Acta Cryst. E66, o874.]).

[Scheme 1]

Experimental

Crystal data
  • C16H10Cl2F3N3S

  • Mr = 404.23

  • Monoclinic, P 21 /c

  • a = 7.687 (2) Å

  • b = 14.392 (5) Å

  • c = 14.360 (5) Å

  • β = 95.053 (9)°

  • V = 1582.5 (9) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.58 mm−1

  • T = 73 K

  • 0.10 × 0.10 × 0.10 mm

Data collection
  • Rigaku Mercury CCD diffractometer

  • 9805 measured reflections

  • 2897 independent reflections

  • 2369 reflections with I > 2σ(I)

  • Rint = 0.082

Refinement
  • R[F2 > 2σ(F2)] = 0.049

  • wR(F2) = 0.128

  • S = 1.06

  • 2897 reflections

  • 231 parameters

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.35 e Å−3

  • Δρmin = −0.37 e Å−3

Data collection: CrystalClear (Rigaku, 2009[Rigaku (2009). CrystalClear. Rigaku Corporation, Tokyo, Japan.]); cell refinement: CrystalClear; data reduction: CrystalClear; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: ORTEP-3 (Farrugia, 1997[Farrugia, L. J. (1997). ORTEP-3 for Windows. University of Glasgow, Scotland.]); software used to prepare material for publication: SHELXL97.

Supporting information


Comment top

As a part of our ongoing studies of Schiff bases derived from 4-hydrazinyl-8-(trifluoromethyl)quinoline (Jasinski et al., 2010; Dutkiewicz et al., 2010), we now describe the synthesis and structure of the title compound, (I), (Fig. 1).

The quinoline ring system (C1–C9,N1) in (I) is almost planar (r.m.s. deviation = 0.026 Å). It subtends a dihedral angle of 4.94 (10)° with respect to the thiophene ring (C12–C15,S1). One F atom of the trifluoromethane group lies close to the quinoline plane [deviation = -0.098 (2) Å], whereas the other two F atoms are displaced by 1.034 (1) and -1.109 (2) Å. The two Cl atoms bonded to the thiophene ring are slightly displaced from the ring plane by almost the same magnitude but in opposite direction [-0.050 (1) Å for Cl1 and 0.045 (1) Å for Cl2].

In the crystal, the NH group does not form a hydrogen bond, as it seems to be sterically blocked by H5 and the C11 methyl group. π-π Stacking between the thiophene ring and the pyridine ring [(with symmetry operation -x, 1 - y, 1 - z), and centroid–centroid separation = 3.7553 (19) Å; interplanar angle = 5.48 (12)°] and also to a benzene ring [symmetry operated (1 - x, 1 - y, 1 - z) and centroid–centroid separation of 3.7927 (19) Å and interplanar angle of 4.58 (12)°] leads to [100] stacking of the molecules in an alternating head to tail arrangement. Each adjacent pair of molecules is linked by two ππ stacking interactions (Fig. 2).

Related literature top

For related structures derived from 4-hydrazinyl-8-(trifluoromethyl)quinoline and background to Schiff bases, see; Jasinski et al. (2010); Dutkiewicz et al. (2010).

Experimental top

A solution of 4-hydrazino-8-(trifluoromethyl)quinoline (2.2 g, 10 mmol) and 2,5-dichloro-3-acetylthiophene (1.99 g, 10.2 mmol) in 10 ml of ethanol was refluxed for 24 h under a nitrogen atmosphere in a dark. Then, the reaction mass was cooled and the solid separated by filtration. Colourless prisms of (I) were obtained by slow evaporation of an ethyl acetate solution (m.p. 465–467 K). Anal. Calcd. for C16H10Cl2F3N3S: C 47.54; H 2.49; N 10.39; S 7.93%; Found: C 47.51; H 2.48; N 10.36; S 7.91%.

Refinement top

The N-bound H atom was located in a difference map. Its position was freely refined with the constraint Uiso(H) = 1.2Ueq(N) applied. The C-bound H atoms were geometrically placed (C—H = 0.95-0.98Å) and refined as riding with Uiso(H) = 1.2Ueq(C).

Computing details top

Data collection: CrystalClear (Rigaku, 2009); cell refinement: CrystalClear (Rigaku, 2009); data reduction: CrystalClear (Rigaku, 2009); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 (Farrugia, 1997); software used to prepare material for publication: SHELXL97 (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. The molecular structure of (I) showing 30% probability displacement ellipsoids for non-H atoms.
[Figure 2] Fig. 2. Part of a [100] chain of molecules linked by aromatic ππ stacking interactions. Symmetry codes: (i) -x, 1 - y, 1 - z; (ii) 1 - x, 1 - y, 1 - z.
(E)-1-(2,5-Dichlorothiophen-3-yl)ethanone [8-(trifluoromethyl)quinolin-4-yl]hydrazone top
Crystal data top
C16H10Cl2F3N3SF(000) = 816
Mr = 404.23Dx = 1.697 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ybcCell parameters from 4944 reflections
a = 7.687 (2) Åθ = 2.0–28.5°
b = 14.392 (5) ŵ = 0.58 mm1
c = 14.360 (5) ÅT = 73 K
β = 95.053 (9)°Prism, colourless
V = 1582.5 (9) Å30.10 × 0.10 × 0.10 mm
Z = 4
Data collection top
Rigaku Mercury CCD
diffractometer
2369 reflections with I > 2σ(I)
Radiation source: fine-focus sealed tubeRint = 0.082
Graphite monochromatorθmax = 25.4°, θmin = 2.0°
ω scansh = 89
9805 measured reflectionsk = 1713
2897 independent reflectionsl = 1716
Refinement top
Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.049H atoms treated by a mixture of independent and constrained refinement
wR(F2) = 0.128 w = 1/[σ2(Fo2) + (0.0544P)2 + 0.0123P]
where P = (Fo2 + 2Fc2)/3
S = 1.06(Δ/σ)max < 0.001
2897 reflectionsΔρmax = 0.35 e Å3
231 parametersΔρmin = 0.37 e Å3
0 restraintsExtinction correction: SHELXL97 (Sheldrick, 2008)
Primary atom site location: structure-invariant direct methods
Crystal data top
C16H10Cl2F3N3SV = 1582.5 (9) Å3
Mr = 404.23Z = 4
Monoclinic, P21/cMo Kα radiation
a = 7.687 (2) ŵ = 0.58 mm1
b = 14.392 (5) ÅT = 73 K
c = 14.360 (5) Å0.10 × 0.10 × 0.10 mm
β = 95.053 (9)°
Data collection top
Rigaku Mercury CCD
diffractometer
2369 reflections with I > 2σ(I)
9805 measured reflectionsRint = 0.082
2897 independent reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0490 restraints
wR(F2) = 0.128H atoms treated by a mixture of independent and constrained refinement
S = 1.06Δρmax = 0.35 e Å3
2897 reflectionsΔρmin = 0.37 e Å3
231 parameters
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > 2sigma(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
C10.4410 (3)0.25700 (19)0.39915 (18)0.0193 (6)
C20.5208 (3)0.16942 (18)0.42084 (19)0.0196 (6)
C30.5718 (3)0.1444 (2)0.51114 (19)0.0233 (6)
H30.62440.08550.52410.028*
C40.5458 (3)0.20637 (19)0.58497 (19)0.0222 (6)
H40.58400.18960.64740.027*
C50.4662 (3)0.29017 (19)0.56742 (18)0.0212 (6)
H50.44750.33040.61800.025*
C60.4113 (3)0.31781 (19)0.47515 (19)0.0184 (6)
C70.3276 (3)0.40483 (18)0.45162 (18)0.0185 (6)
C80.2886 (3)0.4263 (2)0.35855 (19)0.0227 (6)
H80.23670.48420.34070.027*
C90.3269 (3)0.3612 (2)0.29090 (19)0.0213 (6)
H90.29850.37790.22740.026*
C100.1600 (3)0.59983 (19)0.56281 (18)0.0187 (6)
C110.1918 (3)0.5794 (2)0.66590 (19)0.0241 (6)
H11A0.16220.51450.67750.036*
H11B0.11880.62030.70070.036*
H11C0.31510.59020.68640.036*
C120.0773 (3)0.68922 (19)0.53327 (18)0.0181 (6)
C130.0493 (3)0.76274 (19)0.59770 (19)0.0210 (6)
H130.07600.75730.66330.025*
C140.0183 (3)0.83985 (18)0.55647 (19)0.0203 (6)
C150.0230 (3)0.71698 (18)0.44394 (18)0.0201 (6)
C160.5511 (3)0.1035 (2)0.3424 (2)0.0260 (7)
N10.3989 (3)0.27860 (16)0.30701 (15)0.0210 (5)
N20.2884 (3)0.46492 (16)0.52193 (17)0.0218 (5)
H10.310 (3)0.449 (2)0.578 (2)0.026*
N30.2058 (3)0.54653 (15)0.49702 (15)0.0205 (5)
F10.65951 (18)0.13668 (11)0.28208 (10)0.0273 (4)
F20.6221 (2)0.02239 (12)0.37478 (12)0.0380 (5)
F30.40389 (19)0.07936 (12)0.28996 (12)0.0349 (5)
S10.05583 (8)0.82904 (5)0.43743 (5)0.0231 (2)
Cl10.01844 (9)0.65772 (5)0.34012 (5)0.0280 (2)
Cl20.06338 (9)0.94308 (5)0.60984 (5)0.0289 (2)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
C10.0184 (12)0.0234 (16)0.0161 (14)0.0038 (11)0.0015 (10)0.0023 (12)
C20.0190 (12)0.0205 (16)0.0196 (16)0.0017 (11)0.0034 (11)0.0028 (12)
C30.0211 (13)0.0273 (17)0.0218 (16)0.0003 (11)0.0026 (11)0.0042 (13)
C40.0231 (13)0.0282 (18)0.0151 (15)0.0004 (12)0.0000 (11)0.0022 (12)
C50.0220 (13)0.0256 (17)0.0156 (15)0.0015 (12)0.0000 (11)0.0028 (12)
C60.0174 (13)0.0203 (16)0.0173 (15)0.0031 (11)0.0007 (11)0.0022 (11)
C70.0165 (12)0.0216 (16)0.0173 (15)0.0027 (11)0.0017 (10)0.0038 (11)
C80.0237 (13)0.0241 (17)0.0199 (16)0.0004 (12)0.0004 (11)0.0024 (12)
C90.0233 (14)0.0282 (17)0.0118 (14)0.0020 (12)0.0017 (11)0.0002 (12)
C100.0151 (12)0.0232 (16)0.0174 (15)0.0018 (11)0.0000 (10)0.0002 (12)
C110.0275 (14)0.0244 (17)0.0202 (16)0.0045 (12)0.0008 (11)0.0006 (12)
C120.0172 (12)0.0201 (15)0.0166 (15)0.0036 (11)0.0002 (10)0.0001 (11)
C130.0239 (13)0.0220 (16)0.0170 (15)0.0014 (11)0.0013 (11)0.0005 (12)
C140.0249 (14)0.0184 (16)0.0178 (15)0.0001 (11)0.0025 (11)0.0007 (11)
C150.0241 (13)0.0205 (16)0.0158 (15)0.0029 (11)0.0019 (11)0.0034 (12)
C160.0266 (14)0.0247 (18)0.0271 (17)0.0027 (13)0.0049 (12)0.0022 (13)
N10.0237 (11)0.0243 (14)0.0148 (12)0.0025 (10)0.0010 (9)0.0000 (10)
N20.0274 (11)0.0222 (14)0.0154 (12)0.0021 (10)0.0008 (10)0.0006 (11)
N30.0238 (11)0.0186 (13)0.0185 (13)0.0020 (9)0.0007 (9)0.0003 (10)
F10.0267 (8)0.0366 (11)0.0194 (9)0.0026 (7)0.0063 (7)0.0057 (7)
F20.0598 (11)0.0226 (10)0.0330 (11)0.0107 (8)0.0116 (9)0.0022 (8)
F30.0309 (9)0.0410 (12)0.0332 (10)0.0128 (7)0.0056 (7)0.0185 (8)
S10.0268 (4)0.0227 (5)0.0193 (4)0.0011 (3)0.0002 (3)0.0026 (3)
Cl10.0410 (4)0.0286 (5)0.0140 (4)0.0020 (3)0.0001 (3)0.0011 (3)
Cl20.0384 (4)0.0216 (5)0.0276 (5)0.0048 (3)0.0070 (3)0.0021 (3)
Geometric parameters (Å, º) top
C1—N11.370 (3)C10—C121.481 (4)
C1—C21.424 (4)C10—C111.508 (4)
C1—C61.433 (4)C11—H11A0.9800
C2—C31.369 (4)C11—H11B0.9800
C2—C161.507 (4)C11—H11C0.9800
C3—C41.413 (4)C12—C151.373 (4)
C3—H30.9500C12—C131.434 (4)
C4—C51.366 (4)C13—C141.341 (4)
C4—H40.9500C13—H130.9500
C5—C61.412 (4)C14—S11.715 (3)
C5—H50.9500C14—Cl21.721 (3)
C6—C71.435 (4)C15—Cl11.715 (3)
C7—C81.379 (4)C15—S11.722 (3)
C7—N21.383 (3)C16—F11.342 (3)
C8—C91.400 (4)C16—F31.349 (3)
C8—H80.9500C16—F21.353 (3)
C9—N11.323 (3)N2—N31.368 (3)
C9—H90.9500N2—H10.85 (3)
C10—N31.290 (3)
N1—C1—C2118.2 (2)C10—C11—H11A109.5
N1—C1—C6123.9 (3)C10—C11—H11B109.5
C2—C1—C6117.9 (2)H11A—C11—H11B109.5
C3—C2—C1121.5 (2)C10—C11—H11C109.5
C3—C2—C16119.5 (3)H11A—C11—H11C109.5
C1—C2—C16119.1 (2)H11B—C11—H11C109.5
C2—C3—C4119.8 (3)C15—C12—C13109.7 (2)
C2—C3—H3120.1C15—C12—C10127.5 (2)
C4—C3—H3120.1C13—C12—C10122.8 (2)
C5—C4—C3120.6 (3)C14—C13—C12113.6 (2)
C5—C4—H4119.7C14—C13—H13123.2
C3—C4—H4119.7C12—C13—H13123.2
C4—C5—C6120.9 (2)C13—C14—S1112.9 (2)
C4—C5—H5119.5C13—C14—Cl2127.1 (2)
C6—C5—H5119.5S1—C14—Cl2119.95 (16)
C5—C6—C1119.2 (3)C12—C15—Cl1130.4 (2)
C5—C6—C7123.9 (2)C12—C15—S1113.6 (2)
C1—C6—C7116.9 (2)Cl1—C15—S1115.99 (15)
C8—C7—N2121.7 (3)F1—C16—F3105.6 (2)
C8—C7—C6118.6 (2)F1—C16—F2105.9 (2)
N2—C7—C6119.7 (2)F3—C16—F2105.3 (2)
C7—C8—C9118.8 (3)F1—C16—C2113.8 (2)
C7—C8—H8120.6F3—C16—C2113.7 (2)
C9—C8—H8120.6F2—C16—C2111.8 (2)
N1—C9—C8126.2 (3)C9—N1—C1115.6 (2)
N1—C9—H9116.9N3—N2—C7118.2 (2)
C8—C9—H9116.9N3—N2—H1122.0 (19)
N3—C10—C12116.4 (2)C7—N2—H1119.7 (19)
N3—C10—C11124.9 (2)C10—N3—N2118.0 (2)
C12—C10—C11118.6 (2)C14—S1—C1590.19 (12)
N1—C1—C2—C3177.8 (2)C10—C12—C13—C14176.4 (2)
C6—C1—C2—C31.5 (3)C12—C13—C14—S10.8 (3)
N1—C1—C2—C161.6 (3)C12—C13—C14—Cl2177.83 (18)
C6—C1—C2—C16179.1 (2)C13—C12—C15—Cl1177.8 (2)
C1—C2—C3—C40.2 (4)C10—C12—C15—Cl14.7 (4)
C16—C2—C3—C4179.2 (2)C13—C12—C15—S11.1 (3)
C2—C3—C4—C51.7 (4)C10—C12—C15—S1176.42 (19)
C3—C4—C5—C61.3 (4)C3—C2—C16—F1117.2 (3)
C4—C5—C6—C10.4 (4)C1—C2—C16—F162.2 (3)
C4—C5—C6—C7179.8 (2)C3—C2—C16—F3121.8 (3)
N1—C1—C6—C5177.4 (2)C1—C2—C16—F358.8 (3)
C2—C1—C6—C51.8 (3)C3—C2—C16—F22.7 (3)
N1—C1—C6—C71.9 (3)C1—C2—C16—F2177.8 (2)
C2—C1—C6—C7178.8 (2)C8—C9—N1—C11.0 (4)
C5—C6—C7—C8176.4 (2)C2—C1—N1—C9179.3 (2)
C1—C6—C7—C82.9 (3)C6—C1—N1—C90.0 (3)
C5—C6—C7—N23.4 (4)C8—C7—N2—N31.3 (3)
C1—C6—C7—N2177.2 (2)C6—C7—N2—N3178.8 (2)
N2—C7—C8—C9178.1 (2)C12—C10—N3—N2177.7 (2)
C6—C7—C8—C92.1 (3)C11—C10—N3—N20.5 (4)
C7—C8—C9—N10.1 (4)C7—N2—N3—C10175.9 (2)
N3—C10—C12—C159.2 (4)C13—C14—S1—C150.2 (2)
C11—C10—C12—C15173.4 (2)Cl2—C14—S1—C15178.60 (17)
N3—C10—C12—C13168.0 (2)C12—C15—S1—C140.6 (2)
C11—C10—C12—C139.4 (3)Cl1—C15—S1—C14178.47 (16)
C15—C12—C13—C141.2 (3)

Experimental details

Crystal data
Chemical formulaC16H10Cl2F3N3S
Mr404.23
Crystal system, space groupMonoclinic, P21/c
Temperature (K)73
a, b, c (Å)7.687 (2), 14.392 (5), 14.360 (5)
β (°) 95.053 (9)
V3)1582.5 (9)
Z4
Radiation typeMo Kα
µ (mm1)0.58
Crystal size (mm)0.10 × 0.10 × 0.10
Data collection
DiffractometerRigaku Mercury CCD
diffractometer
Absorption correction
No. of measured, independent and
observed [I > 2σ(I)] reflections
9805, 2897, 2369
Rint0.082
(sin θ/λ)max1)0.603
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.049, 0.128, 1.06
No. of reflections2897
No. of parameters231
H-atom treatmentH atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å3)0.35, 0.37

Computer programs: CrystalClear (Rigaku, 2009), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), ORTEP-3 (Farrugia, 1997).

 

Acknowledgements

ASD thanks the University of Mysore for research facilities.

References

First citationDutkiewicz, G., Mayekar, A. N., Yathirajan, H. S., Narayana, B. & Kubicki, M. (2010). Acta Cryst. E66, o874.  Web of Science CrossRef IUCr Journals Google Scholar
First citationFarrugia, L. J. (1997). ORTEP-3 for Windows. University of Glasgow, Scotland.  Google Scholar
First citationJasinski, J. P., Butcher, R. J., Mayekar, A. N., Yathirajan, H. S., Narayana, B. & Sarojini, B. K. (2010). J. Mol. Struct. 980, 172–181.  Web of Science CSD CrossRef CAS Google Scholar
First citationRigaku (2009). CrystalClear. Rigaku Corporation, Tokyo, Japan.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds