metal-organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 68| Part 3| March 2012| Pages m324-m325

Bis(hydrazin-1-ium) bis­­(μ2-pyridazine-3,6-di­carboxyl­ato)bis­­(aqua­li­thiate) octa­aqua­bis­­(μ3-pyridazine-3,6-di­carboxyl­ato)tetra­lithium

aInstitute of Nuclear Chemistry and Technology, ul. Dorodna 16, 03-195 Warszawa, Poland
*Correspondence e-mail: j.leciejewicz@ichtj.waw.pl

(Received 24 January 2012; accepted 17 February 2012; online 24 February 2012)

The unit cell of the title compound, (N2H5)2[Li2(C6H2N2O4)2(H2O)2]·[Li4(C6H2N2O4)2(H2O)8], comprises two centrosymmetric complexes, one double negatively charged and one neutral, and two mono-protonated hydrazine cations. The anionic complex molecule is a dimer, built of a pair of symmetry-related pyridazine-3,6-dicarboxyl­ate ligands and a pair of LiI ions, each coordinated by two N,O-chelating sites donated by a ligand mol­ecule and an aqua O atom at the apical position. The penta­coordination around the LiI ions is partway between a trigonal–bipyramidal and a square-pyramidal arrangement. The two carb­oxy­lic acid groups of the ligand are deprotonated and one carboxyl­ate O atom of each group is not involved in the coordination, and this applies to both the anionic and the neutral complex. The neutral complex molecule is also composed of a pair of LiI ions and a pair of ligand mol­ecules related by a centre of symmetry. They form a dimeric core in which the penta­coordination of the LiI ions includes two N,O-bonding groups donated by two ligands and an aqua O atom. The penta­coordination is described as partway between a trigonal–bipyramidal and a square-pyramidal arrangement. The coordinated carboxyl­ate group is bidentate–bridging, forming with an Li(H2O)3 unit a neutral tetra­meric mol­ecule. The coordination of the tetra­coordinated LiI ion shows a slightly distorted tetra­hedral geometry. An extended system of O—H⋯O and N—H⋯O hydrogen bonds contributes to the stability of the crystal structure.

Related literature

For the crystal structures of LiI complexes with pyridazine-3,6-dicarboxyl­ate and water ligands, see: Starosta & Leciejewicz (2010[Starosta, W. & Leciejewicz, J. (2010). Acta Cryst. E66, m1362-m1363.], 2011[Starosta, W. & Leciejewicz, J. (2011). Acta Cryst. E67, m1455-m1456.]). The structure of a hydrazine adduct of pyridazine-3,6-dicarb­oxy­lic acid was reported by Starosta & Leciejewicz (2008[Starosta, W. & Leciejewicz, J. (2008). Acta Cryst. E64, o461.]).

[Scheme 1]

Experimental

Crystal data
  • (N2H5)2[Li2(C6H2N2O4)2(H2O)2]·[Li4(C6H2N2O4)2(H2O)8]

  • Mr = 952.30

  • Triclinic, [P \overline 1]

  • a = 7.0999 (14) Å

  • b = 7.2390 (14) Å

  • c = 22.608 (5) Å

  • α = 86.40 (3)°

  • β = 87.68 (3)°

  • γ = 61.49 (3)°

  • V = 1018.9 (3) Å3

  • Z = 1

  • Mo Kα radiation

  • μ = 0.14 mm−1

  • T = 293 K

  • 0.72 × 0.35 × 0.11 mm

Data collection
  • Kuma KM-4 four-circle diffractometer

  • Absorption correction: analytical (CrysAlis RED; Oxford Diffraction, 2008[Oxford Diffraction (2008). CrysAlis RED. Oxford Diffraction Ltd, Yarnton, Oxfordshire, England.]) Tmin = 0.970, Tmax = 0.985

  • 5515 measured reflections

  • 5058 independent reflections

  • 3362 reflections with I > 2σ(I)

  • Rint = 0.090

  • 3 standard reflections every 200 reflections intensity decay: 5.8%

Refinement
  • R[F2 > 2σ(F2)] = 0.054

  • wR(F2) = 0.204

  • S = 1.05

  • 5058 reflections

  • 383 parameters

  • All H -atom parameters refined

  • Δρmax = 0.63 e Å−3

  • Δρmin = −0.41 e Å−3

Table 1
Selected bond lengths (Å)

Li1—O11i 2.011 (4)
Li1—N11i 2.185 (4)
Li1—N12 2.209 (4)
Li1—O13 1.999 (4)
Li1—O15 1.961 (5)
Li2—O21 1.998 (4)
Li2—N22 2.175 (5)
Li2—O25 1.974 (4)
Li2—O24ii 2.023 (5)
Li2—N21ii 2.170 (4)
Li3—O21 1.951 (5)
Li3—O3 2.019 (5)
Li3—O2 1.926 (4)
Li3—O1 1.954 (4)
Symmetry codes: (i) -x, -y+2, -z+1; (ii) -x, -y+1, -z.

Table 2
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
O25—H252⋯O22iii 0.90 (4) 1.87 (4) 2.752 (3) 168 (3)
O1—H11⋯O23iv 0.74 (4) 2.10 (4) 2.832 (3) 173 (4)
N1—H1⋯O3 1.01 (4) 1.99 (4) 2.972 (3) 164 (3)
O2—H21⋯O23v 0.83 (3) 2.07 (3) 2.889 (3) 171 (3)
O2—H22⋯O11vi 0.81 (4) 1.88 (4) 2.691 (3) 172 (4)
N1—H2⋯O22iii 0.91 (3) 1.97 (4) 2.826 (3) 156 (3)
O3—H32⋯O24ii 0.94 (3) 1.71 (3) 2.635 (2) 165 (3)
N1—H3⋯O13 0.89 (4) 1.84 (4) 2.720 (3) 174 (3)
O15—H152⋯O12vii 0.86 (5) 1.92 (5) 2.755 (3) 162 (5)
O15—H151⋯O14viii 0.79 (4) 2.04 (4) 2.790 (3) 160 (4)
O3—H31⋯O14ix 0.71 (4) 2.14 (4) 2.833 (3) 165 (4)
O1—H12⋯O12x 0.83 (4) 2.06 (4) 2.839 (3) 155 (3)
Symmetry codes: (ii) -x, -y+1, -z; (iii) x, y+1, z; (iv) -x+1, -y, -z; (v) -x, -y, -z; (vi) -x, -y+1, -z+1; (vii) -x+1, -y+2, -z+1; (viii) x-1, y+1, z; (ix) x-1, y, z; (x) -x+1, -y+1, -z+1.

Data collection: KM-4 Software (Kuma, 1996[Kuma (1996). KM-4 Software. Kuma Diffraction Ltd, Wrocław, Poland.]); cell refinement: KM-4 Software; data reduction: DATAPROC (Kuma, 2001[Kuma (2001). DATAPROC. Kuma Diffraction Ltd, Wrocław, Poland.]); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); software used to prepare material for publication: SHELXTL.

Supporting information


Comment top

The structure of the original LiI complex with pyridazine-3,6-dicarboxylate and water ligands was reported to consist of molecular ribbons in which LiI ions are octahedrally coordinated by two fully deprotonated ligand molecules and two aqua O atoms are bridged by protons located in a centre of symmetry (Starosta & Leciejewicz, 2010). Removal of these protons by adding a few drops of hydrazine resulted in a two-dimensional catenated polymeric structure (Starosta & Leciejewicz, 2011). When few more drops of hydrazine were added to the aqueous solution of the original complex, crystals of a new compound with a triclinic centrosymmetric structure were identified. This structure is built of two mono protonated hydrazine cations, a centrosymmetric dimeric anion and a neutral centrosymmetric tetrameric molecule. The dimeric anion consists of pairs of symmetry related: LiI ions, fully deprotonated ligand molecules and water O15 atom (Fig. 1). The Li1 ion, coordinated by two N,O bonding groups donated by two ligands and the aqua O15 atom shows transition from a distorted trigonal–bipyramidal geometry [with an equatorial plane composed of O13, N11ii and O15 atoms with r.m.s. of 0.0059 (1) Å, the Li1 ion is 0.0119 (1) Å out of this plane, N12 and O11ii atoms are at axial positions; symmetry code: i -x, -y + 1, -z; ii -x, -y + 2, -z + 1] to a square-pyramidal geometry [where the aqua O15 is at the apical position]. The pyridazine ring is planar (r.m.s. of 0.0017 (1) Å); carboxylate groups C17/O11/O12 and C18/O13/O14 make with it dihedral angles of 1.4 (1)° and 1.7 (1)°, respectively. An anionic dimer constitutes the core of the other complex molecule. The coordination of the Li2 ion can be described by transition from trigonal–bipyramidal arrrangement [N22, O24i and O25 atoms form the equatorial plane, r.m.s. 0.0044 (1) Å, the Li2 ion is 0.0088 (1) Å out of the equatorial plane; O21 and N21i are at the apices] to the square-pyramdidal one [with the water O25 at the apical position]. The pyridazine ring is planar [r.m.s. 0.0009 (1) Å]; the carboxylate C27/O21/O22 and C28/O23/O24 groups make with it dihedral angles of 5.9 (1)° and 0.7 (1)°, respectively. In contrast to the anion complex, the carboxylato O21 atom in the neutral complex molecule acts as bidentate bridging to a Li(H2O)3 group completing a tetranuclear molecule. The coordination environment of the Li3 ion formed by the O1, O2, O3 and O21 atoms is distorted tetrahedral. Pyridazine ring planes of the anion and the tetrameric molecule are inclined by an angle of 65.7 (1)° each to the other (Fig. 2). The observed Li—O and Li—N bond distances (Table 1) are close to those reported in two other LiI complexes with the title ligand (Starosta & Leciejewicz, 2010, 2011). Bond distances in the protonated hydrazine cations are almost the same as those reported in the structure of an hydrazine adduct of the pyridazine-3,6-dicarboxylate acid (Starosta & Leciejewicz, 2008). An extended hydrogen bond system in which coordinated water molecules act as donors, carboxylate O atoms are as acceptors contributes to the stability of the structure (Table 2).

Related literature top

For the crystal structures of LiI complexes with pyridazine-3,6-dicarboxylate and water ligands, see: Starosta & Leciejewicz (2010); Starosta & Leciejewicz (2011). The structure of a hydrazine adduct of pyridazine-3,6-dicarboxylic acid was reported by Starosta & Leciejewicz (2008).

Experimental top

Single crystals of the compound obtained earlier (Starosta & Leciejewicz, 2010) were dissolved in warm water. Few drops of hydrazine were then added and the solution was stirred for 3 h without heating. Left to crystallize at room temperature, single-crystal blocks of the title compound were found after three days. They were washed with cold ethanol and dried in air.

Refinement top

Water and hydrazine H atoms were located in a difference map and refined isotropically, while H atoms attached to pyridazine-ring C atoms were located at calculated positions and treated as riding on the parent atoms with C—H = 0.93 Å and Uiso(H) = 1.2Ueq(C).

Computing details top

Data collection: KM-4 Software (Kuma, 1996); cell refinement: KM-4 Software (Kuma, 1996); data reduction: DATAPROC (Kuma, 2001); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. Structural units of the title compound with atom labelling scheme and 50% probability displacement ellipsoids. Symmetry code: i -x, -y + 1, -z; ii -x, -y + 2, -z + 1.
[Figure 2] Fig. 2. Crystal packing of the title compound.
Bis(hydrazin-1-ium) bis(µ2-pyridazine-3,6-dicarboxylato)bis(aqualithiate) octaaquabis(µ3-pyridazine-3,6-dicarboxylato)tetralithium top
Crystal data top
(N2H5)2[Li2(C6H2N2O4)2(H2O)2]·[Li4(C6H2N2O4)2(H2O)8]Z = 1
Mr = 952.30F(000) = 492
Triclinic, P1Dx = 1.552 Mg m3
Hall symbol: -P 1Mo Kα radiation, λ = 0.71073 Å
a = 7.0999 (14) ÅCell parameters from 25 reflections
b = 7.2390 (14) Åθ = 6–15°
c = 22.608 (5) ŵ = 0.14 mm1
α = 86.40 (3)°T = 293 K
β = 87.68 (3)°Block, colourless
γ = 61.49 (3)°0.72 × 0.35 × 0.11 mm
V = 1018.9 (3) Å3
Data collection top
Kuma KM-4 four-circle
diffractometer
3362 reflections with I > 2σ(I)
Radiation source: fine-focus sealed tubeRint = 0.090
Graphite monochromatorθmax = 30.1°, θmin = 1.8°
profile data from ω/2θ scansh = 109
Absorption correction: analytical
(CrysAlis RED; Oxford Diffraction, 2008)
k = 910
Tmin = 0.970, Tmax = 0.985l = 310
5515 measured reflections3 standard reflections every 200 reflections
5058 independent reflections intensity decay: 5.8%
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.054Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.204All H-atom parameters refined
S = 1.05 w = 1/[σ2(Fo2) + (0.1491P)2 + 0.1309P]
where P = (Fo2 + 2Fc2)/3
5058 reflections(Δ/σ)max < 0.001
383 parametersΔρmax = 0.63 e Å3
0 restraintsΔρmin = 0.41 e Å3
Crystal data top
(N2H5)2[Li2(C6H2N2O4)2(H2O)2]·[Li4(C6H2N2O4)2(H2O)8]γ = 61.49 (3)°
Mr = 952.30V = 1018.9 (3) Å3
Triclinic, P1Z = 1
a = 7.0999 (14) ÅMo Kα radiation
b = 7.2390 (14) ŵ = 0.14 mm1
c = 22.608 (5) ÅT = 293 K
α = 86.40 (3)°0.72 × 0.35 × 0.11 mm
β = 87.68 (3)°
Data collection top
Kuma KM-4 four-circle
diffractometer
3362 reflections with I > 2σ(I)
Absorption correction: analytical
(CrysAlis RED; Oxford Diffraction, 2008)
Rint = 0.090
Tmin = 0.970, Tmax = 0.9853 standard reflections every 200 reflections
5515 measured reflections intensity decay: 5.8%
5058 independent reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0540 restraints
wR(F2) = 0.204All H-atom parameters refined
S = 1.05Δρmax = 0.63 e Å3
5058 reflectionsΔρmin = 0.41 e Å3
383 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R-factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
O210.0159 (3)0.2157 (2)0.13963 (7)0.0274 (4)
N220.1040 (3)0.2333 (3)0.02543 (8)0.0215 (4)
O230.4250 (3)0.0353 (3)0.15562 (7)0.0304 (4)
O30.1383 (3)0.5109 (3)0.25070 (8)0.0318 (4)
O250.2519 (3)0.4707 (3)0.11076 (8)0.0336 (4)
N210.1517 (3)0.2519 (3)0.03187 (8)0.0220 (4)
C260.2698 (3)0.0806 (3)0.06167 (9)0.0203 (4)
O220.1593 (3)0.1328 (2)0.14161 (7)0.0349 (4)
O240.2395 (3)0.3096 (3)0.14339 (7)0.0375 (4)
O20.1801 (3)0.0810 (3)0.24722 (9)0.0345 (4)
O10.2959 (3)0.0402 (3)0.24937 (9)0.0383 (4)
C230.1751 (3)0.0428 (3)0.05183 (9)0.0202 (4)
C280.1110 (3)0.0413 (3)0.11678 (9)0.0211 (4)
C270.3165 (3)0.1207 (3)0.12582 (10)0.0233 (4)
C250.3482 (4)0.1221 (3)0.03609 (10)0.0274 (5)
C240.2987 (4)0.1410 (3)0.02252 (10)0.0281 (5)
Li20.0167 (6)0.4703 (6)0.09159 (18)0.0287 (8)
Li30.0032 (6)0.2106 (6)0.22601 (19)0.0316 (8)
H2510.322 (5)0.391 (5)0.1328 (14)0.037 (8)*
H2520.240 (6)0.591 (6)0.1232 (16)0.062 (11)*
O140.5966 (3)0.5737 (3)0.35267 (7)0.0347 (4)
O110.2464 (3)0.9984 (3)0.63816 (7)0.0324 (4)
N120.2675 (3)0.8464 (3)0.47199 (8)0.0219 (4)
O130.2417 (2)0.7613 (3)0.36274 (7)0.0335 (4)
O120.6015 (3)0.8204 (3)0.64806 (8)0.0380 (5)
N110.2686 (3)0.8936 (3)0.52789 (8)0.0225 (4)
C180.4299 (3)0.6839 (3)0.38075 (9)0.0224 (4)
C130.4527 (3)0.7290 (3)0.44400 (9)0.0207 (4)
O150.0044 (3)1.2454 (3)0.38668 (10)0.0399 (5)
C160.4544 (3)0.8219 (3)0.55577 (9)0.0215 (4)
C170.4323 (3)0.8865 (4)0.61943 (9)0.0243 (4)
C140.6502 (3)0.6519 (4)0.47109 (11)0.0291 (5)
C150.6512 (3)0.6996 (4)0.52851 (11)0.0303 (5)
Li10.0007 (6)0.9775 (6)0.40901 (18)0.0282 (8)
N10.1858 (3)0.6592 (3)0.25346 (9)0.0293 (4)
N20.3797 (4)0.4809 (5)0.23783 (15)0.0537 (8)
H110.361 (6)0.048 (5)0.2240 (16)0.045 (10)*
H40.451 (8)0.543 (8)0.225 (2)0.088 (17)*
H10.069 (7)0.618 (6)0.2603 (18)0.071 (12)*
H210.243 (5)0.073 (5)0.2182 (15)0.036 (8)*
H220.197 (6)0.046 (6)0.2811 (18)0.055 (10)*
H20.149 (6)0.758 (5)0.2232 (16)0.051 (9)*
H320.197 (5)0.591 (5)0.2153 (15)0.041 (8)*
H30.211 (6)0.694 (5)0.2879 (16)0.050 (9)*
H1520.108 (8)1.237 (8)0.369 (2)0.099 (17)*
H1510.100 (7)1.343 (7)0.3705 (18)0.067 (12)*
H310.219 (7)0.545 (6)0.2730 (19)0.061 (13)*
H250.447 (5)0.246 (4)0.0595 (12)0.029 (7)*
H240.350 (4)0.279 (4)0.0450 (12)0.025 (6)*
H150.774 (6)0.660 (5)0.5505 (17)0.063 (11)*
H140.775 (5)0.573 (4)0.4502 (13)0.030 (7)*
H120.348 (6)0.042 (5)0.2814 (17)0.051 (10)*
H50.447 (9)0.442 (8)0.270 (2)0.103 (17)*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
O210.0347 (9)0.0229 (7)0.0225 (8)0.0123 (7)0.0064 (6)0.0037 (6)
N220.0231 (8)0.0228 (8)0.0165 (8)0.0094 (7)0.0007 (6)0.0012 (6)
O230.0292 (8)0.0322 (8)0.0228 (8)0.0088 (7)0.0082 (6)0.0074 (6)
O30.0324 (9)0.0361 (9)0.0217 (9)0.0124 (7)0.0042 (7)0.0010 (7)
O250.0336 (9)0.0267 (8)0.0353 (10)0.0098 (7)0.0041 (8)0.0022 (7)
N210.0215 (8)0.0230 (8)0.0177 (8)0.0078 (7)0.0030 (6)0.0012 (6)
C260.0178 (9)0.0235 (9)0.0179 (9)0.0083 (7)0.0010 (7)0.0026 (7)
O220.0538 (11)0.0249 (8)0.0243 (8)0.0179 (8)0.0047 (8)0.0002 (6)
O240.0456 (10)0.0296 (8)0.0219 (8)0.0065 (7)0.0096 (7)0.0020 (6)
O20.0310 (9)0.0528 (11)0.0251 (9)0.0248 (8)0.0013 (7)0.0000 (8)
O10.0292 (9)0.0622 (12)0.0263 (10)0.0241 (9)0.0030 (8)0.0047 (9)
C230.0193 (9)0.0228 (9)0.0189 (9)0.0104 (8)0.0011 (8)0.0011 (8)
C280.0232 (10)0.0267 (10)0.0153 (9)0.0134 (8)0.0014 (7)0.0019 (8)
C270.0188 (9)0.0268 (10)0.0210 (10)0.0082 (8)0.0027 (8)0.0032 (8)
C250.0287 (11)0.0217 (10)0.0246 (11)0.0061 (8)0.0059 (9)0.0052 (8)
C240.0295 (11)0.0228 (10)0.0268 (11)0.0089 (8)0.0038 (9)0.0017 (8)
Li20.0308 (19)0.0224 (17)0.0280 (19)0.0087 (15)0.0019 (15)0.0027 (15)
Li30.029 (2)0.0324 (19)0.033 (2)0.0146 (16)0.0025 (16)0.0038 (16)
O140.0218 (8)0.0426 (9)0.0248 (9)0.0027 (7)0.0027 (6)0.0083 (7)
O110.0196 (7)0.0527 (10)0.0222 (8)0.0143 (7)0.0040 (6)0.0104 (7)
N120.0160 (8)0.0299 (9)0.0169 (8)0.0082 (7)0.0005 (6)0.0048 (7)
O130.0183 (7)0.0449 (10)0.0254 (8)0.0040 (7)0.0036 (6)0.0120 (7)
O120.0205 (8)0.0692 (13)0.0245 (9)0.0206 (8)0.0019 (6)0.0093 (8)
N110.0157 (8)0.0320 (9)0.0186 (8)0.0103 (7)0.0002 (6)0.0028 (7)
C180.0184 (9)0.0268 (10)0.0172 (9)0.0066 (8)0.0004 (7)0.0039 (8)
C130.0163 (9)0.0248 (9)0.0196 (9)0.0085 (8)0.0007 (7)0.0015 (7)
O150.0194 (8)0.0408 (10)0.0521 (12)0.0096 (7)0.0010 (8)0.0071 (9)
C160.0171 (9)0.0310 (10)0.0184 (9)0.0130 (8)0.0008 (7)0.0004 (8)
C170.0201 (10)0.0371 (11)0.0194 (10)0.0163 (9)0.0010 (8)0.0035 (8)
C140.0144 (9)0.0391 (12)0.0269 (11)0.0062 (9)0.0028 (8)0.0108 (9)
C150.0157 (10)0.0441 (13)0.0277 (11)0.0108 (9)0.0044 (8)0.0052 (10)
Li10.0137 (15)0.0357 (19)0.0287 (19)0.0063 (14)0.0018 (14)0.0058 (15)
N10.0310 (10)0.0318 (10)0.0241 (10)0.0137 (8)0.0041 (8)0.0015 (8)
N20.0390 (14)0.0484 (15)0.0519 (17)0.0006 (12)0.0123 (12)0.0173 (12)
Geometric parameters (Å, º) top
Li1—O11i2.011 (4)O1—H110.74 (4)
Li1—N11i2.185 (4)O1—H120.83 (4)
Li1—N122.209 (4)C23—C241.389 (3)
Li1—O131.999 (4)C23—C281.521 (3)
Li1—O151.961 (5)C25—C241.372 (3)
N11—Li1i2.185 (4)C25—H251.00 (3)
O21—C281.247 (3)C24—H240.99 (3)
Li2—O211.998 (4)Li3—H112.27 (4)
Li2—N222.175 (5)O14—C181.242 (3)
Li2—O251.974 (4)O11—C171.247 (3)
N21—Li2ii2.170 (4)O11—Li1i2.011 (4)
O24—Li2ii2.023 (5)N12—N111.331 (3)
Li2—O24ii2.023 (5)N12—C131.336 (3)
Li2—N21ii2.170 (4)O13—C181.251 (2)
Li3—O211.951 (5)O12—C171.252 (2)
Li3—O32.019 (5)N11—C161.334 (2)
Li3—O21.926 (4)C18—C131.518 (3)
Li3—O11.954 (4)C13—C141.390 (3)
N22—C231.330 (2)O15—H1520.86 (5)
N22—N211.340 (2)O15—H1510.79 (4)
O23—C271.243 (3)C16—C151.391 (3)
O3—H320.94 (3)C16—C171.520 (3)
O3—H310.71 (4)C14—C151.366 (3)
O25—H2510.73 (3)C14—H140.92 (3)
O25—H2520.90 (4)C15—H150.93 (4)
N21—C261.327 (3)N1—N21.417 (3)
C26—C251.392 (3)N1—H11.01 (4)
C26—C271.516 (3)N1—H20.91 (3)
O22—C281.239 (2)N1—H30.89 (4)
O24—C271.250 (3)N2—H40.86 (5)
O2—H210.83 (3)N2—H50.85 (5)
O2—H220.81 (4)
C28—O21—Li3116.39 (18)O21—Li3—O3107.8 (2)
C28—O21—Li2118.44 (18)O1—Li3—O3113.9 (2)
Li3—O21—Li2121.83 (18)O2—Li3—H11126.4 (9)
C23—N22—N21119.55 (19)O21—Li3—H1186.0 (9)
C23—N22—Li2109.87 (17)O1—Li3—H1118.2 (9)
N21—N22—Li2129.03 (16)O3—Li3—H11113.5 (9)
Li3—O3—H32103.6 (19)C17—O11—Li1i118.19 (19)
Li3—O3—H31119 (3)N11—N12—C13119.78 (16)
H32—O3—H31109 (4)N11—N12—Li1128.99 (17)
Li2—O25—H251118 (2)C13—N12—Li1110.42 (16)
Li2—O25—H252117 (2)C18—O13—Li1120.27 (18)
H251—O25—H252103 (3)N12—N11—C16119.80 (19)
C26—N21—N22119.84 (16)N12—N11—Li1i128.45 (16)
C26—N21—Li2ii110.64 (17)C16—N11—Li1i110.42 (17)
N22—N21—Li2ii128.61 (18)O14—C18—O13126.8 (2)
N21—C26—C25122.8 (2)O14—C18—C13117.63 (18)
N21—C26—C27115.22 (17)O13—C18—C13115.53 (19)
C25—C26—C27122.0 (2)N12—C13—C14122.5 (2)
C27—O24—Li2ii118.10 (18)N12—C13—C18114.71 (16)
Li3—O2—H21112 (2)C14—C13—C18122.8 (2)
Li3—O2—H22123 (3)Li1—O15—H152116 (3)
H21—O2—H22124 (3)Li1—O15—H151125 (3)
Li3—O1—H11106 (3)H152—O15—H151104 (4)
Li3—O1—H12126 (2)N11—C16—C15122.6 (2)
H11—O1—H12112 (4)N11—C16—C17114.32 (19)
N22—C23—C24122.77 (19)C15—C16—C17123.10 (18)
N22—C23—C28114.86 (19)O11—C17—O12126.4 (2)
C24—C23—C28122.37 (17)O11—C17—C16116.52 (17)
O22—C28—O21126.7 (2)O12—C17—C16117.0 (2)
O22—C28—C23116.8 (2)C15—C14—C13117.7 (2)
O21—C28—C23116.54 (17)C15—C14—H14122.2 (17)
O23—C27—O24126.6 (2)C13—C14—H14120.0 (17)
O23—C27—C26117.45 (18)C14—C15—C16117.62 (18)
O24—C27—C26115.9 (2)C14—C15—H15125 (2)
C24—C25—C26117.3 (2)C16—C15—H15117 (2)
C24—C25—H25122.9 (15)O15—Li1—O13105.5 (2)
C26—C25—H25119.6 (15)O15—Li1—O11i101.59 (18)
C25—C24—C23117.70 (18)O13—Li1—O11i98.88 (19)
C25—C24—H24123.4 (16)O15—Li1—N11i96.05 (18)
C23—C24—H24118.9 (16)O13—Li1—N11i158.4 (2)
O25—Li2—O21100.71 (18)O11i—Li1—N11i77.42 (14)
O25—Li2—O24ii103.7 (2)O15—Li1—N1298.91 (18)
O21—Li2—O24ii97.81 (19)O13—Li1—N1276.75 (14)
O25—Li2—N21ii98.65 (18)O11i—Li1—N12159.5 (2)
O21—Li2—N21ii160.6 (2)N11i—Li1—N1299.15 (17)
O24ii—Li2—N21ii77.55 (14)N2—N1—H1110 (2)
O25—Li2—N2299.76 (19)N2—N1—H2108 (2)
O21—Li2—N2278.43 (14)H1—N1—H2110 (3)
O24ii—Li2—N22156.5 (2)N2—N1—H3105 (2)
N21ii—Li2—N2298.24 (17)H1—N1—H3107 (3)
O2—Li3—O21105.5 (2)H2—N1—H3116 (3)
O2—Li3—O1113.9 (2)N1—N2—H499 (3)
O21—Li3—O1102.8 (2)N1—N2—H5103 (4)
O2—Li3—O3112.0 (2)H4—N2—H593 (4)
Symmetry codes: (i) x, y+2, z+1; (ii) x, y+1, z.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O25—H252···O22iii0.90 (4)1.87 (4)2.752 (3)168 (3)
O1—H11···O23iv0.74 (4)2.10 (4)2.832 (3)173 (4)
N1—H1···O31.01 (4)1.99 (4)2.972 (3)164 (3)
O2—H21···O23v0.83 (3)2.07 (3)2.889 (3)171 (3)
O2—H22···O11vi0.81 (4)1.88 (4)2.691 (3)172 (4)
N1—H2···O22iii0.91 (3)1.97 (4)2.826 (3)156 (3)
O3—H32···O24ii0.94 (3)1.71 (3)2.635 (2)165 (3)
N1—H3···O130.89 (4)1.84 (4)2.720 (3)174 (3)
O15—H152···O12vii0.86 (5)1.92 (5)2.755 (3)162 (5)
O15—H151···O14viii0.79 (4)2.04 (4)2.790 (3)160 (4)
O3—H31···O14ix0.71 (4)2.14 (4)2.833 (3)165 (4)
O1—H12···O12x0.83 (4)2.06 (4)2.839 (3)155 (3)
Symmetry codes: (ii) x, y+1, z; (iii) x, y+1, z; (iv) x+1, y, z; (v) x, y, z; (vi) x, y+1, z+1; (vii) x+1, y+2, z+1; (viii) x1, y+1, z; (ix) x1, y, z; (x) x+1, y+1, z+1.

Experimental details

Crystal data
Chemical formula(N2H5)2[Li2(C6H2N2O4)2(H2O)2]·[Li4(C6H2N2O4)2(H2O)8]
Mr952.30
Crystal system, space groupTriclinic, P1
Temperature (K)293
a, b, c (Å)7.0999 (14), 7.2390 (14), 22.608 (5)
α, β, γ (°)86.40 (3), 87.68 (3), 61.49 (3)
V3)1018.9 (3)
Z1
Radiation typeMo Kα
µ (mm1)0.14
Crystal size (mm)0.72 × 0.35 × 0.11
Data collection
DiffractometerKuma KM-4 four-circle
diffractometer
Absorption correctionAnalytical
(CrysAlis RED; Oxford Diffraction, 2008)
Tmin, Tmax0.970, 0.985
No. of measured, independent and
observed [I > 2σ(I)] reflections
5515, 5058, 3362
Rint0.090
(sin θ/λ)max1)0.705
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.054, 0.204, 1.05
No. of reflections5058
No. of parameters383
H-atom treatmentAll H-atom parameters refined
Δρmax, Δρmin (e Å3)0.63, 0.41

Computer programs: KM-4 Software (Kuma, 1996), DATAPROC (Kuma, 2001), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), SHELXTL (Sheldrick, 2008).

Selected bond lengths (Å) top
Li1—O11i2.011 (4)Li2—O251.974 (4)
Li1—N11i2.185 (4)Li2—O24ii2.023 (5)
Li1—N122.209 (4)Li2—N21ii2.170 (4)
Li1—O131.999 (4)Li3—O211.951 (5)
Li1—O151.961 (5)Li3—O32.019 (5)
Li2—O211.998 (4)Li3—O21.926 (4)
Li2—N222.175 (5)Li3—O11.954 (4)
Symmetry codes: (i) x, y+2, z+1; (ii) x, y+1, z.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O25—H252···O22iii0.90 (4)1.87 (4)2.752 (3)168 (3)
O1—H11···O23iv0.74 (4)2.10 (4)2.832 (3)173 (4)
N1—H1···O31.01 (4)1.99 (4)2.972 (3)164 (3)
O2—H21···O23v0.83 (3)2.07 (3)2.889 (3)171 (3)
O2—H22···O11vi0.81 (4)1.88 (4)2.691 (3)172 (4)
N1—H2···O22iii0.91 (3)1.97 (4)2.826 (3)156 (3)
O3—H32···O24ii0.94 (3)1.71 (3)2.635 (2)165 (3)
N1—H3···O130.89 (4)1.84 (4)2.720 (3)174 (3)
O15—H152···O12vii0.86 (5)1.92 (5)2.755 (3)162 (5)
O15—H151···O14viii0.79 (4)2.04 (4)2.790 (3)160 (4)
O3—H31···O14ix0.71 (4)2.14 (4)2.833 (3)165 (4)
O1—H12···O12x0.83 (4)2.06 (4)2.839 (3)155 (3)
Symmetry codes: (ii) x, y+1, z; (iii) x, y+1, z; (iv) x+1, y, z; (v) x, y, z; (vi) x, y+1, z+1; (vii) x+1, y+2, z+1; (viii) x1, y+1, z; (ix) x1, y, z; (x) x+1, y+1, z+1.
 

References

First citationKuma (1996). KM-4 Software. Kuma Diffraction Ltd, Wrocław, Poland.  Google Scholar
First citationKuma (2001). DATAPROC. Kuma Diffraction Ltd, Wrocław, Poland.  Google Scholar
First citationOxford Diffraction (2008). CrysAlis RED. Oxford Diffraction Ltd, Yarnton, Oxfordshire, England.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationStarosta, W. & Leciejewicz, J. (2008). Acta Cryst. E64, o461.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationStarosta, W. & Leciejewicz, J. (2010). Acta Cryst. E66, m1362–m1363.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationStarosta, W. & Leciejewicz, J. (2011). Acta Cryst. E67, m1455–m1456.  Web of Science CSD CrossRef IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 68| Part 3| March 2012| Pages m324-m325
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds