organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Di­cyclo­hex­yl(4-iso­propyl­phen­yl)phosphane selenide

aResearch Center for Synthesis and Catalysis, Department of Chemistry, University of Johannesburg, PO Box 524, Auckland Park, Johannesburg 2006, South Africa
*Correspondence e-mail: mullera@uj.ac.za

(Received 25 January 2012; accepted 3 February 2012; online 10 February 2012)

In the title compund, C21H33PSe, the Se=P bond is part of a distorted tetra­hedral environment on the P atom. Both cyclo­hexyl groups adopt chair conformations. A cone angle of 170° was calculated using an adaptation of the Tolman model. Inter­molecular C—H⋯Se and C—H⋯Cg contacts are observed (Cg is the centroid of the benzene ring).

Related literature

For background studies aimed at understanding the transition metal–phospho­rus bond, see: Muller et al. (2008[Muller, A., Meijboom, R. & Roodt, A. (2008). Dalton Trans. pp. 650-657.]); Roodt et al. (2003[Roodt, A., Otto, S. & Steyl, G. J. (2003). Coord. Chem. Rev. 245, 121-137.]). For transition metal complexes with PCy2(4-iPr—C6H4), see: Makhoba et al. (2011[Makhoba, S., Muller, A., Meijboom, R. & Omondi, B. (2011). Acta Cryst. E67, m1286-m1287.]); Vuba & Muller (2012[Vuba, B. & Muller, A. (2012). Acta Cryst. E68, m14-m15.]). For background to cone angles, see: Tolman (1977[Tolman, C. A. (1977). Chem. Rev. 77, 313-348.]).

[Scheme 1]

Experimental

Crystal data
  • C21H33PSe

  • Mr = 395.4

  • Monoclinic, P 21 /c

  • a = 13.1311 (10) Å

  • b = 13.6991 (10) Å

  • c = 11.7821 (8) Å

  • β = 103.106 (2)°

  • V = 2064.2 (3) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 1.90 mm−1

  • T = 100 K

  • 0.22 × 0.14 × 0.1 mm

Data collection
  • Bruker APEX DUO 4K CCD diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 2008[Bruker (2008). SADABS, SAINT and XPREP. Bruker AXS Inc., Madison, Wisconsin, USA.]) Tmin = 0.681, Tmax = 0.833

  • 28000 measured reflections

  • 5140 independent reflections

  • 4397 reflections with I > 2σ(I)

  • Rint = 0.040

Refinement
  • R[F2 > 2σ(F2)] = 0.023

  • wR(F2) = 0.057

  • S = 1.02

  • 5140 reflections

  • 210 parameters

  • H-atom parameters constrained

  • Δρmax = 0.41 e Å−3

  • Δρmin = −0.24 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

Cg1 is the centroid of the C13–C18 benzene ring.

D—H⋯A D—H H⋯A DA D—H⋯A
C1—H1⋯Se1i 1.00 3.09 4.0500 (14) 162
C9—H9BCg1ii 0.99 2.81 3.6471 143
Symmetry codes: (i) [x, -y+{\script{1\over 2}}, z-{\script{1\over 2}}]; (ii) [x, -y-{\script{1\over 2}}, z-{\script{3\over 2}}].

Data collection: APEX2 (Bruker, 2011[Bruker (2011). APEX2. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2008[Bruker (2008). SADABS, SAINT and XPREP. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT and XPREP (Bruker, 2008[Bruker (2008). SADABS, SAINT and XPREP. Bruker AXS Inc., Madison, Wisconsin, USA.]); program(s) used to solve structure: SIR97 (Altomare et al., 1999[Altomare, A., Burla, M. C., Camalli, M., Cascarano, G. L., Giacovazzo, C., Guagliardi, A., Moliterni, A. G. G., Polidori, G. & Spagna, R. (1999). J. Appl. Cryst. 32, 115-119.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: DIAMOND (Brandenburg & Putz, 2005[Brandenburg, K. & Putz, H. (2005). DIAMOND. Crystal Impact GbR, Bonn, Germany.]); software used to prepare material for publication: WinGX (Farrugia, 1999[Farrugia, L. J. (1999). J. Appl. Cryst. 32, 837-838.]).

Supporting information


Comment top

The bonding of phosphorus to transitional metals have being investigated extensively, with several attempts to divide the properties of the phosphorus ligand into steric and electronic effects. Various techniques such as single-crystal X-ray crystallography, multi nuclear NMR and IR (Roodt et al., 2003) have been used to this extent. Recently we have also included selenium derivatives of the phosphorus compounds into this study (Muller et al., 2008). This route seems viable as the use of expensive transition metals and steric influence from other ligands in the coordination sphere are eliminated, leaving only crystal packing effects as an additional influence on the steric property of the phosphorus ligand. As part of this investigation we report here the selenium derivative of PCy2(4-iPr—C6H4) where Cy = cyclohexyl and iPr = isopropyl.

Molecules of the title compound (Fig. 1) adopts a distorted tetrahedral arrangement about the P atom with average C—P—C and Se—P—C angles of 106.0° and 112.7° respectively. The cone angle was found to be 170° when the Se—P distance was adjusted to 2.28 Å (the default value from Tolman, 1977). This value is ca 5° larger than previous reported values where the present phosphine was bonded to a transition metal centre (Makhoba et al., 2011; Vuba & Muller, 2012). This indicates to some extend the flexibility of this phosphine ligand and its ability to use space to enable less crowding of its substituents. Weak intermolecular C—H···Se and C—H···Cg contacts are observed (Table 1, Fig. 2) and link the molecules as infinite chains in the [001] direction.

Related literature top

For background studies aimed at understanding the transition metal–phosphorus bond, see: Muller et al. (2008); Roodt et al. (2003). For transition metal complexes with PCy2(4-iPr—C6H4), see: Makhoba et al. (2011); Vuba & Muller (2012). For background to cone angles, see: Tolman (1977).

Experimental top

KSeCN (10 mg, 0.0694 mmol) and PCy2(4-iPr—C6H4) (21.96 mg, 0.0694 mmol) were both dissolved in a minimum amount of methanol (10–20 ml). The KSeCN solution was added drop wise (5 min) to the phosphine solution while stirring at room temperature. The final solution was left to evaporate slowly in order to give crystals that are suitable for single-crystal X-ray study.

Refinement top

All H atoms were positioned in geometrically idealised positions with C—H = 1.00 Å, 0.99 Å, 0.98 Å and 0.95 Å for methine, methylene, methyl and aromatic H atoms respectively and constrained to ride on their parents atoms with Uiso(H) = 1.2Ueq, except for methyl where Uiso(H) = 1.5Ueq was utilized. The initial positions of methyl H atoms were located from a Fourier difference map and refined as fixed rotor. The highest residual electron density of 0.41 e Å-3 was located 0.76 Å from C19, and the deepest hole of -0.24 e Å-3 is 0.81 Å from P1. Both represent no physical meaning.

Computing details top

Data collection: APEX2 (Bruker, 2011); cell refinement: SAINT (Bruker, 2008); data reduction: SAINT and XPREP (Bruker, 2008); program(s) used to solve structure: SIR97 (Altomare et al., 1999); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: DIAMOND (Brandenburg & Putz, 2005); software used to prepare material for publication: WinGX (Farrugia, 1999).

Figures top
[Figure 1] Fig. 1. A view of the title compound showing the numbering scheme of atoms and displacement ellipsoids (drawn at the 50% probability level). H atoms omitted for clarity.
[Figure 2] Fig. 2. Packing diagram showing the interactions observed for the structure.
Dicyclohexyl(4-isopropylphenyl)phosphane selenide top
Crystal data top
C21H33PSeF(000) = 832
Mr = 395.4Dx = 1.272 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ybcCell parameters from 8561 reflections
a = 13.1311 (10) Åθ = 2.3–28.2°
b = 13.6991 (10) ŵ = 1.90 mm1
c = 11.7821 (8) ÅT = 100 K
β = 103.106 (2)°Cuboid, colourless
V = 2064.2 (3) Å30.22 × 0.14 × 0.1 mm
Z = 4
Data collection top
Bruker APEX DUO 4K CCD
diffractometer
5140 independent reflections
Graphite monochromator4397 reflections with I > 2σ(I)
Detector resolution: 8.4 pixels mm-1Rint = 0.040
ϕ and ω scansθmax = 28.3°, θmin = 1.6°
Absorption correction: multi-scan
(SADABS; Bruker, 2008)
h = 1717
Tmin = 0.681, Tmax = 0.833k = 1818
28000 measured reflectionsl = 1515
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.023Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.057H-atom parameters constrained
S = 1.02 w = 1/[σ2(Fo2) + (0.0262P)2 + 0.6415P]
where P = (Fo2 + 2Fc2)/3
5140 reflections(Δ/σ)max = 0.001
210 parametersΔρmax = 0.41 e Å3
0 restraintsΔρmin = 0.24 e Å3
Crystal data top
C21H33PSeV = 2064.2 (3) Å3
Mr = 395.4Z = 4
Monoclinic, P21/cMo Kα radiation
a = 13.1311 (10) ŵ = 1.90 mm1
b = 13.6991 (10) ÅT = 100 K
c = 11.7821 (8) Å0.22 × 0.14 × 0.1 mm
β = 103.106 (2)°
Data collection top
Bruker APEX DUO 4K CCD
diffractometer
5140 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 2008)
4397 reflections with I > 2σ(I)
Tmin = 0.681, Tmax = 0.833Rint = 0.040
28000 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0230 restraints
wR(F2) = 0.057H-atom parameters constrained
S = 1.02Δρmax = 0.41 e Å3
5140 reflectionsΔρmin = 0.24 e Å3
210 parameters
Special details top

Experimental. The intensity data was collected on a Bruker Apex DUO 4K CCD diffractometer using an exposure time of 10 s/frame. A total of 5967 frames were collected with a frame width of 0.5° covering up to θ = 28.31° with 100% completeness accomplished.

Analytical data: 31P {H} NMR (CDCl3, 160 MHz): δ = 54.1 (s, 1P)

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R-factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
P10.63459 (3)0.16154 (3)0.07287 (3)0.01280 (8)
Se10.589654 (11)0.097347 (10)0.218666 (12)0.01702 (5)
C10.53424 (10)0.24106 (10)0.01384 (12)0.0147 (3)
H10.5640.27180.07620.018*
C20.43736 (11)0.18232 (11)0.07302 (13)0.0193 (3)
H2A0.45690.13440.12720.023*
H2B0.41070.14580.01320.023*
C30.35114 (11)0.24925 (11)0.14041 (14)0.0228 (3)
H3A0.3750.27990.2060.027*
H3B0.28810.20990.17330.027*
C40.32313 (12)0.32877 (12)0.06224 (15)0.0239 (3)
H4A0.26930.37220.10890.029*
H4B0.29360.29850.00050.029*
C50.41921 (12)0.38870 (11)0.00652 (14)0.0222 (3)
H5A0.39980.43820.0460.027*
H5B0.44520.42340.0680.027*
C60.50595 (11)0.32336 (11)0.06286 (13)0.0193 (3)
H6A0.48260.29440.12960.023*
H6B0.56880.36340.09420.023*
C70.66780 (10)0.06797 (10)0.02535 (12)0.0139 (3)
H70.60560.02440.04990.017*
C80.69309 (11)0.11074 (10)0.13626 (13)0.0174 (3)
H8A0.63170.14730.18040.021*
H8B0.75230.1570.11450.021*
C90.72156 (12)0.02992 (11)0.21352 (13)0.0198 (3)
H9A0.66060.01360.240.024*
H9B0.73930.05940.28330.024*
C100.81410 (12)0.02969 (11)0.14730 (13)0.0205 (3)
H10A0.87640.01280.12530.025*
H10B0.83010.08240.19810.025*
C110.78950 (12)0.07406 (11)0.03796 (13)0.0206 (3)
H11A0.85150.110.00580.025*
H11B0.73130.12130.06060.025*
C120.75906 (11)0.00468 (10)0.04060 (12)0.0173 (3)
H12A0.82030.04690.07120.021*
H12B0.73880.02690.10780.021*
C130.75153 (10)0.23630 (10)0.11383 (12)0.0137 (3)
C140.77795 (11)0.30400 (10)0.03631 (12)0.0159 (3)
H140.73020.31730.03560.019*
C150.87363 (11)0.35183 (10)0.06399 (13)0.0171 (3)
H150.89060.39760.01060.021*
C160.94567 (10)0.33377 (10)0.16937 (12)0.0160 (3)
C170.91711 (11)0.26870 (10)0.24719 (13)0.0167 (3)
H170.96390.25670.32010.02*
C180.82115 (11)0.22069 (10)0.22028 (12)0.0150 (3)
H180.80310.17690.27510.018*
C191.05187 (11)0.38265 (11)0.19607 (13)0.0193 (3)
H191.08790.36460.27750.023*
C201.11914 (12)0.34511 (13)0.11461 (15)0.0278 (4)
H20A1.12660.27410.12250.042*
H20B1.18840.37570.13540.042*
H20C1.08550.36160.03390.042*
C211.04331 (12)0.49378 (11)0.19028 (14)0.0241 (3)
H21A1.00420.51340.11260.036*
H21B1.11350.52230.20550.036*
H21C1.00680.51690.2490.036*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
P10.01478 (16)0.01252 (16)0.01143 (17)0.00245 (12)0.00365 (13)0.00016 (13)
Se10.02188 (8)0.01700 (8)0.01373 (8)0.00395 (6)0.00727 (5)0.00076 (5)
C10.0143 (6)0.0151 (7)0.0144 (7)0.0018 (5)0.0029 (5)0.0004 (5)
C20.0165 (6)0.0179 (7)0.0223 (8)0.0026 (5)0.0017 (6)0.0022 (6)
C30.0170 (7)0.0237 (8)0.0247 (8)0.0027 (6)0.0014 (6)0.0017 (6)
C40.0187 (7)0.0245 (8)0.0288 (9)0.0034 (6)0.0064 (6)0.0064 (7)
C50.0246 (7)0.0176 (7)0.0244 (8)0.0027 (6)0.0054 (6)0.0019 (6)
C60.0215 (7)0.0169 (7)0.0191 (8)0.0009 (5)0.0040 (6)0.0019 (6)
C70.0162 (6)0.0125 (6)0.0130 (7)0.0018 (5)0.0037 (5)0.0012 (5)
C80.0224 (7)0.0164 (7)0.0142 (7)0.0010 (5)0.0060 (6)0.0011 (5)
C90.0278 (7)0.0193 (7)0.0135 (7)0.0011 (6)0.0075 (6)0.0000 (6)
C100.0236 (7)0.0199 (7)0.0200 (8)0.0008 (6)0.0092 (6)0.0022 (6)
C110.0261 (7)0.0176 (7)0.0195 (8)0.0038 (6)0.0082 (6)0.0008 (6)
C120.0211 (7)0.0179 (7)0.0131 (7)0.0024 (5)0.0041 (5)0.0019 (5)
C130.0150 (6)0.0127 (6)0.0134 (7)0.0014 (5)0.0037 (5)0.0030 (5)
C140.0177 (6)0.0173 (7)0.0118 (7)0.0018 (5)0.0011 (5)0.0003 (5)
C150.0199 (7)0.0169 (7)0.0149 (7)0.0044 (5)0.0047 (5)0.0020 (5)
C160.0155 (6)0.0151 (6)0.0168 (7)0.0019 (5)0.0027 (5)0.0030 (5)
C170.0173 (6)0.0170 (7)0.0145 (7)0.0005 (5)0.0009 (5)0.0002 (5)
C180.0191 (6)0.0125 (6)0.0136 (7)0.0005 (5)0.0044 (5)0.0003 (5)
C190.0165 (6)0.0234 (8)0.0165 (7)0.0047 (6)0.0010 (5)0.0004 (6)
C200.0186 (7)0.0364 (9)0.0290 (9)0.0006 (6)0.0064 (6)0.0011 (7)
C210.0236 (7)0.0239 (8)0.0243 (8)0.0089 (6)0.0045 (6)0.0019 (6)
Geometric parameters (Å, º) top
P1—C131.8176 (13)C9—H9B0.99
P1—C11.8321 (14)C10—C111.524 (2)
P1—C71.8442 (14)C10—H10A0.99
P1—Se12.1288 (4)C10—H10B0.99
C1—C21.5329 (18)C11—C121.532 (2)
C1—C61.5421 (19)C11—H11A0.99
C1—H11C11—H11B0.99
C2—C31.531 (2)C12—H12A0.99
C2—H2A0.99C12—H12B0.99
C2—H2B0.99C13—C181.3908 (19)
C3—C41.524 (2)C13—C141.3994 (19)
C3—H3A0.99C14—C151.3886 (19)
C3—H3B0.99C14—H140.95
C4—C51.524 (2)C15—C161.4018 (19)
C4—H4A0.99C15—H150.95
C4—H4B0.99C16—C171.390 (2)
C5—C61.531 (2)C16—C191.5143 (19)
C5—H5A0.99C17—C181.3928 (19)
C5—H5B0.99C17—H170.95
C6—H6A0.99C18—H180.95
C6—H6B0.99C19—C211.527 (2)
C7—C81.536 (2)C19—C201.533 (2)
C7—C121.5392 (19)C19—H191
C7—H71C20—H20A0.98
C8—C91.533 (2)C20—H20B0.98
C8—H8A0.99C20—H20C0.98
C8—H8B0.99C21—H21A0.98
C9—C101.524 (2)C21—H21B0.98
C9—H9A0.99C21—H21C0.98
C13—P1—C1105.70 (6)C10—C9—H9B109.5
C13—P1—C7104.63 (6)C8—C9—H9B109.5
C1—P1—C7107.81 (6)H9A—C9—H9B108
C13—P1—Se1112.99 (5)C9—C10—C11110.45 (12)
C1—P1—Se1113.56 (5)C9—C10—H10A109.6
C7—P1—Se1111.56 (5)C11—C10—H10A109.6
C2—C1—C6111.41 (11)C9—C10—H10B109.6
C2—C1—P1111.05 (10)C11—C10—H10B109.6
C6—C1—P1110.26 (10)H10A—C10—H10B108.1
C2—C1—H1108C10—C11—C12111.36 (12)
C6—C1—H1108C10—C11—H11A109.4
P1—C1—H1108C12—C11—H11A109.4
C3—C2—C1111.18 (12)C10—C11—H11B109.4
C3—C2—H2A109.4C12—C11—H11B109.4
C1—C2—H2A109.4H11A—C11—H11B108
C3—C2—H2B109.4C11—C12—C7111.80 (12)
C1—C2—H2B109.4C11—C12—H12A109.3
H2A—C2—H2B108C7—C12—H12A109.3
C4—C3—C2111.46 (13)C11—C12—H12B109.3
C4—C3—H3A109.3C7—C12—H12B109.3
C2—C3—H3A109.3H12A—C12—H12B107.9
C4—C3—H3B109.3C18—C13—C14118.74 (12)
C2—C3—H3B109.3C18—C13—P1119.72 (11)
H3A—C3—H3B108C14—C13—P1121.31 (10)
C5—C4—C3110.84 (12)C15—C14—C13120.29 (13)
C5—C4—H4A109.5C15—C14—H14119.9
C3—C4—H4A109.5C13—C14—H14119.9
C5—C4—H4B109.5C14—C15—C16121.17 (13)
C3—C4—H4B109.5C14—C15—H15119.4
H4A—C4—H4B108.1C16—C15—H15119.4
C4—C5—C6110.98 (12)C17—C16—C15117.95 (13)
C4—C5—H5A109.4C17—C16—C19121.34 (13)
C6—C5—H5A109.4C15—C16—C19120.70 (13)
C4—C5—H5B109.4C16—C17—C18121.21 (13)
C6—C5—H5B109.4C16—C17—H17119.4
H5A—C5—H5B108C18—C17—H17119.4
C5—C6—C1111.31 (12)C13—C18—C17120.56 (13)
C5—C6—H6A109.4C13—C18—H18119.7
C1—C6—H6A109.4C17—C18—H18119.7
C5—C6—H6B109.4C16—C19—C21112.13 (12)
C1—C6—H6B109.4C16—C19—C20110.84 (12)
H6A—C6—H6B108C21—C19—C20110.70 (13)
C8—C7—C12110.53 (11)C16—C19—H19107.7
C8—C7—P1113.34 (9)C21—C19—H19107.7
C12—C7—P1110.03 (9)C20—C19—H19107.7
C8—C7—H7107.6C19—C20—H20A109.5
C12—C7—H7107.6C19—C20—H20B109.5
P1—C7—H7107.6H20A—C20—H20B109.5
C9—C8—C7111.02 (11)C19—C20—H20C109.5
C9—C8—H8A109.4H20A—C20—H20C109.5
C7—C8—H8A109.4H20B—C20—H20C109.5
C9—C8—H8B109.4C19—C21—H21A109.5
C7—C8—H8B109.4C19—C21—H21B109.5
H8A—C8—H8B108H21A—C21—H21B109.5
C10—C9—C8110.89 (12)C19—C21—H21C109.5
C10—C9—H9A109.5H21A—C21—H21C109.5
C8—C9—H9A109.5H21B—C21—H21C109.5
C13—P1—C1—C2169.50 (10)C9—C10—C11—C1256.47 (16)
C7—P1—C1—C258.04 (11)C10—C11—C12—C754.94 (16)
Se1—P1—C1—C266.09 (11)C8—C7—C12—C1153.92 (15)
C13—P1—C1—C666.51 (11)P1—C7—C12—C11179.86 (10)
C7—P1—C1—C6177.97 (9)C1—P1—C13—C18147.20 (11)
Se1—P1—C1—C657.90 (10)C7—P1—C13—C1899.12 (12)
C6—C1—C2—C353.72 (17)Se1—P1—C13—C1822.43 (13)
P1—C1—C2—C3177.05 (10)C1—P1—C13—C1438.34 (13)
C1—C2—C3—C455.38 (17)C7—P1—C13—C1475.35 (13)
C2—C3—C4—C557.02 (17)Se1—P1—C13—C14163.10 (10)
C3—C4—C5—C657.05 (17)C18—C13—C14—C152.3 (2)
C4—C5—C6—C155.67 (17)P1—C13—C14—C15172.26 (11)
C2—C1—C6—C554.09 (16)C13—C14—C15—C160.0 (2)
P1—C1—C6—C5177.88 (10)C14—C15—C16—C172.0 (2)
C13—P1—C7—C861.65 (11)C14—C15—C16—C19177.00 (13)
C1—P1—C7—C850.53 (11)C15—C16—C17—C181.8 (2)
Se1—P1—C7—C8175.86 (8)C19—C16—C17—C18177.24 (13)
C13—P1—C7—C1262.67 (11)C14—C13—C18—C172.5 (2)
C1—P1—C7—C12174.85 (9)P1—C13—C18—C17172.11 (11)
Se1—P1—C7—C1259.81 (10)C16—C17—C18—C130.5 (2)
C12—C7—C8—C955.13 (15)C17—C16—C19—C21124.22 (15)
P1—C7—C8—C9179.19 (10)C15—C16—C19—C2156.82 (19)
C7—C8—C9—C1057.63 (16)C17—C16—C19—C20111.50 (16)
C8—C9—C10—C1157.88 (16)C15—C16—C19—C2067.46 (18)
Hydrogen-bond geometry (Å, º) top
Cg1 is the centroid of the C13–C18 benzene ring.
D—H···AD—HH···AD···AD—H···A
C1—H1···Se1i1.003.094.0500 (14)162
C9—H9B···Cg1ii0.992.813.6471143
Symmetry codes: (i) x, y+1/2, z1/2; (ii) x, y1/2, z3/2.

Experimental details

Crystal data
Chemical formulaC21H33PSe
Mr395.4
Crystal system, space groupMonoclinic, P21/c
Temperature (K)100
a, b, c (Å)13.1311 (10), 13.6991 (10), 11.7821 (8)
β (°) 103.106 (2)
V3)2064.2 (3)
Z4
Radiation typeMo Kα
µ (mm1)1.90
Crystal size (mm)0.22 × 0.14 × 0.1
Data collection
DiffractometerBruker APEX DUO 4K CCD
diffractometer
Absorption correctionMulti-scan
(SADABS; Bruker, 2008)
Tmin, Tmax0.681, 0.833
No. of measured, independent and
observed [I > 2σ(I)] reflections
28000, 5140, 4397
Rint0.040
(sin θ/λ)max1)0.667
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.023, 0.057, 1.02
No. of reflections5140
No. of parameters210
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.41, 0.24

Computer programs: APEX2 (Bruker, 2011), SAINT (Bruker, 2008), SAINT and XPREP (Bruker, 2008), SIR97 (Altomare et al., 1999), SHELXL97 (Sheldrick, 2008), DIAMOND (Brandenburg & Putz, 2005), WinGX (Farrugia, 1999).

Hydrogen-bond geometry (Å, º) top
Cg1 is the centroid of the C13–C18 benzene ring.
D—H···AD—HH···AD···AD—H···A
C1—H1···Se1i1.003.094.0500 (14)162
C9—H9B···Cg1ii0.992.813.6471143
Symmetry codes: (i) x, y+1/2, z1/2; (ii) x, y1/2, z3/2.
 

Acknowledgements

Research funding from the University of Johannesburg is gratefully acknowledged.

References

First citationAltomare, A., Burla, M. C., Camalli, M., Cascarano, G. L., Giacovazzo, C., Guagliardi, A., Moliterni, A. G. G., Polidori, G. & Spagna, R. (1999). J. Appl. Cryst. 32, 115–119.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationBrandenburg, K. & Putz, H. (2005). DIAMOND. Crystal Impact GbR, Bonn, Germany.  Google Scholar
First citationBruker (2008). SADABS, SAINT and XPREP. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationBruker (2011). APEX2. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationFarrugia, L. J. (1999). J. Appl. Cryst. 32, 837–838.  CrossRef CAS IUCr Journals Google Scholar
First citationMakhoba, S., Muller, A., Meijboom, R. & Omondi, B. (2011). Acta Cryst. E67, m1286–m1287.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationMuller, A., Meijboom, R. & Roodt, A. (2008). Dalton Trans. pp. 650–657.  Web of Science CSD CrossRef Google Scholar
First citationRoodt, A., Otto, S. & Steyl, G. J. (2003). Coord. Chem. Rev. 245, 121–137.  Web of Science CSD CrossRef CAS Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationTolman, C. A. (1977). Chem. Rev. 77, 313–348.  CrossRef CAS Web of Science Google Scholar
First citationVuba, B. & Muller, A. (2012). Acta Cryst. E68, m14–m15.  Web of Science CSD CrossRef IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds