organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

N-(4-Methyl-2-nitro­phen­yl)succinamic acid

aDepartment of Chemistry, Mangalore University, Mangalagangotri 574 199, Mangalore, India, and bInstitute of Materials Science, Darmstadt University of Technology, Petersenstrasse 23, D-64287 Darmstadt, Germany
*Correspondence e-mail: gowdabt@yahoo.com

(Received 15 February 2012; accepted 17 February 2012; online 24 February 2012)

In the title compound, C11H12N2O5, the conformation of the N—H bond in the amide segment is syn to the ortho-nitro group in the benzene ring. The amide C=O and the carboxyl C=O of the acid segment are syn to each other and both are anti to the H atoms on the adjacent –CH2 groups. Furthermore, the C=O and O—H bonds of the acid group are in syn positions with respect to each other. The dihedral angle between the benzene ring and the amide group is 36.1 (1)°. The amide H atom shows bifurcated intra­molecular hydrogen bonding with an O atom of the ortho-nitro group and an inter­molecular hydrogen bond with the carbonyl O atom of another mol­ecule. In the crystal, the N—H⋯O(C) hydrogen bonds generate a chain running along the [100] direction. Inversion dimers are formed via a pair of O—H⋯O(C) interactions, that form an eight-membered hydrogen-bonded ring involving the carboxyl group.

Related literature

For our studies on the effects of substituents on the structures and other aspects of N-(ar­yl)-amides, see: Gowda et al. (1999[Gowda, B. T., Bhat, D. K., Fuess, H. & Weiss, A. (1999). Z. Naturforsch. Teil A, 54, 261-267.], 2006[Gowda, B. T., Kozisek, J. & Fuess, H. (2006). Z. Naturforsch. Teil A, 61, 588-594.]); Chaithanya et al. (2012[Chaithanya, U., Foro, S. & Gowda, B. T. (2012). Acta Cryst. E68, o785.]). For N-(ar­yl)-methane­sulfon­amides, see: Gowda et al. (2007[Gowda, B. T., Foro, S. & Fuess, H. (2007). Acta Cryst. E63, o2570.]). For N-chloro­aryl­amides, see: Jyothi & Gowda (2004[Jyothi, K. & Gowda, B. T. (2004). Z. Naturforsch. Teil A, 59, 64-68.]). For N-bromo­aryl­sulfonamides, see: Usha & Gowda (2006[Usha, K. M. & Gowda, B. T. (2006). J. Chem. Sci. 118, 351-359.]).

[Scheme 1]

Experimental

Crystal data
  • C11H12N2O5

  • Mr = 252.23

  • Triclinic, [P \overline 1]

  • a = 4.8531 (7) Å

  • b = 11.015 (2) Å

  • c = 11.787 (2) Å

  • α = 69.59 (1)°

  • β = 78.77 (1)°

  • γ = 83.62 (2)°

  • V = 578.59 (17) Å3

  • Z = 2

  • Mo Kα radiation

  • μ = 0.12 mm−1

  • T = 293 K

  • 0.40 × 0.22 × 0.12 mm

Data collection
  • Oxford Diffraction Xcalibur diffractometer with a Sapphire CCD detector

  • Absorption correction: multi-scan (CrysAlis RED; Oxford Diffraction, 2009[Oxford Diffraction (2009). CrysAlis CCD and CrysAlis RED. Oxford Diffraction Ltd, Yarnton, Oxfordshire, England.]) Tmin = 0.955, Tmax = 0.986

  • 3557 measured reflections

  • 2314 independent reflections

  • 1900 reflections with I > 2σ(I)

  • Rint = 0.011

Refinement
  • R[F2 > 2σ(F2)] = 0.046

  • wR(F2) = 0.119

  • S = 1.05

  • 2314 reflections

  • 170 parameters

  • 2 restraints

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.23 e Å−3

  • Δρmin = −0.22 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
N1—H1N⋯O5 0.84 (2) 2.11 (2) 2.648 (2) 121 (2)
N1—H1N⋯O1i 0.84 (2) 2.34 (2) 3.072 (2) 146 (2)
O3—H3O⋯O2ii 0.83 (2) 1.86 (2) 2.688 (2) 176 (3)
Symmetry codes: (i) x+1, y, z; (ii) -x-1, -y, -z+2.

Data collection: CrysAlis CCD (Oxford Diffraction, 2009[Oxford Diffraction (2009). CrysAlis CCD and CrysAlis RED. Oxford Diffraction Ltd, Yarnton, Oxfordshire, England.]); cell refinement: CrysAlis CCD; data reduction: CrysAlis RED (Oxford Diffraction, 2009[Oxford Diffraction (2009). CrysAlis CCD and CrysAlis RED. Oxford Diffraction Ltd, Yarnton, Oxfordshire, England.]); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: PLATON (Spek, 2009[Spek, A. L. (2009). Acta Cryst. D65, 148-155.]); software used to prepare material for publication: SHELXL97.

Supporting information


Comment top

As part of our studies on the substituent effects on the structures and other aspects of N-(aryl)-amides (Gowda et al., 1999, 2006; Chaithanya et al., 2012), N-(aryl)-methanesulfonamides (Gowda et al., 2007), N-chloroarylsulfonamides (Jyothi & Gowda, 2004) and N-bromoarylsulfonamides (Usha & Gowda, 2006), in the present work, the crystal structure of N-(2-nitro-4-methylphenyl)succinamic acid has been determined (Fig. 1). The conformation of the N—H bond in the amide segment is syn to the ortho–nitro group in the benzene ring, similar to that observed between the N—H bond and the ortho–chloro atom in N-(2-chloro-4-methylphenyl)- succinamic acid (I) (Chaithanya et al., 2012).

Further, the conformations of the amide oxygen and the carboxyl oxygen of the acid segment are syn to each other, in contrast to the anti conformation observed in (I). But both the amide oxygen and the carboxyl oxygen are anti to the H atoms on the adjacent –CH2 group, in both the compounds.

The dihedral angle between the phenyl ring and the amide group is 36.1 (1)°, compared to the value of 48.4 (1)° in (I). The amide H-atom shows bifurcated intramolecular H-bonding with the O-atom of the ortho-nitro group and the intermolecular H-bonding with the carbonyl oxygen atom of the other molecule. In the crystal, the molecules are packed into chains through intermolecular N—H···O(C) along the direction [100] and pairs of centrosymmetric O–H···O(C) hydrogen bonds (Table 1, Fig. 2).

Related literature top

For our studies on the effects of substituents on the structures and other aspects of N-(aryl)-amides, see: Gowda et al. (1999, 2006); Chaithanya et al. (2012). For N-(aryl)-methanesulfonamides, see: Gowda et al. (2007). For N-chloroarylamides, see: Jyothi & Gowda (2004). For N-bromoarylsulfonamides, see: Usha & Gowda (2006).

Experimental top

The solution of succinic anhydride (0.01 mol) in toluene (25 mL) was treated dropwise with the solution of 2-nitro,4-methylaniline (0.01 mol) also in toluene (20 mL) with constant stirring. The resulting mixture was stirred for about one h and set aside for an additional h at room temperature for completion of the reaction. The mixture was then treated with dilute hydrochloric acid to remove the unreacted 2-nitro-4-methyl- aniline. The resultant title compound was filtered under suction and washed thoroughly with water to remove the unreacted succinic anhydride and succinic acid. Repeated recrystallisations from ethanol were applied until the constant melting point. The purity of the compound was checked and characterised by its infrared and NMR spectra.

Needle like yellow single crystals used in X-ray diffraction studies were grown in ethanolic solution by slow evaporation of the solvent at room temperature.

Refinement top

The H atoms of the NH group and the OH group were located in a difference map and later restrained to the distance N—H = 0.86 (2) Å and O—H = 0.82 (2) Å, respectively. The other H atoms were positioned with idealized geometry using a riding model with the aromatic C—H = 0.93 Å and methylene C—H = 0.97 Å. All H atoms were refined with isotropic displacement parameters set at 1.2 Ueq(C-aromatic, N) and 1.5 Ueq(C-methyl).

Computing details top

Data collection: CrysAlis CCD (Oxford Diffraction, 2009); cell refinement: CrysAlis RED (Oxford Diffraction, 2009); data reduction: CrysAlis RED (Oxford Diffraction, 2009); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: PLATON (Spek, 2009); software used to prepare material for publication: SHELXL97 (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. Molecular structure of the title compound showing the atom labelling scheme and intramolecular N-H···O hydrogen bond. Displacement ellipsoids are drawn at the 50% probability level.
[Figure 2] Fig. 2. Molecular packing of the title compound with hydrogen bonding shown as dashed lines.
N-(4-Methyl-2-nitrophenyl)succinamic acid top
Crystal data top
C11H12N2O5Z = 2
Mr = 252.23F(000) = 264
Triclinic, P1Dx = 1.448 Mg m3
Hall symbol: -P 1Mo Kα radiation, λ = 0.71073 Å
a = 4.8531 (7) ÅCell parameters from 1681 reflections
b = 11.015 (2) Åθ = 3.1–27.8°
c = 11.787 (2) ŵ = 0.12 mm1
α = 69.59 (1)°T = 293 K
β = 78.77 (1)°Needle, yellow
γ = 83.62 (2)°0.40 × 0.22 × 0.12 mm
V = 578.59 (17) Å3
Data collection top
Oxford Diffraction Xcalibur
diffractometer with a Sapphire CCD detector
2314 independent reflections
Radiation source: fine-focus sealed tube1900 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.011
Rotation method data acquisition using ω and phi scansθmax = 26.4°, θmin = 3.1°
Absorption correction: multi-scan
(CrysAlis RED; Oxford Diffraction, 2009)
h = 56
Tmin = 0.955, Tmax = 0.986k = 1313
3557 measured reflectionsl = 1414
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.046Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.119H atoms treated by a mixture of independent and constrained refinement
S = 1.05 w = 1/[σ2(Fo2) + (0.0471P)2 + 0.2987P]
where P = (Fo2 + 2Fc2)/3
2314 reflections(Δ/σ)max = 0.006
170 parametersΔρmax = 0.23 e Å3
2 restraintsΔρmin = 0.22 e Å3
Crystal data top
C11H12N2O5γ = 83.62 (2)°
Mr = 252.23V = 578.59 (17) Å3
Triclinic, P1Z = 2
a = 4.8531 (7) ÅMo Kα radiation
b = 11.015 (2) ŵ = 0.12 mm1
c = 11.787 (2) ÅT = 293 K
α = 69.59 (1)°0.40 × 0.22 × 0.12 mm
β = 78.77 (1)°
Data collection top
Oxford Diffraction Xcalibur
diffractometer with a Sapphire CCD detector
2314 independent reflections
Absorption correction: multi-scan
(CrysAlis RED; Oxford Diffraction, 2009)
1900 reflections with I > 2σ(I)
Tmin = 0.955, Tmax = 0.986Rint = 0.011
3557 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0462 restraints
wR(F2) = 0.119H atoms treated by a mixture of independent and constrained refinement
S = 1.05Δρmax = 0.23 e Å3
2314 reflectionsΔρmin = 0.22 e Å3
170 parameters
Special details top

Experimental. CrysAlis RED (Oxford Diffraction, 2009) Empirical absorption correction using spherical harmonics, implemented in SCALE3 ABSPACK scaling algorithm.

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
C10.0723 (3)0.37100 (17)0.38806 (15)0.0344 (4)
C20.2308 (4)0.40404 (17)0.26912 (16)0.0351 (4)
C30.1566 (4)0.51144 (18)0.17381 (17)0.0423 (4)
H30.26500.52990.09600.051*
C40.0749 (4)0.59120 (18)0.19244 (18)0.0439 (5)
C50.2278 (4)0.56114 (19)0.31041 (19)0.0463 (5)
H50.38230.61460.32570.056*
C60.1571 (4)0.45416 (19)0.40568 (17)0.0429 (4)
H60.26520.43730.48340.052*
C70.0488 (4)0.18197 (18)0.57398 (16)0.0385 (4)
C80.0872 (4)0.0644 (2)0.65902 (18)0.0474 (5)
H8A0.17610.09140.71270.057*
H8B0.23300.02680.61060.057*
C90.1198 (4)0.03824 (19)0.73683 (18)0.0459 (5)
H9A0.24470.04710.68550.055*
H9B0.01630.12060.76550.055*
C100.2937 (4)0.01095 (18)0.84541 (16)0.0392 (4)
C110.1609 (5)0.7055 (2)0.0885 (2)0.0627 (6)
H11A0.31260.68280.05930.075*
H11B0.00370.72910.02280.075*
H11C0.22110.77740.11690.075*
N10.1378 (3)0.26122 (16)0.48575 (14)0.0402 (4)
H1N0.308 (3)0.237 (2)0.485 (2)0.048*
N20.4831 (3)0.32707 (15)0.23859 (14)0.0422 (4)
O10.3032 (3)0.20209 (15)0.58421 (14)0.0599 (5)
O20.2182 (3)0.05642 (16)0.89554 (14)0.0591 (4)
O30.5284 (3)0.07162 (16)0.88538 (13)0.0533 (4)
H3O0.606 (5)0.063 (3)0.9514 (18)0.064*
O40.5972 (4)0.35547 (18)0.13202 (15)0.0802 (6)
O50.5750 (3)0.23852 (15)0.31947 (14)0.0579 (4)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
C10.0299 (8)0.0388 (9)0.0306 (8)0.0020 (7)0.0043 (7)0.0073 (7)
C20.0333 (9)0.0362 (9)0.0355 (9)0.0031 (7)0.0022 (7)0.0129 (7)
C30.0483 (11)0.0408 (10)0.0327 (9)0.0069 (8)0.0023 (8)0.0070 (8)
C40.0483 (11)0.0377 (10)0.0411 (10)0.0042 (8)0.0115 (8)0.0048 (8)
C50.0402 (10)0.0427 (10)0.0497 (11)0.0075 (8)0.0062 (9)0.0114 (9)
C60.0361 (10)0.0485 (11)0.0363 (9)0.0034 (8)0.0006 (8)0.0096 (8)
C70.0297 (9)0.0478 (10)0.0306 (8)0.0016 (7)0.0045 (7)0.0053 (8)
C80.0317 (9)0.0548 (12)0.0379 (10)0.0051 (8)0.0017 (7)0.0021 (9)
C90.0420 (10)0.0419 (10)0.0411 (10)0.0059 (8)0.0029 (8)0.0026 (8)
C100.0329 (9)0.0389 (9)0.0347 (9)0.0001 (7)0.0070 (7)0.0016 (8)
C110.0699 (15)0.0489 (12)0.0536 (13)0.0014 (11)0.0153 (11)0.0036 (10)
N10.0255 (7)0.0483 (9)0.0344 (8)0.0038 (6)0.0019 (6)0.0017 (7)
N20.0416 (9)0.0422 (9)0.0398 (8)0.0020 (7)0.0036 (7)0.0154 (7)
O10.0268 (7)0.0661 (10)0.0599 (9)0.0007 (6)0.0064 (6)0.0112 (7)
O20.0535 (9)0.0721 (10)0.0508 (9)0.0233 (8)0.0059 (7)0.0212 (8)
O30.0425 (8)0.0697 (10)0.0441 (8)0.0172 (7)0.0014 (6)0.0150 (7)
O40.0901 (13)0.0767 (12)0.0462 (9)0.0173 (10)0.0240 (9)0.0119 (8)
O50.0500 (8)0.0649 (10)0.0499 (8)0.0201 (7)0.0043 (7)0.0172 (8)
Geometric parameters (Å, º) top
C1—C61.392 (2)C8—C91.516 (3)
C1—N11.405 (2)C8—H8A0.9700
C1—C21.406 (2)C8—H8B0.9700
C2—C31.388 (2)C9—C101.494 (3)
C2—N21.469 (2)C9—H9A0.9700
C3—C41.379 (3)C9—H9B0.9700
C3—H30.9300C10—O21.219 (2)
C4—C51.388 (3)C10—O31.306 (2)
C4—C111.506 (3)C11—H11A0.9600
C5—C61.380 (3)C11—H11B0.9600
C5—H50.9300C11—H11C0.9600
C6—H60.9300N1—H1N0.840 (15)
C7—O11.220 (2)N2—O41.215 (2)
C7—N11.356 (2)N2—O51.216 (2)
C7—C81.510 (2)O3—H3O0.828 (17)
C6—C1—N1120.65 (16)C9—C8—H8B109.0
C6—C1—C2116.32 (16)H8A—C8—H8B107.8
N1—C1—C2123.04 (16)C10—C9—C8114.65 (18)
C3—C2—C1121.65 (16)C10—C9—H9A108.6
C3—C2—N2116.31 (15)C8—C9—H9A108.6
C1—C2—N2122.05 (15)C10—C9—H9B108.6
C4—C3—C2121.19 (17)C8—C9—H9B108.6
C4—C3—H3119.4H9A—C9—H9B107.6
C2—C3—H3119.4O2—C10—O3123.11 (18)
C3—C4—C5117.44 (17)O2—C10—C9123.32 (17)
C3—C4—C11121.31 (19)O3—C10—C9113.48 (18)
C5—C4—C11121.24 (19)C4—C11—H11A109.5
C6—C5—C4121.87 (18)C4—C11—H11B109.5
C6—C5—H5119.1H11A—C11—H11B109.5
C4—C5—H5119.1C4—C11—H11C109.5
C5—C6—C1121.50 (17)H11A—C11—H11C109.5
C5—C6—H6119.3H11B—C11—H11C109.5
C1—C6—H6119.3C7—N1—C1126.29 (15)
O1—C7—N1123.78 (16)C7—N1—H1N116.4 (15)
O1—C7—C8122.49 (16)C1—N1—H1N116.8 (15)
N1—C7—C8113.73 (15)O4—N2—O5121.64 (17)
C7—C8—C9113.01 (16)O4—N2—C2118.41 (17)
C7—C8—H8A109.0O5—N2—C2119.95 (15)
C9—C8—H8A109.0C10—O3—H3O110.5 (18)
C7—C8—H8B109.0
C6—C1—C2—C32.0 (3)O1—C7—C8—C913.1 (3)
N1—C1—C2—C3178.40 (17)N1—C7—C8—C9166.36 (18)
C6—C1—C2—N2178.13 (16)C7—C8—C9—C1079.0 (2)
N1—C1—C2—N21.5 (3)C8—C9—C10—O225.8 (3)
C1—C2—C3—C40.7 (3)C8—C9—C10—O3157.49 (16)
N2—C2—C3—C4179.39 (17)O1—C7—N1—C15.4 (3)
C2—C3—C4—C51.0 (3)C8—C7—N1—C1174.13 (18)
C2—C3—C4—C11178.18 (19)C6—C1—N1—C739.0 (3)
C3—C4—C5—C61.4 (3)C2—C1—N1—C7141.4 (2)
C11—C4—C5—C6177.7 (2)C3—C2—N2—O45.4 (3)
C4—C5—C6—C10.1 (3)C1—C2—N2—O4174.42 (19)
N1—C1—C6—C5178.82 (18)C3—C2—N2—O5173.52 (17)
C2—C1—C6—C51.6 (3)C1—C2—N2—O56.6 (3)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1N···O50.84 (2)2.11 (2)2.648 (2)121 (2)
N1—H1N···O1i0.84 (2)2.34 (2)3.072 (2)146 (2)
O3—H3O···O2ii0.83 (2)1.86 (2)2.688 (2)176 (3)
Symmetry codes: (i) x+1, y, z; (ii) x1, y, z+2.

Experimental details

Crystal data
Chemical formulaC11H12N2O5
Mr252.23
Crystal system, space groupTriclinic, P1
Temperature (K)293
a, b, c (Å)4.8531 (7), 11.015 (2), 11.787 (2)
α, β, γ (°)69.59 (1), 78.77 (1), 83.62 (2)
V3)578.59 (17)
Z2
Radiation typeMo Kα
µ (mm1)0.12
Crystal size (mm)0.40 × 0.22 × 0.12
Data collection
DiffractometerOxford Diffraction Xcalibur
diffractometer with a Sapphire CCD detector
Absorption correctionMulti-scan
(CrysAlis RED; Oxford Diffraction, 2009)
Tmin, Tmax0.955, 0.986
No. of measured, independent and
observed [I > 2σ(I)] reflections
3557, 2314, 1900
Rint0.011
(sin θ/λ)max1)0.625
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.046, 0.119, 1.05
No. of reflections2314
No. of parameters170
No. of restraints2
H-atom treatmentH atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å3)0.23, 0.22

Computer programs: CrysAlis CCD (Oxford Diffraction, 2009), CrysAlis RED (Oxford Diffraction, 2009), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), PLATON (Spek, 2009).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1N···O50.840 (15)2.11 (2)2.648 (2)121.2 (18)
N1—H1N···O1i0.840 (15)2.338 (18)3.072 (2)146 (2)
O3—H3O···O2ii0.828 (17)1.862 (17)2.688 (2)176 (3)
Symmetry codes: (i) x+1, y, z; (ii) x1, y, z+2.
 

Acknowledgements

BTG thanks the University Grants Commission, Government of India, New Delhi, for a UGC-BSR one-time grant to faculty.

References

First citationChaithanya, U., Foro, S. & Gowda, B. T. (2012). Acta Cryst. E68, o785.  CSD CrossRef IUCr Journals Google Scholar
First citationGowda, B. T., Bhat, D. K., Fuess, H. & Weiss, A. (1999). Z. Naturforsch. Teil A, 54, 261–267.  CAS Google Scholar
First citationGowda, B. T., Foro, S. & Fuess, H. (2007). Acta Cryst. E63, o2570.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationGowda, B. T., Kozisek, J. & Fuess, H. (2006). Z. Naturforsch. Teil A, 61, 588–594.  CAS Google Scholar
First citationJyothi, K. & Gowda, B. T. (2004). Z. Naturforsch. Teil A, 59, 64–68.  CAS Google Scholar
First citationOxford Diffraction (2009). CrysAlis CCD and CrysAlis RED. Oxford Diffraction Ltd, Yarnton, Oxfordshire, England.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSpek, A. L. (2009). Acta Cryst. D65, 148–155.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationUsha, K. M. & Gowda, B. T. (2006). J. Chem. Sci. 118, 351–359.  Web of Science CrossRef CAS Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds