metal-organic compounds
Bis(hydrazin-1-ium) bis(μ2-pyridazine-3,6-dicarboxylato)bis(aqualithiate) octaaquabis(μ3-pyridazine-3,6-dicarboxylato)tetralithium
aInstitute of Nuclear Chemistry and Technology, ul. Dorodna 16, 03-195 Warszawa, Poland
*Correspondence e-mail: j.leciejewicz@ichtj.waw.pl
The 2H5)2[Li2(C6H2N2O4)2(H2O)2]·[Li4(C6H2N2O4)2(H2O)8], comprises two centrosymmetric complexes, one double negatively charged and one neutral, and two mono-protonated hydrazine cations. The anionic complex molecule is a dimer, built of a pair of symmetry-related pyridazine-3,6-dicarboxylate ligands and a pair of LiI ions, each coordinated by two N,O-chelating sites donated by a ligand molecule and an aqua O atom at the apical position. The pentacoordination around the LiI ions is partway between a trigonal–bipyramidal and a square-pyramidal arrangement. The two carboxylic acid groups of the ligand are deprotonated and one carboxylate O atom of each group is not involved in the coordination, and this applies to both the anionic and the neutral complex. The neutral complex molecule is also composed of a pair of LiI ions and a pair of ligand molecules related by a centre of symmetry. They form a dimeric core in which the pentacoordination of the LiI ions includes two N,O-bonding groups donated by two ligands and an aqua O atom. The pentacoordination is described as partway between a trigonal–bipyramidal and a square-pyramidal arrangement. The coordinated carboxylate group is bidentate–bridging, forming with an Li(H2O)3 unit a neutral tetrameric molecule. The coordination of the tetracoordinated LiI ion shows a slightly distorted tetrahedral geometry. An extended system of O—H⋯O and N—H⋯O hydrogen bonds contributes to the stability of the crystal structure.
of the title compound, (NRelated literature
For the crystal structures of LiI complexes with pyridazine-3,6-dicarboxylate and water ligands, see: Starosta & Leciejewicz (2010, 2011). The structure of a hydrazine adduct of pyridazine-3,6-dicarboxylic acid was reported by Starosta & Leciejewicz (2008).
Experimental
Crystal data
|
Data collection
Refinement
|
|
Data collection: KM-4 Software (Kuma, 1996); cell KM-4 Software; data reduction: DATAPROC (Kuma, 2001); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL.
Supporting information
10.1107/S1600536812007192/kp2385sup1.cif
contains datablocks I, global. DOI:Structure factors: contains datablock I. DOI: 10.1107/S1600536812007192/kp2385Isup2.hkl
Single crystals of the compound obtained earlier (Starosta & Leciejewicz, 2010) were dissolved in warm water. Few drops of hydrazine were then added and the solution was stirred for 3 h without heating. Left to crystallize at room temperature, single-crystal blocks of the title compound were found after three days. They were washed with cold ethanol and dried in air.
Water and hydrazine H atoms were located in a difference map and refined isotropically, while H atoms attached to pyridazine-ring C atoms were located at calculated positions and treated as riding on the parent atoms with C—H = 0.93 Å and Uiso(H) = 1.2Ueq(C).
Data collection: KM-4 Software (Kuma, 1996); cell
KM-4 Software (Kuma, 1996); data reduction: DATAPROC (Kuma, 2001); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).Fig. 1. Structural units of the title compound with atom labelling scheme and 50% probability displacement ellipsoids. Symmetry code: i -x, -y + 1, -z; ii -x, -y + 2, -z + 1. | |
Fig. 2. Crystal packing of the title compound. |
(N2H5)2[Li2(C6H2N2O4)2(H2O)2]·[Li4(C6H2N2O4)2(H2O)8] | Z = 1 |
Mr = 952.30 | F(000) = 492 |
Triclinic, P1 | Dx = 1.552 Mg m−3 |
Hall symbol: -P 1 | Mo Kα radiation, λ = 0.71073 Å |
a = 7.0999 (14) Å | Cell parameters from 25 reflections |
b = 7.2390 (14) Å | θ = 6–15° |
c = 22.608 (5) Å | µ = 0.14 mm−1 |
α = 86.40 (3)° | T = 293 K |
β = 87.68 (3)° | Block, colourless |
γ = 61.49 (3)° | 0.72 × 0.35 × 0.11 mm |
V = 1018.9 (3) Å3 |
Kuma KM-4 four-circle diffractometer | 3362 reflections with I > 2σ(I) |
Radiation source: fine-focus sealed tube | Rint = 0.090 |
Graphite monochromator | θmax = 30.1°, θmin = 1.8° |
profile data from ω/2θ scans | h = −10→9 |
Absorption correction: analytical (CrysAlis RED; Oxford Diffraction, 2008) | k = −9→10 |
Tmin = 0.970, Tmax = 0.985 | l = −31→0 |
5515 measured reflections | 3 standard reflections every 200 reflections |
5058 independent reflections | intensity decay: 5.8% |
Refinement on F2 | Primary atom site location: structure-invariant direct methods |
Least-squares matrix: full | Secondary atom site location: difference Fourier map |
R[F2 > 2σ(F2)] = 0.054 | Hydrogen site location: inferred from neighbouring sites |
wR(F2) = 0.204 | All H-atom parameters refined |
S = 1.05 | w = 1/[σ2(Fo2) + (0.1491P)2 + 0.1309P] where P = (Fo2 + 2Fc2)/3 |
5058 reflections | (Δ/σ)max < 0.001 |
383 parameters | Δρmax = 0.63 e Å−3 |
0 restraints | Δρmin = −0.41 e Å−3 |
(N2H5)2[Li2(C6H2N2O4)2(H2O)2]·[Li4(C6H2N2O4)2(H2O)8] | γ = 61.49 (3)° |
Mr = 952.30 | V = 1018.9 (3) Å3 |
Triclinic, P1 | Z = 1 |
a = 7.0999 (14) Å | Mo Kα radiation |
b = 7.2390 (14) Å | µ = 0.14 mm−1 |
c = 22.608 (5) Å | T = 293 K |
α = 86.40 (3)° | 0.72 × 0.35 × 0.11 mm |
β = 87.68 (3)° |
Kuma KM-4 four-circle diffractometer | 3362 reflections with I > 2σ(I) |
Absorption correction: analytical (CrysAlis RED; Oxford Diffraction, 2008) | Rint = 0.090 |
Tmin = 0.970, Tmax = 0.985 | 3 standard reflections every 200 reflections |
5515 measured reflections | intensity decay: 5.8% |
5058 independent reflections |
R[F2 > 2σ(F2)] = 0.054 | 0 restraints |
wR(F2) = 0.204 | All H-atom parameters refined |
S = 1.05 | Δρmax = 0.63 e Å−3 |
5058 reflections | Δρmin = −0.41 e Å−3 |
383 parameters |
Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes. |
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R-factors based on ALL data will be even larger. |
x | y | z | Uiso*/Ueq | ||
O21 | 0.0159 (3) | 0.2157 (2) | 0.13963 (7) | 0.0274 (4) | |
N22 | 0.1040 (3) | 0.2333 (3) | 0.02543 (8) | 0.0215 (4) | |
O23 | 0.4250 (3) | −0.0353 (3) | −0.15562 (7) | 0.0304 (4) | |
O3 | −0.1383 (3) | 0.5109 (3) | 0.25070 (8) | 0.0318 (4) | |
O25 | 0.2519 (3) | 0.4707 (3) | 0.11076 (8) | 0.0336 (4) | |
N21 | 0.1517 (3) | 0.2519 (3) | −0.03187 (8) | 0.0220 (4) | |
C26 | 0.2698 (3) | 0.0806 (3) | −0.06167 (9) | 0.0203 (4) | |
O22 | 0.1593 (3) | −0.1328 (2) | 0.14161 (7) | 0.0349 (4) | |
O24 | 0.2395 (3) | 0.3096 (3) | −0.14339 (7) | 0.0375 (4) | |
O2 | −0.1801 (3) | 0.0810 (3) | 0.24722 (9) | 0.0345 (4) | |
O1 | 0.2959 (3) | 0.0402 (3) | 0.24937 (9) | 0.0383 (4) | |
C23 | 0.1751 (3) | 0.0428 (3) | 0.05183 (9) | 0.0202 (4) | |
C28 | 0.1110 (3) | 0.0413 (3) | 0.11678 (9) | 0.0211 (4) | |
C27 | 0.3165 (3) | 0.1207 (3) | −0.12582 (10) | 0.0233 (4) | |
C25 | 0.3482 (4) | −0.1221 (3) | −0.03609 (10) | 0.0274 (5) | |
C24 | 0.2987 (4) | −0.1410 (3) | 0.02252 (10) | 0.0281 (5) | |
Li2 | −0.0167 (6) | 0.4703 (6) | 0.09159 (18) | 0.0287 (8) | |
Li3 | −0.0032 (6) | 0.2106 (6) | 0.22601 (19) | 0.0316 (8) | |
H251 | 0.322 (5) | 0.391 (5) | 0.1328 (14) | 0.037 (8)* | |
H252 | 0.240 (6) | 0.591 (6) | 0.1232 (16) | 0.062 (11)* | |
O14 | 0.5966 (3) | 0.5737 (3) | 0.35267 (7) | 0.0347 (4) | |
O11 | 0.2464 (3) | 0.9984 (3) | 0.63816 (7) | 0.0324 (4) | |
N12 | 0.2675 (3) | 0.8464 (3) | 0.47199 (8) | 0.0219 (4) | |
O13 | 0.2417 (2) | 0.7613 (3) | 0.36274 (7) | 0.0335 (4) | |
O12 | 0.6015 (3) | 0.8204 (3) | 0.64806 (8) | 0.0380 (5) | |
N11 | 0.2686 (3) | 0.8936 (3) | 0.52789 (8) | 0.0225 (4) | |
C18 | 0.4299 (3) | 0.6839 (3) | 0.38075 (9) | 0.0224 (4) | |
C13 | 0.4527 (3) | 0.7290 (3) | 0.44400 (9) | 0.0207 (4) | |
O15 | −0.0044 (3) | 1.2454 (3) | 0.38668 (10) | 0.0399 (5) | |
C16 | 0.4544 (3) | 0.8219 (3) | 0.55577 (9) | 0.0215 (4) | |
C17 | 0.4323 (3) | 0.8865 (4) | 0.61943 (9) | 0.0243 (4) | |
C14 | 0.6502 (3) | 0.6519 (4) | 0.47109 (11) | 0.0291 (5) | |
C15 | 0.6512 (3) | 0.6996 (4) | 0.52851 (11) | 0.0303 (5) | |
Li1 | −0.0007 (6) | 0.9775 (6) | 0.40901 (18) | 0.0282 (8) | |
N1 | 0.1858 (3) | 0.6592 (3) | 0.25346 (9) | 0.0293 (4) | |
N2 | 0.3797 (4) | 0.4809 (5) | 0.23783 (15) | 0.0537 (8) | |
H11 | 0.361 (6) | 0.048 (5) | 0.2240 (16) | 0.045 (10)* | |
H4 | 0.451 (8) | 0.543 (8) | 0.225 (2) | 0.088 (17)* | |
H1 | 0.069 (7) | 0.618 (6) | 0.2603 (18) | 0.071 (12)* | |
H21 | −0.243 (5) | 0.073 (5) | 0.2182 (15) | 0.036 (8)* | |
H22 | −0.197 (6) | 0.046 (6) | 0.2811 (18) | 0.055 (10)* | |
H2 | 0.149 (6) | 0.758 (5) | 0.2232 (16) | 0.051 (9)* | |
H32 | −0.197 (5) | 0.591 (5) | 0.2153 (15) | 0.041 (8)* | |
H3 | 0.211 (6) | 0.694 (5) | 0.2879 (16) | 0.050 (9)* | |
H152 | 0.108 (8) | 1.237 (8) | 0.369 (2) | 0.099 (17)* | |
H151 | −0.100 (7) | 1.343 (7) | 0.3705 (18) | 0.067 (12)* | |
H31 | −0.219 (7) | 0.545 (6) | 0.2730 (19) | 0.061 (13)* | |
H25 | 0.447 (5) | −0.246 (4) | −0.0595 (12) | 0.029 (7)* | |
H24 | 0.350 (4) | −0.279 (4) | 0.0450 (12) | 0.025 (6)* | |
H15 | 0.774 (6) | 0.660 (5) | 0.5505 (17) | 0.063 (11)* | |
H14 | 0.775 (5) | 0.573 (4) | 0.4502 (13) | 0.030 (7)* | |
H12 | 0.348 (6) | 0.042 (5) | 0.2814 (17) | 0.051 (10)* | |
H5 | 0.447 (9) | 0.442 (8) | 0.270 (2) | 0.103 (17)* |
U11 | U22 | U33 | U12 | U13 | U23 | |
O21 | 0.0347 (9) | 0.0229 (7) | 0.0225 (8) | −0.0123 (7) | 0.0064 (6) | −0.0037 (6) |
N22 | 0.0231 (8) | 0.0228 (8) | 0.0165 (8) | −0.0094 (7) | 0.0007 (6) | −0.0012 (6) |
O23 | 0.0292 (8) | 0.0322 (8) | 0.0228 (8) | −0.0088 (7) | 0.0082 (6) | −0.0074 (6) |
O3 | 0.0324 (9) | 0.0361 (9) | 0.0217 (9) | −0.0124 (7) | 0.0042 (7) | −0.0010 (7) |
O25 | 0.0336 (9) | 0.0267 (8) | 0.0353 (10) | −0.0098 (7) | −0.0041 (8) | −0.0022 (7) |
N21 | 0.0215 (8) | 0.0230 (8) | 0.0177 (8) | −0.0078 (7) | 0.0030 (6) | −0.0012 (6) |
C26 | 0.0178 (9) | 0.0235 (9) | 0.0179 (9) | −0.0083 (7) | 0.0010 (7) | −0.0026 (7) |
O22 | 0.0538 (11) | 0.0249 (8) | 0.0243 (8) | −0.0179 (8) | 0.0047 (8) | 0.0002 (6) |
O24 | 0.0456 (10) | 0.0296 (8) | 0.0219 (8) | −0.0065 (7) | 0.0096 (7) | 0.0020 (6) |
O2 | 0.0310 (9) | 0.0528 (11) | 0.0251 (9) | −0.0248 (8) | 0.0013 (7) | 0.0000 (8) |
O1 | 0.0292 (9) | 0.0622 (12) | 0.0263 (10) | −0.0241 (9) | 0.0030 (8) | −0.0047 (9) |
C23 | 0.0193 (9) | 0.0228 (9) | 0.0189 (9) | −0.0104 (8) | 0.0011 (8) | −0.0011 (8) |
C28 | 0.0232 (10) | 0.0267 (10) | 0.0153 (9) | −0.0134 (8) | 0.0014 (7) | −0.0019 (8) |
C27 | 0.0188 (9) | 0.0268 (10) | 0.0210 (10) | −0.0082 (8) | 0.0027 (8) | −0.0032 (8) |
C25 | 0.0287 (11) | 0.0217 (10) | 0.0246 (11) | −0.0061 (8) | 0.0059 (9) | −0.0052 (8) |
C24 | 0.0295 (11) | 0.0228 (10) | 0.0268 (11) | −0.0089 (8) | 0.0038 (9) | 0.0017 (8) |
Li2 | 0.0308 (19) | 0.0224 (17) | 0.0280 (19) | −0.0087 (15) | 0.0019 (15) | −0.0027 (15) |
Li3 | 0.029 (2) | 0.0324 (19) | 0.033 (2) | −0.0146 (16) | 0.0025 (16) | −0.0038 (16) |
O14 | 0.0218 (8) | 0.0426 (9) | 0.0248 (9) | −0.0027 (7) | 0.0027 (6) | −0.0083 (7) |
O11 | 0.0196 (7) | 0.0527 (10) | 0.0222 (8) | −0.0143 (7) | 0.0040 (6) | −0.0104 (7) |
N12 | 0.0160 (8) | 0.0299 (9) | 0.0169 (8) | −0.0082 (7) | 0.0005 (6) | −0.0048 (7) |
O13 | 0.0183 (7) | 0.0449 (10) | 0.0254 (8) | −0.0040 (7) | −0.0036 (6) | −0.0120 (7) |
O12 | 0.0205 (8) | 0.0692 (13) | 0.0245 (9) | −0.0206 (8) | −0.0019 (6) | −0.0093 (8) |
N11 | 0.0157 (8) | 0.0320 (9) | 0.0186 (8) | −0.0103 (7) | 0.0002 (6) | −0.0028 (7) |
C18 | 0.0184 (9) | 0.0268 (10) | 0.0172 (9) | −0.0066 (8) | 0.0004 (7) | −0.0039 (8) |
C13 | 0.0163 (9) | 0.0248 (9) | 0.0196 (9) | −0.0085 (8) | 0.0007 (7) | −0.0015 (7) |
O15 | 0.0194 (8) | 0.0408 (10) | 0.0521 (12) | −0.0096 (7) | 0.0010 (8) | 0.0071 (9) |
C16 | 0.0171 (9) | 0.0310 (10) | 0.0184 (9) | −0.0130 (8) | −0.0008 (7) | −0.0004 (8) |
C17 | 0.0201 (10) | 0.0371 (11) | 0.0194 (10) | −0.0163 (9) | 0.0010 (8) | −0.0035 (8) |
C14 | 0.0144 (9) | 0.0391 (12) | 0.0269 (11) | −0.0062 (9) | 0.0028 (8) | −0.0108 (9) |
C15 | 0.0157 (10) | 0.0441 (13) | 0.0277 (11) | −0.0108 (9) | −0.0044 (8) | −0.0052 (10) |
Li1 | 0.0137 (15) | 0.0357 (19) | 0.0287 (19) | −0.0063 (14) | 0.0018 (14) | −0.0058 (15) |
N1 | 0.0310 (10) | 0.0318 (10) | 0.0241 (10) | −0.0137 (8) | −0.0041 (8) | −0.0015 (8) |
N2 | 0.0390 (14) | 0.0484 (15) | 0.0519 (17) | −0.0006 (12) | −0.0123 (12) | −0.0173 (12) |
Li1—O11i | 2.011 (4) | O1—H11 | 0.74 (4) |
Li1—N11i | 2.185 (4) | O1—H12 | 0.83 (4) |
Li1—N12 | 2.209 (4) | C23—C24 | 1.389 (3) |
Li1—O13 | 1.999 (4) | C23—C28 | 1.521 (3) |
Li1—O15 | 1.961 (5) | C25—C24 | 1.372 (3) |
N11—Li1i | 2.185 (4) | C25—H25 | 1.00 (3) |
O21—C28 | 1.247 (3) | C24—H24 | 0.99 (3) |
Li2—O21 | 1.998 (4) | Li3—H11 | 2.27 (4) |
Li2—N22 | 2.175 (5) | O14—C18 | 1.242 (3) |
Li2—O25 | 1.974 (4) | O11—C17 | 1.247 (3) |
N21—Li2ii | 2.170 (4) | O11—Li1i | 2.011 (4) |
O24—Li2ii | 2.023 (5) | N12—N11 | 1.331 (3) |
Li2—O24ii | 2.023 (5) | N12—C13 | 1.336 (3) |
Li2—N21ii | 2.170 (4) | O13—C18 | 1.251 (2) |
Li3—O21 | 1.951 (5) | O12—C17 | 1.252 (2) |
Li3—O3 | 2.019 (5) | N11—C16 | 1.334 (2) |
Li3—O2 | 1.926 (4) | C18—C13 | 1.518 (3) |
Li3—O1 | 1.954 (4) | C13—C14 | 1.390 (3) |
N22—C23 | 1.330 (2) | O15—H152 | 0.86 (5) |
N22—N21 | 1.340 (2) | O15—H151 | 0.79 (4) |
O23—C27 | 1.243 (3) | C16—C15 | 1.391 (3) |
O3—H32 | 0.94 (3) | C16—C17 | 1.520 (3) |
O3—H31 | 0.71 (4) | C14—C15 | 1.366 (3) |
O25—H251 | 0.73 (3) | C14—H14 | 0.92 (3) |
O25—H252 | 0.90 (4) | C15—H15 | 0.93 (4) |
N21—C26 | 1.327 (3) | N1—N2 | 1.417 (3) |
C26—C25 | 1.392 (3) | N1—H1 | 1.01 (4) |
C26—C27 | 1.516 (3) | N1—H2 | 0.91 (3) |
O22—C28 | 1.239 (2) | N1—H3 | 0.89 (4) |
O24—C27 | 1.250 (3) | N2—H4 | 0.86 (5) |
O2—H21 | 0.83 (3) | N2—H5 | 0.85 (5) |
O2—H22 | 0.81 (4) | ||
C28—O21—Li3 | 116.39 (18) | O21—Li3—O3 | 107.8 (2) |
C28—O21—Li2 | 118.44 (18) | O1—Li3—O3 | 113.9 (2) |
Li3—O21—Li2 | 121.83 (18) | O2—Li3—H11 | 126.4 (9) |
C23—N22—N21 | 119.55 (19) | O21—Li3—H11 | 86.0 (9) |
C23—N22—Li2 | 109.87 (17) | O1—Li3—H11 | 18.2 (9) |
N21—N22—Li2 | 129.03 (16) | O3—Li3—H11 | 113.5 (9) |
Li3—O3—H32 | 103.6 (19) | C17—O11—Li1i | 118.19 (19) |
Li3—O3—H31 | 119 (3) | N11—N12—C13 | 119.78 (16) |
H32—O3—H31 | 109 (4) | N11—N12—Li1 | 128.99 (17) |
Li2—O25—H251 | 118 (2) | C13—N12—Li1 | 110.42 (16) |
Li2—O25—H252 | 117 (2) | C18—O13—Li1 | 120.27 (18) |
H251—O25—H252 | 103 (3) | N12—N11—C16 | 119.80 (19) |
C26—N21—N22 | 119.84 (16) | N12—N11—Li1i | 128.45 (16) |
C26—N21—Li2ii | 110.64 (17) | C16—N11—Li1i | 110.42 (17) |
N22—N21—Li2ii | 128.61 (18) | O14—C18—O13 | 126.8 (2) |
N21—C26—C25 | 122.8 (2) | O14—C18—C13 | 117.63 (18) |
N21—C26—C27 | 115.22 (17) | O13—C18—C13 | 115.53 (19) |
C25—C26—C27 | 122.0 (2) | N12—C13—C14 | 122.5 (2) |
C27—O24—Li2ii | 118.10 (18) | N12—C13—C18 | 114.71 (16) |
Li3—O2—H21 | 112 (2) | C14—C13—C18 | 122.8 (2) |
Li3—O2—H22 | 123 (3) | Li1—O15—H152 | 116 (3) |
H21—O2—H22 | 124 (3) | Li1—O15—H151 | 125 (3) |
Li3—O1—H11 | 106 (3) | H152—O15—H151 | 104 (4) |
Li3—O1—H12 | 126 (2) | N11—C16—C15 | 122.6 (2) |
H11—O1—H12 | 112 (4) | N11—C16—C17 | 114.32 (19) |
N22—C23—C24 | 122.77 (19) | C15—C16—C17 | 123.10 (18) |
N22—C23—C28 | 114.86 (19) | O11—C17—O12 | 126.4 (2) |
C24—C23—C28 | 122.37 (17) | O11—C17—C16 | 116.52 (17) |
O22—C28—O21 | 126.7 (2) | O12—C17—C16 | 117.0 (2) |
O22—C28—C23 | 116.8 (2) | C15—C14—C13 | 117.7 (2) |
O21—C28—C23 | 116.54 (17) | C15—C14—H14 | 122.2 (17) |
O23—C27—O24 | 126.6 (2) | C13—C14—H14 | 120.0 (17) |
O23—C27—C26 | 117.45 (18) | C14—C15—C16 | 117.62 (18) |
O24—C27—C26 | 115.9 (2) | C14—C15—H15 | 125 (2) |
C24—C25—C26 | 117.3 (2) | C16—C15—H15 | 117 (2) |
C24—C25—H25 | 122.9 (15) | O15—Li1—O13 | 105.5 (2) |
C26—C25—H25 | 119.6 (15) | O15—Li1—O11i | 101.59 (18) |
C25—C24—C23 | 117.70 (18) | O13—Li1—O11i | 98.88 (19) |
C25—C24—H24 | 123.4 (16) | O15—Li1—N11i | 96.05 (18) |
C23—C24—H24 | 118.9 (16) | O13—Li1—N11i | 158.4 (2) |
O25—Li2—O21 | 100.71 (18) | O11i—Li1—N11i | 77.42 (14) |
O25—Li2—O24ii | 103.7 (2) | O15—Li1—N12 | 98.91 (18) |
O21—Li2—O24ii | 97.81 (19) | O13—Li1—N12 | 76.75 (14) |
O25—Li2—N21ii | 98.65 (18) | O11i—Li1—N12 | 159.5 (2) |
O21—Li2—N21ii | 160.6 (2) | N11i—Li1—N12 | 99.15 (17) |
O24ii—Li2—N21ii | 77.55 (14) | N2—N1—H1 | 110 (2) |
O25—Li2—N22 | 99.76 (19) | N2—N1—H2 | 108 (2) |
O21—Li2—N22 | 78.43 (14) | H1—N1—H2 | 110 (3) |
O24ii—Li2—N22 | 156.5 (2) | N2—N1—H3 | 105 (2) |
N21ii—Li2—N22 | 98.24 (17) | H1—N1—H3 | 107 (3) |
O2—Li3—O21 | 105.5 (2) | H2—N1—H3 | 116 (3) |
O2—Li3—O1 | 113.9 (2) | N1—N2—H4 | 99 (3) |
O21—Li3—O1 | 102.8 (2) | N1—N2—H5 | 103 (4) |
O2—Li3—O3 | 112.0 (2) | H4—N2—H5 | 93 (4) |
Symmetry codes: (i) −x, −y+2, −z+1; (ii) −x, −y+1, −z. |
D—H···A | D—H | H···A | D···A | D—H···A |
O25—H252···O22iii | 0.90 (4) | 1.87 (4) | 2.752 (3) | 168 (3) |
O1—H11···O23iv | 0.74 (4) | 2.10 (4) | 2.832 (3) | 173 (4) |
N1—H1···O3 | 1.01 (4) | 1.99 (4) | 2.972 (3) | 164 (3) |
O2—H21···O23v | 0.83 (3) | 2.07 (3) | 2.889 (3) | 171 (3) |
O2—H22···O11vi | 0.81 (4) | 1.88 (4) | 2.691 (3) | 172 (4) |
N1—H2···O22iii | 0.91 (3) | 1.97 (4) | 2.826 (3) | 156 (3) |
O3—H32···O24ii | 0.94 (3) | 1.71 (3) | 2.635 (2) | 165 (3) |
N1—H3···O13 | 0.89 (4) | 1.84 (4) | 2.720 (3) | 174 (3) |
O15—H152···O12vii | 0.86 (5) | 1.92 (5) | 2.755 (3) | 162 (5) |
O15—H151···O14viii | 0.79 (4) | 2.04 (4) | 2.790 (3) | 160 (4) |
O3—H31···O14ix | 0.71 (4) | 2.14 (4) | 2.833 (3) | 165 (4) |
O1—H12···O12x | 0.83 (4) | 2.06 (4) | 2.839 (3) | 155 (3) |
Symmetry codes: (ii) −x, −y+1, −z; (iii) x, y+1, z; (iv) −x+1, −y, −z; (v) −x, −y, −z; (vi) −x, −y+1, −z+1; (vii) −x+1, −y+2, −z+1; (viii) x−1, y+1, z; (ix) x−1, y, z; (x) −x+1, −y+1, −z+1. |
Experimental details
Crystal data | |
Chemical formula | (N2H5)2[Li2(C6H2N2O4)2(H2O)2]·[Li4(C6H2N2O4)2(H2O)8] |
Mr | 952.30 |
Crystal system, space group | Triclinic, P1 |
Temperature (K) | 293 |
a, b, c (Å) | 7.0999 (14), 7.2390 (14), 22.608 (5) |
α, β, γ (°) | 86.40 (3), 87.68 (3), 61.49 (3) |
V (Å3) | 1018.9 (3) |
Z | 1 |
Radiation type | Mo Kα |
µ (mm−1) | 0.14 |
Crystal size (mm) | 0.72 × 0.35 × 0.11 |
Data collection | |
Diffractometer | Kuma KM-4 four-circle diffractometer |
Absorption correction | Analytical (CrysAlis RED; Oxford Diffraction, 2008) |
Tmin, Tmax | 0.970, 0.985 |
No. of measured, independent and observed [I > 2σ(I)] reflections | 5515, 5058, 3362 |
Rint | 0.090 |
(sin θ/λ)max (Å−1) | 0.705 |
Refinement | |
R[F2 > 2σ(F2)], wR(F2), S | 0.054, 0.204, 1.05 |
No. of reflections | 5058 |
No. of parameters | 383 |
H-atom treatment | All H-atom parameters refined |
Δρmax, Δρmin (e Å−3) | 0.63, −0.41 |
Computer programs: KM-4 Software (Kuma, 1996), DATAPROC (Kuma, 2001), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), SHELXTL (Sheldrick, 2008).
Li1—O11i | 2.011 (4) | Li2—O25 | 1.974 (4) |
Li1—N11i | 2.185 (4) | Li2—O24ii | 2.023 (5) |
Li1—N12 | 2.209 (4) | Li2—N21ii | 2.170 (4) |
Li1—O13 | 1.999 (4) | Li3—O21 | 1.951 (5) |
Li1—O15 | 1.961 (5) | Li3—O3 | 2.019 (5) |
Li2—O21 | 1.998 (4) | Li3—O2 | 1.926 (4) |
Li2—N22 | 2.175 (5) | Li3—O1 | 1.954 (4) |
Symmetry codes: (i) −x, −y+2, −z+1; (ii) −x, −y+1, −z. |
D—H···A | D—H | H···A | D···A | D—H···A |
O25—H252···O22iii | 0.90 (4) | 1.87 (4) | 2.752 (3) | 168 (3) |
O1—H11···O23iv | 0.74 (4) | 2.10 (4) | 2.832 (3) | 173 (4) |
N1—H1···O3 | 1.01 (4) | 1.99 (4) | 2.972 (3) | 164 (3) |
O2—H21···O23v | 0.83 (3) | 2.07 (3) | 2.889 (3) | 171 (3) |
O2—H22···O11vi | 0.81 (4) | 1.88 (4) | 2.691 (3) | 172 (4) |
N1—H2···O22iii | 0.91 (3) | 1.97 (4) | 2.826 (3) | 156 (3) |
O3—H32···O24ii | 0.94 (3) | 1.71 (3) | 2.635 (2) | 165 (3) |
N1—H3···O13 | 0.89 (4) | 1.84 (4) | 2.720 (3) | 174 (3) |
O15—H152···O12vii | 0.86 (5) | 1.92 (5) | 2.755 (3) | 162 (5) |
O15—H151···O14viii | 0.79 (4) | 2.04 (4) | 2.790 (3) | 160 (4) |
O3—H31···O14ix | 0.71 (4) | 2.14 (4) | 2.833 (3) | 165 (4) |
O1—H12···O12x | 0.83 (4) | 2.06 (4) | 2.839 (3) | 155 (3) |
Symmetry codes: (ii) −x, −y+1, −z; (iii) x, y+1, z; (iv) −x+1, −y, −z; (v) −x, −y, −z; (vi) −x, −y+1, −z+1; (vii) −x+1, −y+2, −z+1; (viii) x−1, y+1, z; (ix) x−1, y, z; (x) −x+1, −y+1, −z+1. |
References
Kuma (1996). KM-4 Software. Kuma Diffraction Ltd, Wrocław, Poland. Google Scholar
Kuma (2001). DATAPROC. Kuma Diffraction Ltd, Wrocław, Poland. Google Scholar
Oxford Diffraction (2008). CrysAlis RED. Oxford Diffraction Ltd, Yarnton, Oxfordshire, England. Google Scholar
Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. Web of Science CrossRef CAS IUCr Journals Google Scholar
Starosta, W. & Leciejewicz, J. (2008). Acta Cryst. E64, o461. Web of Science CSD CrossRef IUCr Journals Google Scholar
Starosta, W. & Leciejewicz, J. (2010). Acta Cryst. E66, m1362–m1363. Web of Science CSD CrossRef IUCr Journals Google Scholar
Starosta, W. & Leciejewicz, J. (2011). Acta Cryst. E67, m1455–m1456. Web of Science CSD CrossRef IUCr Journals Google Scholar
This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.
The structure of the original LiI complex with pyridazine-3,6-dicarboxylate and water ligands was reported to consist of molecular ribbons in which LiI ions are octahedrally coordinated by two fully deprotonated ligand molecules and two aqua O atoms are bridged by protons located in a centre of symmetry (Starosta & Leciejewicz, 2010). Removal of these protons by adding a few drops of hydrazine resulted in a two-dimensional catenated polymeric structure (Starosta & Leciejewicz, 2011). When few more drops of hydrazine were added to the aqueous solution of the original complex, crystals of a new compound with a triclinic centrosymmetric structure were identified. This structure is built of two mono protonated hydrazine cations, a centrosymmetric dimeric anion and a neutral centrosymmetric tetrameric molecule. The dimeric anion consists of pairs of symmetry related: LiI ions, fully deprotonated ligand molecules and water O15 atom (Fig. 1). The Li1 ion, coordinated by two N,O bonding groups donated by two ligands and the aqua O15 atom shows transition from a distorted trigonal–bipyramidal geometry [with an equatorial plane composed of O13, N11ii and O15 atoms with r.m.s. of 0.0059 (1) Å, the Li1 ion is 0.0119 (1) Å out of this plane, N12 and O11ii atoms are at axial positions; symmetry code: i -x, -y + 1, -z; ii -x, -y + 2, -z + 1] to a square-pyramidal geometry [where the aqua O15 is at the apical position]. The pyridazine ring is planar (r.m.s. of 0.0017 (1) Å); carboxylate groups C17/O11/O12 and C18/O13/O14 make with it dihedral angles of 1.4 (1)° and 1.7 (1)°, respectively. An anionic dimer constitutes the core of the other complex molecule. The coordination of the Li2 ion can be described by transition from trigonal–bipyramidal arrrangement [N22, O24i and O25 atoms form the equatorial plane, r.m.s. 0.0044 (1) Å, the Li2 ion is 0.0088 (1) Å out of the equatorial plane; O21 and N21i are at the apices] to the square-pyramdidal one [with the water O25 at the apical position]. The pyridazine ring is planar [r.m.s. 0.0009 (1) Å]; the carboxylate C27/O21/O22 and C28/O23/O24 groups make with it dihedral angles of 5.9 (1)° and 0.7 (1)°, respectively. In contrast to the anion complex, the carboxylato O21 atom in the neutral complex molecule acts as bidentate bridging to a Li(H2O)3 group completing a tetranuclear molecule. The coordination environment of the Li3 ion formed by the O1, O2, O3 and O21 atoms is distorted tetrahedral. Pyridazine ring planes of the anion and the tetrameric molecule are inclined by an angle of 65.7 (1)° each to the other (Fig. 2). The observed Li—O and Li—N bond distances (Table 1) are close to those reported in two other LiI complexes with the title ligand (Starosta & Leciejewicz, 2010, 2011). Bond distances in the protonated hydrazine cations are almost the same as those reported in the structure of an hydrazine adduct of the pyridazine-3,6-dicarboxylate acid (Starosta & Leciejewicz, 2008). An extended hydrogen bond system in which coordinated water molecules act as donors, carboxylate O atoms are as acceptors contributes to the stability of the structure (Table 2).