organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

N-(3-Chloro-4-methyl­phen­yl)maleamic acid

aDepartment of Chemistry, Mangalore University, Mangalagangotri 574 199, Mangalore, India, and bInstitute of Materials Science, Darmstadt University of Technology, Petersenstrasse 23, D-64287 Darmstadt, Germany
*Correspondence e-mail: gowdabt@yahoo.com

(Received 21 February 2012; accepted 21 February 2012; online 29 February 2012)

In the title compound, C11H10ClNO3, the dihedral angle between the benzene ring and the amide group is 6.6 (10)° and an intramolecular O—H⋯O hydrogen bond occurs. In the crystal, molecules are linked by N—H⋯O hydrogen bonds, generating C(7) zigzag chains.

Related literature

For our studies on the effects of substituents on the structures and other aspects of N-(ar­yl)-amides, see: Gowda et al. (2000[Gowda, B. T., Kumar, B. H. A. & Fuess, H. (2000). Z. Naturforsch. Teil A, 55, 721-728.], 2003[Gowda, B. T., Usha, K. M. & Jayalakshmi, K. L. (2003). Z. Naturforsch. Teil A, 58, 801-806.], 2007[Gowda, B. T., Foro, S. & Fuess, H. (2007). Acta Cryst. E63, o1975-o1976.]); Chaithanya et al. (2012[Chaithanya, U., Foro, S. & Gowda, B. T. (2012). Acta Cryst. E68, o785.]). For N-chloro­aryl­amides, see: Jyothi & Gowda (2004[Jyothi, K. & Gowda, B. T. (2004). Z. Naturforsch. Teil A, 59, 64-68.]). For N-bromo­aryl­sulfonamides, see: Usha & Gowda (2006[Usha, K. M. & Gowda, B. T. (2006). J. Chem. Sci. 118, 351-359.]).

[Scheme 1]

Experimental

Crystal data
  • C11H10ClNO3

  • Mr = 239.65

  • Monoclinic, P 21 /c

  • a = 9.005 (1) Å

  • b = 13.491 (2) Å

  • c = 8.757 (1) Å

  • β = 97.91 (1)°

  • V = 1053.7 (2) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.35 mm−1

  • T = 293 K

  • 0.48 × 0.40 × 0.34 mm

Data collection
  • Oxford Diffraction Xcalibur diffractometer with a Sapphire CCD detector

  • Absorption correction: multi-scan (CrysAlis RED; Oxford Diffraction, 2009[Oxford Diffraction (2009). CrysAlis CCD and CrysAlis RED. Oxford Diffraction Ltd, Yarnton, Oxfordshire, England.]) Tmin = 0.849, Tmax = 0.890

  • 4069 measured reflections

  • 2147 independent reflections

  • 1798 reflections with I > 2σ(I)

  • Rint = 0.011

Refinement
  • R[F2 > 2σ(F2)] = 0.037

  • wR(F2) = 0.105

  • S = 1.04

  • 2147 reflections

  • 152 parameters

  • 2 restraints

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.33 e Å−3

  • Δρmin = −0.27 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
N1—H1N⋯O2i 0.87 (2) 2.11 (2) 2.9546 (19) 164 (2)
O3—H3O⋯O1 0.87 (2) 1.62 (2) 2.4885 (17) 173 (2)
Symmetry code: (i) [-x+2, y-{\script{1\over 2}}, -z+{\script{3\over 2}}].

Data collection: CrysAlis CCD (Oxford Diffraction, 2009[Oxford Diffraction (2009). CrysAlis CCD and CrysAlis RED. Oxford Diffraction Ltd, Yarnton, Oxfordshire, England.]); cell refinement: CrysAlis RED (Oxford Diffraction, 2009[Oxford Diffraction (2009). CrysAlis CCD and CrysAlis RED. Oxford Diffraction Ltd, Yarnton, Oxfordshire, England.]); data reduction: CrysAlis RED; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: PLATON (Spek, 2009[Spek, A. L. (2009). Acta Cryst. D65, 148-155.]); software used to prepare material for publication: SHELXL97.

Supporting information


Comment top

As part of our studies on the substituent effects on the structures and other aspects of N-(aryl)-amides (Gowda et al., 2000, 2003, 2007; Chaithanya et al., 2012), N-chloroarylsulfonamides (Jyothi & Gowda, 2004) and N-bromoarylsulfonamides (Usha & Gowda, 2006), in the present work, the crystal structure of N-(3-chloro-4-methylphenyl)maleamic acid has been determined (Fig. 1). The conformations of the N—H and the C=O bonds in the amide segment are anti to each other. The conformation of the N—H bond is also anti to the meta–chloro atom. Further, the conformation of the amide CO is anti to the H atom on the adjacent –CH group, while the carboxyl CO of the acid segment is syn to the adjacent –CH group. Furthermore, the CO and O—H bond of the acid group are in relatively rare anti position to each other, due to the donation of hydrogen bond to the amide by the carboxyl group, in contrast to the more general syn conformation observed in N-(3-chloro-4-methylphenyl)-succinamic acid (I) (Chaithanya et al., 2012).

The dihedral angle between the phenyl ring and the amide group in the title compound is 6.55 (99)°, compared to the values of 40.58 (22)° and 44.93 (27)° in the two derivatives of (I).

In the structure, the pairs of O—H···O and N—H···O intermolecular hydrogen bonds pack the molecules into chains (Table 1, Fig.2).

Related literature top

For our studies on the effects of substituents on the structures and other aspects of N-(aryl)-amides, see: Gowda et al. (2000, 2003, 2007); Chaithanya et al. (2012). For N-chloroarylamides, see: Jyothi & Gowda (2004). For N-bromoarylsulfonamides, see: Usha & Gowda (2006).

Experimental top

Maleic anhydride (0.025 mol) in toluene (25 mL) was treated dropwise with 3-chloro-4-methylaniline (0.025 mol) also in toluene (20 mL) with constant stirring. The resulting mixture was stirred for about 30 min and set aside for an additional 30 min at room temperature for the completion of reaction. The mixture was then treated with dilute hydrochloric acid to remove the unreacted 3-chloro-4-methylaniline. The resultant solid N-(3-chloro-4-methylphenyl)-maleamic acid was filtered under suction and washed thoroughly with water to remove the unreacted maleic anhydride and maleic acid. It was recrystallised to constant melting point from ethanol. The purity of the compound was checked and characterized by its infrared spectra.

Prism like pale yellow single crystals of the title compound used in X-ray diffraction studies were grown in an ethanol solution by slow evaporation of the solvent (0.5 g in about 30 mL of ethanol) at room temperature.

Refinement top

The H atoms of the NH group and the OH group were located in a difference map and later restrained to the distance N—H = 0.86 (2) Å and O—H = 0.82 (2) Å, respectively. The other H atoms were positioned with idealized geometry using a riding model with the aromatic C—H = 0.93 Å and methylene C—H = 0.97 Å. All H atoms were refined with isotropic displacement parameters set at 1.2 Ueq(C-aromatic, N) and 1.5 Ueq(C-methyl).

Computing details top

Data collection: CrysAlis CCD (Oxford Diffraction, 2009); cell refinement: CrysAlis RED (Oxford Diffraction, 2009); data reduction: CrysAlis RED (Oxford Diffraction, 2009); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: PLATON (Spek, 2009); software used to prepare material for publication: SHELXL97 (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. Molecular structure of the title compound showing the atom labelling scheme with displacement ellipsoids drawn at the 50% probability level. Intramolecular hydrogen bond in shown.
[Figure 2] Fig. 2. Molecular packing of the title compound with hydrogen bonding shown as dashed lines.
N-(3-Chloro-4-methylphenyl)maleamic acid top
Crystal data top
C11H10ClNO3F(000) = 496
Mr = 239.65Dx = 1.511 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ybcCell parameters from 1538 reflections
a = 9.005 (1) Åθ = 2.8–27.9°
b = 13.491 (2) ŵ = 0.35 mm1
c = 8.757 (1) ÅT = 293 K
β = 97.91 (1)°Prism, yellow
V = 1053.7 (2) Å30.48 × 0.40 × 0.34 mm
Z = 4
Data collection top
Oxford Diffraction Xcalibur
diffractometer with a Sapphire CCD detector
2147 independent reflections
Radiation source: fine-focus sealed tube1798 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.011
Rotation method data acquisition using ω and phi scansθmax = 26.4°, θmin = 2.8°
Absorption correction: multi-scan
(CrysAlis RED; Oxford Diffraction, 2009)
h = 118
Tmin = 0.849, Tmax = 0.890k = 1614
4069 measured reflectionsl = 710
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.037Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.105H atoms treated by a mixture of independent and constrained refinement
S = 1.04 w = 1/[σ2(Fo2) + (0.0582P)2 + 0.2934P]
where P = (Fo2 + 2Fc2)/3
2147 reflections(Δ/σ)max < 0.001
152 parametersΔρmax = 0.33 e Å3
2 restraintsΔρmin = 0.27 e Å3
Crystal data top
C11H10ClNO3V = 1053.7 (2) Å3
Mr = 239.65Z = 4
Monoclinic, P21/cMo Kα radiation
a = 9.005 (1) ŵ = 0.35 mm1
b = 13.491 (2) ÅT = 293 K
c = 8.757 (1) Å0.48 × 0.40 × 0.34 mm
β = 97.91 (1)°
Data collection top
Oxford Diffraction Xcalibur
diffractometer with a Sapphire CCD detector
2147 independent reflections
Absorption correction: multi-scan
(CrysAlis RED; Oxford Diffraction, 2009)
1798 reflections with I > 2σ(I)
Tmin = 0.849, Tmax = 0.890Rint = 0.011
4069 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0372 restraints
wR(F2) = 0.105H atoms treated by a mixture of independent and constrained refinement
S = 1.04Δρmax = 0.33 e Å3
2147 reflectionsΔρmin = 0.27 e Å3
152 parameters
Special details top

Experimental. CrysAlis RED (Oxford Diffraction, 2009) Empirical absorption correction using spherical harmonics, implemented in SCALE3 ABSPACK scaling algorithm.

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
C10.66874 (17)0.04762 (11)0.39541 (18)0.0309 (3)
C20.59803 (18)0.12392 (11)0.30833 (19)0.0359 (4)
H20.63270.18870.32170.043*
C30.47494 (18)0.10217 (11)0.20120 (19)0.0355 (4)
C40.41627 (17)0.00764 (12)0.17621 (18)0.0332 (4)
C50.49161 (19)0.06669 (12)0.2641 (2)0.0398 (4)
H50.45710.13150.25030.048*
C60.61566 (18)0.04879 (12)0.3714 (2)0.0381 (4)
H60.66370.10090.42750.046*
C70.85614 (17)0.14437 (12)0.56761 (18)0.0324 (3)
C80.98127 (18)0.13165 (12)0.69471 (19)0.0351 (4)
H81.00810.06650.71970.042*
C91.06040 (18)0.20092 (13)0.77789 (19)0.0378 (4)
H91.13570.17580.85090.045*
C101.05105 (18)0.31142 (12)0.77605 (19)0.0366 (4)
C110.27987 (18)0.01421 (14)0.0625 (2)0.0434 (4)
H11A0.29600.00810.03800.052*
H11B0.19490.01960.09300.052*
H11C0.26140.08430.05980.052*
N10.79351 (15)0.06004 (10)0.51139 (16)0.0338 (3)
H1N0.827 (2)0.0067 (12)0.560 (2)0.041*
O10.81351 (14)0.22693 (9)0.51661 (15)0.0483 (3)
O21.13005 (15)0.35781 (10)0.87433 (15)0.0507 (4)
O30.95988 (16)0.35732 (9)0.67213 (17)0.0537 (4)
H3O0.911 (2)0.3136 (16)0.611 (2)0.064*
Cl10.38990 (6)0.19890 (3)0.09113 (6)0.0620 (2)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
C10.0306 (7)0.0240 (7)0.0350 (8)0.0015 (6)0.0065 (6)0.0020 (6)
C20.0396 (8)0.0203 (7)0.0427 (9)0.0025 (6)0.0119 (7)0.0008 (6)
C30.0381 (8)0.0234 (7)0.0407 (9)0.0018 (6)0.0099 (7)0.0006 (7)
C40.0324 (8)0.0264 (8)0.0375 (8)0.0021 (6)0.0064 (6)0.0040 (6)
C50.0425 (9)0.0218 (8)0.0503 (10)0.0058 (6)0.0112 (7)0.0008 (7)
C60.0421 (9)0.0219 (8)0.0453 (9)0.0008 (6)0.0118 (7)0.0024 (7)
C70.0323 (7)0.0259 (7)0.0359 (8)0.0011 (6)0.0064 (6)0.0018 (6)
C80.0372 (8)0.0264 (8)0.0378 (9)0.0012 (6)0.0083 (7)0.0009 (6)
C90.0374 (8)0.0341 (9)0.0368 (8)0.0010 (7)0.0125 (7)0.0008 (7)
C100.0370 (8)0.0322 (8)0.0376 (8)0.0037 (7)0.0051 (7)0.0042 (7)
C110.0395 (9)0.0356 (9)0.0497 (10)0.0037 (7)0.0135 (8)0.0050 (8)
N10.0354 (7)0.0229 (6)0.0385 (7)0.0005 (5)0.0115 (6)0.0022 (5)
O10.0517 (7)0.0246 (6)0.0584 (8)0.0014 (5)0.0286 (6)0.0011 (5)
O20.0559 (8)0.0382 (7)0.0511 (8)0.0093 (6)0.0174 (6)0.0103 (6)
O30.0593 (8)0.0273 (6)0.0638 (9)0.0037 (6)0.0298 (6)0.0009 (6)
Cl10.0708 (4)0.0261 (2)0.0743 (4)0.00032 (19)0.0426 (3)0.0058 (2)
Geometric parameters (Å, º) top
C1—C21.383 (2)C7—N11.334 (2)
C1—C61.392 (2)C7—C81.481 (2)
C1—N11.4170 (19)C8—C91.330 (2)
C2—C31.382 (2)C8—H80.9300
C2—H20.9300C9—C101.493 (2)
C3—C41.386 (2)C9—H90.9300
C3—Cl11.7364 (16)C10—O21.212 (2)
C4—C51.384 (2)C10—O31.296 (2)
C4—C111.500 (2)C11—H11A0.9600
C5—C61.378 (2)C11—H11B0.9600
C5—H50.9300C11—H11C0.9600
C6—H60.9300N1—H1N0.869 (15)
C7—O11.2410 (19)O3—H3O0.871 (16)
C2—C1—C6119.32 (14)N1—C7—C8114.71 (13)
C2—C1—N1124.51 (13)C9—C8—C7128.69 (15)
C6—C1—N1116.16 (13)C9—C8—H8115.7
C3—C2—C1118.80 (14)C7—C8—H8115.7
C3—C2—H2120.6C8—C9—C10132.10 (15)
C1—C2—H2120.6C8—C9—H9113.9
C2—C3—C4123.73 (14)C10—C9—H9113.9
C2—C3—Cl1117.95 (12)O2—C10—O3120.32 (16)
C4—C3—Cl1118.31 (12)O2—C10—C9118.75 (16)
C5—C4—C3115.58 (14)O3—C10—C9120.92 (14)
C5—C4—C11121.39 (14)C4—C11—H11A109.5
C3—C4—C11123.03 (14)C4—C11—H11B109.5
C6—C5—C4122.79 (15)H11A—C11—H11B109.5
C6—C5—H5118.6C4—C11—H11C109.5
C4—C5—H5118.6H11A—C11—H11C109.5
C5—C6—C1119.74 (15)H11B—C11—H11C109.5
C5—C6—H6120.1C7—N1—C1128.23 (13)
C1—C6—H6120.1C7—N1—H1N115.1 (13)
O1—C7—N1122.59 (14)C1—N1—H1N116.2 (13)
O1—C7—C8122.70 (14)C10—O3—H3O108.9 (16)
C6—C1—C2—C30.9 (3)C2—C1—C6—C51.5 (3)
N1—C1—C2—C3178.44 (16)N1—C1—C6—C5177.89 (15)
C1—C2—C3—C40.6 (3)O1—C7—C8—C93.8 (3)
C1—C2—C3—Cl1178.99 (13)N1—C7—C8—C9176.65 (18)
C2—C3—C4—C51.5 (3)C7—C8—C9—C101.3 (3)
Cl1—C3—C4—C5178.12 (13)C8—C9—C10—O2173.92 (19)
C2—C3—C4—C11178.21 (16)C8—C9—C10—O35.7 (3)
Cl1—C3—C4—C112.2 (2)O1—C7—N1—C13.5 (3)
C3—C4—C5—C60.9 (3)C8—C7—N1—C1177.01 (15)
C11—C4—C5—C6178.86 (17)C2—C1—N1—C76.7 (3)
C4—C5—C6—C10.6 (3)C6—C1—N1—C7172.69 (16)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1N···O2i0.87 (2)2.11 (2)2.9546 (19)164 (2)
O3—H3O···O10.87 (2)1.62 (2)2.4885 (17)173 (2)
Symmetry code: (i) x+2, y1/2, z+3/2.

Experimental details

Crystal data
Chemical formulaC11H10ClNO3
Mr239.65
Crystal system, space groupMonoclinic, P21/c
Temperature (K)293
a, b, c (Å)9.005 (1), 13.491 (2), 8.757 (1)
β (°) 97.91 (1)
V3)1053.7 (2)
Z4
Radiation typeMo Kα
µ (mm1)0.35
Crystal size (mm)0.48 × 0.40 × 0.34
Data collection
DiffractometerOxford Diffraction Xcalibur
diffractometer with a Sapphire CCD detector
Absorption correctionMulti-scan
(CrysAlis RED; Oxford Diffraction, 2009)
Tmin, Tmax0.849, 0.890
No. of measured, independent and
observed [I > 2σ(I)] reflections
4069, 2147, 1798
Rint0.011
(sin θ/λ)max1)0.625
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.037, 0.105, 1.04
No. of reflections2147
No. of parameters152
No. of restraints2
H-atom treatmentH atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å3)0.33, 0.27

Computer programs: CrysAlis CCD (Oxford Diffraction, 2009), CrysAlis RED (Oxford Diffraction, 2009), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), PLATON (Spek, 2009).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1N···O2i0.869 (15)2.111 (15)2.9546 (19)163.8 (18)
O3—H3O···O10.871 (16)1.621 (17)2.4885 (17)173 (2)
Symmetry code: (i) x+2, y1/2, z+3/2.
 

Acknowledgements

BTG thanks the University Grants Commission, Government of India, New Delhi, for a UGC-BSR one-time Grant to Faculty.

References

First citationChaithanya, U., Foro, S. & Gowda, B. T. (2012). Acta Cryst. E68, o785.  CSD CrossRef IUCr Journals Google Scholar
First citationGowda, B. T., Foro, S. & Fuess, H. (2007). Acta Cryst. E63, o1975–o1976.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationGowda, B. T., Kumar, B. H. A. & Fuess, H. (2000). Z. Naturforsch. Teil A, 55, 721–728.  CAS Google Scholar
First citationGowda, B. T., Usha, K. M. & Jayalakshmi, K. L. (2003). Z. Naturforsch. Teil A, 58, 801–806.  CAS Google Scholar
First citationJyothi, K. & Gowda, B. T. (2004). Z. Naturforsch. Teil A, 59, 64–68.  CAS Google Scholar
First citationOxford Diffraction (2009). CrysAlis CCD and CrysAlis RED. Oxford Diffraction Ltd, Yarnton, Oxfordshire, England.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSpek, A. L. (2009). Acta Cryst. D65, 148–155.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationUsha, K. M. & Gowda, B. T. (2006). J. Chem. Sci. 118, 351–359.  Web of Science CrossRef CAS Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds