organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 68| Part 3| March 2012| Pages o683-o684

(E)-3-Phenyl-2-(1-tosyl-1H-indol-3-ylcarbon­yl)acrylo­nitrile

aPostgraduate and Research Department of Physics, Agurchand Manmull Jain College, Chennai 600 114, India, and bOrganic Chemistry Division, Central Leather Research Institute, Chennai 600 020, India
*Correspondence e-mail: seshadri_pr@yahoo.com

(Received 27 January 2012; accepted 4 February 2012; online 10 February 2012)

In the title compound, C25H18N2O3S, the indole moiety is planar and makes a dihedral angle of 89.95 (09)° with the phenyl ring of the sulfonyl substituent. The mol­ecular conformation features a weak C—H⋯N short contact and the crystal packing reveals a weak C—H⋯O hydrogen bond.

Related literature

For the biological activity of indole derivatives, see: Andreani et al. (2001[Andreani, A., Granaiola, M., Leoni, A., Locatelli, A., Morigi, R., Rambaldi, M., Giorgi, G., Salvini, L. & Garaliene, V. (2001). Anti-Cancer Drug Des. 16, 167-174.]); Chai et al. (2006[Chai, H., Zhao, C. & Gong, P. (2006). Bioorg. Med. Chem. 14, 911-917.]); Kolocouris et al. (1994[Kolocouris, N., Foscolos, G. B., Kolocouris, A., Marakos, P., Pouli, N., Fytas, G., Ikeda, S. & De Clercq, E. (1994). J. Med. Chem. 37, 2896-2902.]); Ma et al. (2001[Ma, C., Liu, X., Li, X., Flippen-Anderson, J., Yu, S. & Cook, J. M. (2001). J. Org. Chem. 66, 4525-4542.]); Nieto et al. (2005[Nieto, M. J., Alovero, F. L., Manzo, R. H. & Mazzieri, M. R. (2005). Eur. J. Med. Chem. 40, 361-369.]); Singh et al. (2000[Singh, U. P., Sarma, B. K., Mishra, P. K. & Ray, A. B. (2000). Folia Microbiol. (Praha), 45, 173-176.]). For the bond-length difference, see: Allen (1981[Allen, F. H. (1981). Acta Cryst. B37, 900-906.]); Govindasamy et al. (1998[Govindasamy, L., Velmurugan, D., Ravikumar, K. & Mohanakrishnan, A. K. (1998). Acta Cryst. C54, 277-279.]); Sankaranarayanan et al. (2000[Sankaranarayanan, R., Velmurugan, D., Shanmuga Sundara Raj, S., Fun, H.-K., Babu, G. & Perumal, P. T. (2000). Acta Cryst. C56, 475-476.]). For the N atom-hybridization, see: Beddoes et al. (1986[Beddoes, R. L., Dalton, L., Joule, T. A., Mills, O. S., Street, J. D. & Watt, C. I. F. (1986). J. Chem. Soc. Perkin Trans. 2, pp. 787-797.]). For related structures, see: Seshadri et al. (2002[Seshadri, P. R., Velmurugan, D., Govindaraj, J., Kannadasan, S., Srinivasan, P. C., Shanmuga Sundara Raj, S., Fun, H.-K. & Kim, M. J. (2002). Acta Cryst. C58, o700-o703.]).

[Scheme 1]

Experimental

Crystal data
  • C25H18N2O3S

  • Mr = 426.47

  • Monoclinic, C 2/c

  • a = 33.8741 (13) Å

  • b = 7.1294 (3) Å

  • c = 19.9180 (9) Å

  • β = 118.4170 (2)°

  • V = 4230.6 (3) Å3

  • Z = 8

  • Mo Kα radiation

  • μ = 0.18 mm−1

  • T = 298 K

  • 0.21 × 0.19 × 0.15 mm

Data collection
  • Bruker SMART APEXII area-detector diffractometer

  • 19948 measured reflections

  • 5285 independent reflections

  • 2177 reflections with I > 2σ(I)

  • Rint = 0.066

Refinement
  • R[F2 > 2σ(F2)] = 0.051

  • wR(F2) = 0.176

  • S = 0.95

  • 5285 reflections

  • 281 parameters

  • H-atom parameters constrained

  • Δρmax = 0.25 e Å−3

  • Δρmin = −0.25 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
C18—H18⋯N2 0.93 2.73 3.433 (4) 133
C5—H5⋯O3i 0.93 2.86 3.551 (4) 132
Symmetry code: (i) [-x+{\script{1\over 2}}, -y+{\script{1\over 2}}, -z].

Data collection: APEX2 (Bruker, 2008[Bruker (2008). APEX2 and SAINT. Bruker AXS Ins., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2008[Bruker (2008). APEX2 and SAINT. Bruker AXS Ins., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: ORTEP-3 (Farrugia, 1997[Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.]) and PLATON (Spek, 2009[Spek, A. L. (2009). Acta Cryst. D65, 148-155.]); software used to prepare material for publication: SHELXL97, PLATON and publCIF (Westrip, 2010[Westrip, S. P. (2010). J. Appl. Cryst. 43, 920-925.]).

Supporting information


Comment top

Indole derivatives exhibit anti-bacterial (Nieto et al., 2005), anti-cancer, anti-malarial and anti-hypertensive (Ma et al., 2001) activities. In addition, indole derivatives are known to exhibit anti-fungal (Singh et al., 2000), anti-tumour (Andreani et al., 2001), anti-viral (Kolocouris et al., 1994) and anti-hepatitis B virus (Chai et al., 2006) activities. Against this background, the title compound was chosen for X-ray structure analysis (Fig.1).

The indole ring is planar and the sulfonyl bound phenyl ring is perpendicular to the nine membered indole moiety with a dihedral angle of 89.95 (09)°.

The torsion angles O1—S1—N1—C1 and O2—S1—N1—C7 [45.9 (3)° and -23.3 (3)°, respectively] indicates the syn conformation of the sulfonyl moiety. The sum of the bond angles around N1 [357.95 (23)°] indicates sp2 hybridization (Beddoes et al.,1986).

A distorted tetrahedral geometry [O1—S1—O2 = 120.75 (13)° and O1—S1—N1 = 104.53 (12)°] around S1 is observed. The widening of the angles may be due to repulsive interactions between the two short SO bonds.

In the benzene ring of the indole system, the endo-cyclic angles at C2, C5 and C6 are contracted to 116.9 (3)°, 118.6 (3)° and 118.5 (3)° respectively, while those at C1, C3 and C4 expanded to 123.3 (3)°, 121.5 (3)° and 121.2 (3)° respectively. This may be due to a real effect caused by the fusion of the smaller pyrrole ring to the six membered benzene ring, and the strain is taken up by angular distortion rather than by bond length distortions (Allen, 1981). A similar effect has also been observed by Sankaranarayanan et al. (2000) and Seshadri et al. (2002).

The difference in C—N bond lengths may be due to the electron-withdrawing character of the phenyl sulfonyl group (Govindasamy et al., 1998; Seshadri et al., 2002). The molecular structure is stabilised by a weak C—H···N intramolecular interactions and the crystal packing reveals a weak C—H···O hydrogen bond.

Related literature top

For the biological activity of indole derivatives, see: Nieto et al. (2005); Ma et al. (2001); Singh et al. (2000). For related structures, see: Seshadri et al. (2002).

For related literature, see: Allen (1981); Andreani et al. (2001); Beddoes et al. (1986); Chai et al. (2006); Govindasamy et al. (1998); Kolocouris et al. (1994); Sankaranarayanan et al. (2000).

Experimental top

To the mixture of cyanoacetylindole(2 mmol) and benzaldehyde (2.1 mmol) sodium methoxide (10 mol %) was added in methanol. The mixture was allowed to reflux for 2 h. After completion of the reaction, which was washed with water and extracted with ethylacetate (10 × 2 = 20 ml), the filtrate was dried with sodium sulfate and concentrated. The crude was subjected to column chromatography to obtain pure condensed chalcone product. To the chalcone (1 mmol) which was suspended in 10 ml benzene add aqueous 30% NaOH (10 ml), containing tosyl chloride (1.1 mmol) and tetrabutylammonium bromide (0.10 mmol). After stirring vigorously for 30 min, the layers were separated and the water layer was extracted with benzene (10 ml). The combined organic layers were dried over Na2SO4 and the solvent was removed under reduced pressure. The crude product was purified by recrystallisation from CH2Cl2/hexane to afford (E)-3-phenyl-2-(1-tosyl-1H-indole-3-carbonyl)acrylonitrile.

Refinement top

H atoms were positioned geometrically and allowed to ride on their parent atoms, with C—H = 0.93–0.97 Å and Uiso(H) = 1.5Ueq(C) for methyl H atoms and 1.2 Ueq(C) for other H atoms.

Computing details top

Data collection: APEX2 (Bruker, 2008); cell refinement: SAINT (Bruker, 2008); data reduction: SAINT (Bruker, 2008); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 (Farrugia, 1997) and PLATON (Spek, 2009); software used to prepare material for publication: SHELXL97 (Sheldrick, 2008), PLATON (Spek, 2009) and publCIF (Westrip, 2010).

Figures top
[Figure 1] Fig. 1. The molecular structure of the title compound, showing the atom-numbering scheme and displacement ellipsoids drawn at the 30% probability level.
(E)-3-Phenyl-2-(1-tosyl-1H-indol-3-ylcarbonyl)acrylonitrile top
Crystal data top
C25H18N2O3SF(000) = 1776
Mr = 426.47Dx = 1.339 Mg m3
Monoclinic, C2/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -C 2ycCell parameters from 5285 reflections
a = 33.8741 (13) Åθ = 1.4–28.4°
b = 7.1294 (3) ŵ = 0.18 mm1
c = 19.9180 (9) ÅT = 298 K
β = 118.4170 (2)°Block, colourless
V = 4230.6 (3) Å30.21 × 0.19 × 0.15 mm
Z = 8
Data collection top
Bruker SMART APEXII area-detector
diffractometer
2177 reflections with I > 2σ(I)
Radiation source: fine-focus sealed tubeRint = 0.066
Graphite monochromatorθmax = 28.4°, θmin = 1.4°
ω and ϕ scansh = 4445
19948 measured reflectionsk = 99
5285 independent reflectionsl = 2621
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.051Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.176H-atom parameters constrained
S = 0.95 w = 1/[σ2(Fo2) + (0.0805P)2]
where P = (Fo2 + 2Fc2)/3
5285 reflections(Δ/σ)max < 0.001
281 parametersΔρmax = 0.25 e Å3
0 restraintsΔρmin = 0.25 e Å3
Crystal data top
C25H18N2O3SV = 4230.6 (3) Å3
Mr = 426.47Z = 8
Monoclinic, C2/cMo Kα radiation
a = 33.8741 (13) ŵ = 0.18 mm1
b = 7.1294 (3) ÅT = 298 K
c = 19.9180 (9) Å0.21 × 0.19 × 0.15 mm
β = 118.4170 (2)°
Data collection top
Bruker SMART APEXII area-detector
diffractometer
2177 reflections with I > 2σ(I)
19948 measured reflectionsRint = 0.066
5285 independent reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0510 restraints
wR(F2) = 0.176H-atom parameters constrained
S = 0.95Δρmax = 0.25 e Å3
5285 reflectionsΔρmin = 0.25 e Å3
281 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R-factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
C10.31518 (8)0.3247 (4)0.26078 (18)0.0600 (7)
C20.30356 (10)0.4960 (4)0.2794 (2)0.0746 (9)
H20.31670.53850.32960.090*
C30.27188 (11)0.5994 (4)0.2206 (3)0.0848 (10)
H30.26320.71480.23100.102*
C40.25246 (10)0.5359 (4)0.1457 (2)0.0800 (9)
H40.23060.60850.10710.096*
C50.26497 (9)0.3665 (4)0.12750 (19)0.0699 (8)
H50.25210.32590.07710.084*
C60.29717 (8)0.2582 (4)0.18621 (17)0.0564 (7)
C70.31823 (8)0.0804 (4)0.18886 (16)0.0555 (7)
C80.34654 (9)0.0440 (4)0.26354 (16)0.0592 (7)
H80.36430.06260.28170.071*
C90.30954 (9)0.0416 (4)0.12459 (16)0.0591 (7)
C100.34231 (8)0.1964 (4)0.13431 (14)0.0536 (7)
C110.38775 (10)0.1755 (4)0.19112 (16)0.0576 (7)
C120.32800 (9)0.3435 (4)0.08643 (15)0.0578 (7)
H120.29830.33630.04820.069*
C130.35158 (9)0.5115 (4)0.08504 (15)0.0546 (7)
C140.33458 (9)0.6116 (4)0.01750 (17)0.0658 (8)
H140.30870.57000.02480.079*
C150.35560 (11)0.7728 (4)0.0120 (2)0.0774 (9)
H150.34400.83790.03390.093*
C160.39340 (11)0.8362 (4)0.0741 (2)0.0812 (9)
H160.40790.94310.07000.097*
C170.41011 (11)0.7421 (4)0.1426 (2)0.0809 (9)
H170.43530.78760.18520.097*
C180.38943 (10)0.5804 (4)0.14814 (17)0.0713 (8)
H180.40090.51700.19450.086*
C190.42361 (9)0.3581 (4)0.39664 (15)0.0606 (7)
C200.45161 (10)0.2880 (5)0.37005 (18)0.0793 (9)
H200.44900.16380.35410.095*
C210.48304 (11)0.4022 (6)0.36733 (19)0.0887 (10)
H210.50170.35420.34930.106*
C220.48793 (10)0.5860 (5)0.39046 (18)0.0789 (10)
C230.45972 (10)0.6538 (5)0.41689 (19)0.0803 (9)
H230.46250.77790.43290.096*
C240.42765 (10)0.5417 (4)0.42011 (17)0.0716 (8)
H240.40890.58960.43800.086*
C250.52268 (11)0.7124 (6)0.3866 (2)0.1128 (13)
H25A0.53930.64290.36720.169*
H25B0.54280.75820.43680.169*
H25C0.50800.81640.35340.169*
N10.34515 (7)0.1880 (3)0.30873 (13)0.0630 (6)
N20.42442 (9)0.1524 (3)0.23564 (16)0.0792 (8)
O10.36234 (7)0.3040 (3)0.43741 (12)0.0896 (7)
O20.40187 (7)0.0271 (3)0.42345 (11)0.0830 (6)
O30.27557 (7)0.0232 (3)0.06329 (12)0.0832 (6)
S10.38381 (3)0.21122 (11)0.40061 (4)0.0698 (3)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
C10.0581 (16)0.0485 (17)0.088 (2)0.0027 (14)0.0464 (16)0.0045 (16)
C20.0714 (19)0.064 (2)0.105 (2)0.0046 (17)0.0555 (19)0.0165 (19)
C30.079 (2)0.058 (2)0.142 (3)0.0015 (18)0.072 (2)0.009 (2)
C40.0670 (19)0.060 (2)0.120 (3)0.0096 (16)0.051 (2)0.013 (2)
C50.0605 (17)0.0593 (19)0.096 (2)0.0004 (15)0.0419 (17)0.0019 (17)
C60.0508 (15)0.0480 (16)0.077 (2)0.0012 (13)0.0361 (15)0.0000 (15)
C70.0586 (16)0.0462 (16)0.0676 (18)0.0012 (13)0.0347 (15)0.0047 (14)
C80.0658 (17)0.0487 (16)0.0690 (19)0.0006 (13)0.0370 (16)0.0050 (14)
C90.0588 (16)0.0520 (17)0.0646 (18)0.0011 (14)0.0277 (15)0.0014 (14)
C100.0556 (15)0.0493 (16)0.0567 (16)0.0007 (13)0.0275 (14)0.0008 (13)
C110.0592 (18)0.0532 (17)0.0608 (17)0.0045 (14)0.0288 (16)0.0009 (14)
C120.0603 (16)0.0562 (17)0.0595 (17)0.0012 (14)0.0305 (14)0.0026 (14)
C130.0584 (16)0.0473 (16)0.0651 (17)0.0017 (13)0.0352 (14)0.0012 (14)
C140.0714 (18)0.0610 (18)0.0725 (19)0.0006 (15)0.0403 (16)0.0085 (15)
C150.093 (2)0.064 (2)0.090 (2)0.0005 (18)0.055 (2)0.0148 (18)
C160.090 (2)0.059 (2)0.117 (3)0.0085 (18)0.067 (2)0.002 (2)
C170.082 (2)0.060 (2)0.099 (3)0.0091 (17)0.042 (2)0.0116 (19)
C180.081 (2)0.0520 (18)0.080 (2)0.0044 (16)0.0374 (18)0.0024 (15)
C190.0656 (17)0.0619 (19)0.0548 (16)0.0023 (15)0.0290 (14)0.0033 (14)
C200.079 (2)0.082 (2)0.087 (2)0.0003 (18)0.0478 (19)0.0138 (18)
C210.075 (2)0.110 (3)0.093 (2)0.002 (2)0.050 (2)0.007 (2)
C220.0578 (18)0.095 (3)0.070 (2)0.0026 (18)0.0193 (16)0.0178 (19)
C230.072 (2)0.065 (2)0.089 (2)0.0021 (17)0.0269 (18)0.0049 (17)
C240.0721 (19)0.067 (2)0.080 (2)0.0013 (16)0.0406 (17)0.0026 (17)
C250.073 (2)0.143 (4)0.111 (3)0.020 (2)0.034 (2)0.029 (3)
N10.0689 (14)0.0563 (14)0.0699 (15)0.0030 (12)0.0381 (13)0.0106 (13)
N20.0704 (17)0.0706 (17)0.0851 (18)0.0043 (14)0.0276 (15)0.0005 (14)
O10.1087 (16)0.0969 (17)0.0961 (16)0.0169 (13)0.0755 (14)0.0299 (13)
O20.1187 (17)0.0612 (13)0.0717 (13)0.0003 (12)0.0473 (12)0.0074 (10)
O30.0740 (13)0.0767 (14)0.0737 (13)0.0158 (11)0.0147 (12)0.0106 (11)
S10.0880 (6)0.0691 (6)0.0650 (5)0.0087 (4)0.0467 (4)0.0094 (4)
Geometric parameters (Å, º) top
C1—C21.386 (4)C14—H140.9300
C1—C61.393 (4)C15—C161.366 (4)
C1—N11.404 (3)C15—H150.9300
C2—C31.368 (5)C16—C171.378 (5)
C2—H20.9300C16—H160.9300
C3—C41.389 (5)C17—C181.380 (4)
C3—H30.9300C17—H170.9300
C4—C51.384 (4)C18—H180.9300
C4—H40.9300C19—C241.375 (4)
C5—C61.393 (4)C19—C201.381 (4)
C5—H50.9300C19—S11.738 (3)
C6—C71.443 (3)C20—C211.362 (4)
C7—C81.357 (4)C20—H200.9300
C7—C91.457 (4)C21—C221.373 (5)
C8—N11.381 (3)C21—H210.9300
C8—H80.9300C22—C231.379 (4)
C9—O31.223 (3)C22—C251.513 (4)
C9—C101.511 (3)C23—C241.375 (4)
C10—C121.343 (3)C23—H230.9300
C11—N21.144 (3)C24—H240.9300
C11—N21.144 (3)C25—H25A0.9600
C12—C131.447 (4)C25—H25B0.9600
C12—H120.9300C25—H25C0.9600
C13—C141.383 (4)N1—S11.676 (2)
C13—C181.390 (4)O1—S11.418 (2)
C14—C151.383 (4)O2—S11.428 (2)
C2—C1—C6123.3 (3)C14—C15—H15120.0
C2—C1—N1129.4 (3)C15—C16—C17120.1 (3)
C6—C1—N1107.3 (2)C15—C16—H16120.0
C3—C2—C1116.9 (3)C17—C16—H16120.0
C3—C2—H2121.6C16—C17—C18120.1 (3)
C1—C2—H2121.6C16—C17—H17120.0
C2—C3—C4121.5 (3)C18—C17—H17120.0
C2—C3—H3119.3C17—C18—C13120.5 (3)
C4—C3—H3119.3C17—C18—H18119.7
C5—C4—C3121.2 (3)C13—C18—H18119.7
C5—C4—H4119.4C24—C19—C20120.0 (3)
C3—C4—H4119.4C24—C19—S1120.8 (2)
C4—C5—C6118.6 (3)C20—C19—S1119.2 (2)
C4—C5—H5120.7C21—C20—C19119.4 (3)
C6—C5—H5120.7C21—C20—H20120.3
C1—C6—C5118.5 (3)C19—C20—H20120.3
C1—C6—C7107.6 (2)C20—C21—C22122.0 (3)
C5—C6—C7133.9 (3)C20—C21—H21119.0
C8—C7—C6106.7 (2)C22—C21—H21119.0
C8—C7—C9126.2 (2)C21—C22—C23117.9 (3)
C6—C7—C9127.1 (3)C21—C22—C25121.6 (3)
C7—C8—N1110.3 (2)C23—C22—C25120.5 (4)
C7—C8—H8124.9C24—C23—C22121.4 (3)
N1—C8—H8124.9C24—C23—H23119.3
O3—C9—C7120.9 (2)C22—C23—H23119.3
O3—C9—C10119.4 (2)C23—C24—C19119.4 (3)
C7—C9—C10119.6 (2)C23—C24—H24120.3
C12—C10—C11122.4 (2)C19—C24—H24120.3
C12—C10—C9119.0 (2)C22—C25—H25A109.5
C11—C10—C9118.5 (2)C22—C25—H25B109.5
N2—C11—C10177.4 (3)H25A—C25—H25B109.5
N2—C11—C10177.4 (3)C22—C25—H25C109.5
C10—C12—C13130.1 (2)H25A—C25—H25C109.5
C10—C12—H12115.0H25B—C25—H25C109.5
C13—C12—H12115.0C8—N1—C1108.1 (2)
C14—C13—C18118.4 (3)C8—N1—S1122.25 (19)
C14—C13—C12117.9 (3)C1—N1—S1127.6 (2)
C18—C13—C12123.7 (3)O1—S1—O2120.75 (13)
C15—C14—C13120.9 (3)O1—S1—N1106.49 (12)
C15—C14—H14119.5O2—S1—N1104.53 (12)
C13—C14—H14119.5O1—S1—C19110.00 (14)
C16—C15—C14120.0 (3)O2—S1—C19110.14 (13)
C16—C15—H15120.0N1—S1—C19103.28 (12)
C6—C1—C2—C31.7 (4)C14—C15—C16—C171.3 (5)
N1—C1—C2—C3177.8 (3)C15—C16—C17—C181.9 (5)
C1—C2—C3—C40.3 (4)C16—C17—C18—C130.3 (5)
C2—C3—C4—C51.1 (5)C14—C13—C18—C171.7 (4)
C3—C4—C5—C61.0 (4)C12—C13—C18—C17179.8 (2)
C2—C1—C6—C51.8 (4)S1—C19—C20—C21179.6 (2)
N1—C1—C6—C5177.8 (2)C19—C20—C21—C220.1 (5)
C2—C1—C6—C7177.9 (2)C20—C21—C22—C230.1 (5)
N1—C1—C6—C72.5 (3)C20—C21—C22—C25179.5 (3)
C4—C5—C6—C10.4 (4)C25—C22—C23—C24179.3 (3)
C4—C5—C6—C7179.3 (3)C22—C23—C24—C190.1 (5)
C1—C6—C7—C81.8 (3)C20—C19—C24—C230.1 (4)
C5—C6—C7—C8178.5 (3)S1—C19—C24—C23179.4 (2)
C1—C6—C7—C9179.2 (2)C7—C8—N1—C11.1 (3)
C5—C6—C7—C91.1 (5)C7—C8—N1—S1166.10 (19)
C6—C7—C8—N10.5 (3)C2—C1—N1—C8178.2 (3)
C9—C7—C8—N1177.9 (2)C6—C1—N1—C82.2 (3)
C8—C7—C9—O3159.9 (3)C2—C1—N1—S114.2 (4)
C6—C7—C9—O317.1 (4)C6—C1—N1—S1166.19 (18)
C8—C7—C9—C1018.5 (4)C8—N1—S1—O1152.2 (2)
C6—C7—C9—C10164.5 (2)C1—N1—S1—O145.9 (2)
O3—C9—C10—C1220.6 (4)C8—N1—S1—O223.3 (2)
C7—C9—C10—C12157.8 (2)C1—N1—S1—O2174.8 (2)
O3—C9—C10—C11155.9 (3)C8—N1—S1—C1991.9 (2)
C7—C9—C10—C1125.7 (3)C1—N1—S1—C1970.0 (2)
C11—C10—C12—C136.3 (4)C24—C19—S1—O16.2 (3)
C9—C10—C12—C13177.3 (2)C20—C19—S1—O1173.4 (2)
C10—C12—C13—C14159.8 (3)C24—C19—S1—O2141.6 (2)
C10—C12—C13—C1822.1 (4)C20—C19—S1—O237.9 (3)
C18—C13—C14—C152.2 (4)C24—C19—S1—N1107.2 (2)
C12—C13—C14—C15179.6 (2)C20—C19—S1—N173.3 (2)
C13—C14—C15—C160.7 (4)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C18—H18···N20.932.733.433 (4)133
C5—H5···O3i0.932.863.551 (4)132
Symmetry code: (i) x+1/2, y+1/2, z.

Experimental details

Crystal data
Chemical formulaC25H18N2O3S
Mr426.47
Crystal system, space groupMonoclinic, C2/c
Temperature (K)298
a, b, c (Å)33.8741 (13), 7.1294 (3), 19.9180 (9)
β (°) 118.4170 (2)
V3)4230.6 (3)
Z8
Radiation typeMo Kα
µ (mm1)0.18
Crystal size (mm)0.21 × 0.19 × 0.15
Data collection
DiffractometerBruker SMART APEXII area-detector
diffractometer
Absorption correction
No. of measured, independent and
observed [I > 2σ(I)] reflections
19948, 5285, 2177
Rint0.066
(sin θ/λ)max1)0.669
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.051, 0.176, 0.95
No. of reflections5285
No. of parameters281
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.25, 0.25

Computer programs: APEX2 (Bruker, 2008), SAINT (Bruker, 2008), SHELXS97 (Sheldrick, 2008), ORTEP-3 (Farrugia, 1997) and PLATON (Spek, 2009), SHELXL97 (Sheldrick, 2008), PLATON (Spek, 2009) and publCIF (Westrip, 2010).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C18—H18···N20.932.733.433 (4)133.3
C5—H5···O3i0.932.863.551 (4)132.0
Symmetry code: (i) x+1/2, y+1/2, z.
 

Acknowledgements

The authors acknowledge the Technology Business Incubator (TBI), CAS in Crystallography, University of Madras, Chennai, India, for the data collection.

References

First citationAllen, F. H. (1981). Acta Cryst. B37, 900–906.  CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationAndreani, A., Granaiola, M., Leoni, A., Locatelli, A., Morigi, R., Rambaldi, M., Giorgi, G., Salvini, L. & Garaliene, V. (2001). Anti-Cancer Drug Des. 16, 167–174.  Web of Science PubMed CAS Google Scholar
First citationBeddoes, R. L., Dalton, L., Joule, T. A., Mills, O. S., Street, J. D. & Watt, C. I. F. (1986). J. Chem. Soc. Perkin Trans. 2, pp. 787–797.  CSD CrossRef Google Scholar
First citationBruker (2008). APEX2 and SAINT. Bruker AXS Ins., Madison, Wisconsin, USA.  Google Scholar
First citationChai, H., Zhao, C. & Gong, P. (2006). Bioorg. Med. Chem. 14, 911–917.  Web of Science CrossRef PubMed CAS Google Scholar
First citationFarrugia, L. J. (1997). J. Appl. Cryst. 30, 565.  CrossRef IUCr Journals Google Scholar
First citationGovindasamy, L., Velmurugan, D., Ravikumar, K. & Mohanakrishnan, A. K. (1998). Acta Cryst. C54, 277–279.  Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
First citationKolocouris, N., Foscolos, G. B., Kolocouris, A., Marakos, P., Pouli, N., Fytas, G., Ikeda, S. & De Clercq, E. (1994). J. Med. Chem. 37, 2896–2902.  CrossRef CAS PubMed Web of Science Google Scholar
First citationMa, C., Liu, X., Li, X., Flippen-Anderson, J., Yu, S. & Cook, J. M. (2001). J. Org. Chem. 66, 4525–4542.  Web of Science CSD CrossRef PubMed CAS Google Scholar
First citationNieto, M. J., Alovero, F. L., Manzo, R. H. & Mazzieri, M. R. (2005). Eur. J. Med. Chem. 40, 361–369.  Web of Science CrossRef PubMed CAS Google Scholar
First citationSankaranarayanan, R., Velmurugan, D., Shanmuga Sundara Raj, S., Fun, H.-K., Babu, G. & Perumal, P. T. (2000). Acta Cryst. C56, 475–476.  CrossRef CAS IUCr Journals Google Scholar
First citationSeshadri, P. R., Velmurugan, D., Govindaraj, J., Kannadasan, S., Srinivasan, P. C., Shanmuga Sundara Raj, S., Fun, H.-K. & Kim, M. J. (2002). Acta Cryst. C58, o700–o703.  Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSingh, U. P., Sarma, B. K., Mishra, P. K. & Ray, A. B. (2000). Folia Microbiol. (Praha), 45, 173–176.  Web of Science CrossRef PubMed CAS Google Scholar
First citationSpek, A. L. (2009). Acta Cryst. D65, 148–155.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationWestrip, S. P. (2010). J. Appl. Cryst. 43, 920–925.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 68| Part 3| March 2012| Pages o683-o684
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds