organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

2-(4-Meth­­oxy­benzyl­­idene)-2H-1,3-benzodi­thiole 1,1,3,3-tetra­oxide

aLudwig-Maximilians-Universität, Department of Chemistry, Butenandtstrasse 5–13, 81377 München, Germany
*Correspondence e-mail: p.mayer@lmu.de

(Received 16 December 2011; accepted 23 January 2012; online 4 February 2012)

The title compound, C15H12O5S2, crystallizes with two mol­ecules in the asymmetric unit. In both mol­ecules, the 1,3-benzodithiole plane and the aryl ring of the anisyl group are not quite coplanar; the corresponding dihedral angles are 20.4 (1) and 18.0 (1)°. π-Stacking [with centroid–centroid distances between 3.5440 (14) and 3.8421 (14) Å] takes place along [100] between the alternating benzodithiole benzene rings of symmetrically independent mol­ecules, and also between the anisyl groups of symmetrically related mol­ecules. Furthermore, mol­ecules are linked through C—H⋯O inter­actions.

Related literature

For background on bis­ulfonyl ethyl­enes, see: Simpkins (1993[Simpkins, N. S. (1993). In Sulfones in Organic Synthesis. Oxford: Pergamon Press.]); Najera & Yus (1999[Najera, C. & Yus, M. (1999). Tetrahedron, 55, 10547-10658.]); Prilezhaeva (2000[Prilezhaeva, E. N. (2000). Russ. Chem. Rev. 69, 367-408.]); Nielsen et al. (2010[Nielsen, M., Jacobsen, C. B., Holub, N., Paixao, M. W. & Jorgensen, K. A. J. (2010). Angew. Chem. Int. Ed. 49, 2668-2679.]); Zhu & Lu (2009[Zhu, Q. & Lu, Y. (2009). Aust. J. Chem. 62, 951-955.]); Alba et al. (2010[Alba, A. R., Companyo, X. & Rios, R. (2010). Chem. Soc. Rev. 39, 2018-2033.]). For related structures, see: Giacometti et al. (1994[Giacometti, A., De Lucchi, O., Dilillo, F., Cossu, S., Peters, K., Peters, E.-M. & von Schnering, H. G. (1994). Tetrahedron, 50, 7913-7922.]); Zhang et al. (2010[Zhang, S., Li, J., Zhao, S. & Wang, W. (2010). Tetrahedron Lett. 51, 1766-1769.]).

[Scheme 1]

Experimental

Crystal data
  • C15H12O5S2

  • Mr = 336.39

  • Triclinic, [P \overline 1]

  • a = 7.3649 (2) Å

  • b = 11.4723 (3) Å

  • c = 17.6114 (5) Å

  • α = 84.345 (2)°

  • β = 84.631 (2)°

  • γ = 71.711 (2)°

  • V = 1402.89 (7) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.40 mm−1

  • T = 173 K

  • 0.17 × 0.12 × 0.08 mm

Data collection
  • Nonius KappaCCD diffractometer

  • 9496 measured reflections

  • 5124 independent reflections

  • 4435 reflections with I > 2σ(I)

  • Rint = 0.019

Refinement
  • R[F2 > 2σ(F2)] = 0.037

  • wR(F2) = 0.093

  • S = 1.10

  • 5124 reflections

  • 399 parameters

  • H-atom parameters constrained

  • Δρmax = 0.29 e Å−3

  • Δρmin = −0.38 e Å−3

Data collection: COLLECT (Hooft, 2004[Hooft, R. W. W. (2004). COLLECT. Bruker-Nonius BV, Delft, The Netherlands.]); cell refinement: SCALEPACK (Otwinowski & Minor, 1997[Otwinowski, Z. & Minor, W. (1997). Methods in Enzymology, Vol. 276, Macromolecular Crystallography, Part A, edited by C. W. Carter Jr & R. M. Sweet, pp. 307-326. New York: Academic Press.]); data reduction: DENZO (Otwinowski & Minor, 1997[Otwinowski, Z. & Minor, W. (1997). Methods in Enzymology, Vol. 276, Macromolecular Crystallography, Part A, edited by C. W. Carter Jr & R. M. Sweet, pp. 307-326. New York: Academic Press.]) and SCALEPACK; program(s) used to solve structure: SIR97 (Altomare et al., 1999[Altomare, A., Burla, M. C., Camalli, M., Cascarano, G. L., Giacovazzo, C., Guagliardi, A., Moliterni, A. G. G., Polidori, G. & Spagna, R. (1999). J. Appl. Cryst. 32, 115-119.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: ORTEP-3 (Farrugia, 1997[Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.]) and OLEX2 (Dolomanov et al., 2004[Dolomanov, O. V., Gildea, R. & Puschmann, H. (2004). OLEX2. OlexSys Ltd, Durham, England.]); software used to prepare material for publication: PLATON (Spek, 2009[Spek, A. L. (2009). Acta Cryst. D65, 148-155.]).

Supporting information


Comment top

Bissulfonyl ethylenes are important reagents in synthetic organic chemistry, because they are active Michael acceptors (Simpkins, 1993; Najera & Yus, 1999; Prilezhaeva, 2000). Recently, organocatalytic Michael additions of bissulfonyl ethylene have also been reported (Nielsen et al., 2010; Zhu & Lu, 2009; Alba et al., 2010). During our studies on the electrophilic reactivity of bissulfonyl ethylenes, we discussed structure–reactivity relationships.

The asymmetric unit contains two molecules of the title compound (see Fig. 1). In both molecules, the 1,3-benzodithiole plane and the aryl ring of the methoxy-benzylidene group deviate significantly from coplanarity with dihedral angles of 20.41 (9)° and 18.00 (10)°. The dominating feature of the packing of the title compound is π-stacking. The sulfur-bound phenyl rings of the two symmetrically independent molecules are stacked along [100] as well as the anisyl groups of symmetrically dependent molecules (see Fig. 2). This results in three different types of stacks along [100]: (1) two identical stacks made of alternating symmetrically independent sulfur-bound phenyl rings, (2) a stack made of anisyl rings C9···C14 and (3) a stack made of anisyl rings C24···C29. The dihedral angle between the sulfur-bound phenyl rings is 2.15 (13)° with centroid–centroid distances of 3.6659 (16) Å and 3.7288 (16) Å. The π-stackings of the anisyl groups are centrosymmetric that results in coplanar rings. The centroid–centroid distances for the rings C9···C14 are 3.5440 (14) Å and 3.8421 (14), the centroid–centroid distances for C24···C29 are 3.5839 (16) Å and 3.8165 (16) Å. No π-stacking was observed in the related structures (Giacometti et al., 1994; Zhang et al., 2010). The molecules are linked by weak C—H···O interactions with H···O separations shortened up to 2.36 Å. These are indicated by dashed lines in Fig. 2.

Related literature top

For background on bisulfonyl ethylenes, see: Simpkins (1993); Najera & Yus (1999); Prilezhaeva (2000); Nielsen et al. (2010); Zhu & Lu (2009); Alba et al. (2010). For related structures, see: Giacometti et al. (1994); Zhang et al. (2010).

Experimental top

4-Methoxybenzylidene 1,3-benzodithiole 1,1,3,3-tetraoxide was synthesized by mixing p-anisaldehyde (1.5 g, 11.0 mmol, 6.1 equiv.), 1,3-benzodithiole 1,1,3,3-tetraoxide (400 mg, 1.8 mmol, 1.0 equiv.), diethylammonium chloride (3.4 mmol, 1.9 equiv.) and potassium fluoride (0.27 mmol, 0.15 equiv.) in dry toluene (25 ml) at reflux condition under a Dean Stark water separator for 24 h. After cooling, the solvent was evaporated and the residue was partitioned between water (20 ml) and CH2Cl2 (20 ml). The organic phase was separated and the aqueous phase was extracted with CH2Cl2 (3 × 15 ml). The combined organic layer was dried over Na2SO4, filtered, concentrated under reduced pressure. The crude mixture was purified by flash column chromatography on silica gel (pentane/ethyl acetate: from 95/5 to 80/20), followed by recrystallization from pentane/chloroform to afford yellow crystals. m.p. 222.9–223.9 °C (yield 470 mg, 1.4 mmol, 77.6%).

Refinement top

C-bound H atoms were positioned geometrically (C—H = 0.98 Å for aliphatic, 0.95 Å for aromatic H) and treated as riding on their parent atoms [Uiso(H) = 1.2Ueq(C, aromatic), Uiso(H) = 1.5Ueq(C, aliphatic)]. The methyl groups were allowed to rotate along the C—O bonds to best fit the experimental electron density.

Computing details top

Data collection: COLLECT (Hooft, 2004); cell refinement: SCALEPACK (Otwinowski & Minor, 1997); data reduction: DENZO and SCALEPACK (Otwinowski & Minor, 1997); program(s) used to solve structure: SIR97 (Altomare et al., 1999); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 (Farrugia, 1997) and OLEX2 (Dolomanov et al., 2004); software used to prepare material for publication: PLATON (Spek, 2009).

Figures top
[Figure 1] Fig. 1. The molecular structures of the two symmetrically independent molecules of the title compound, with atom labels and anisotropic displacement ellipsoids (drawn at 50% probability level) for non-H atoms.
[Figure 2] Fig. 2. The packing of the title compound viewed along [100].
2-(4-Methoxybenzylidene)-2H-1,3-benzodithiole 1,1,3,3-tetraoxide top
Crystal data top
C15H12O5S2Z = 4
Mr = 336.39F(000) = 696
Triclinic, P1Dx = 1.593 (1) Mg m3
Hall symbol: -P 1Mo Kα radiation, λ = 0.71073 Å
a = 7.3649 (2) ÅCell parameters from 5056 reflections
b = 11.4723 (3) Åθ = 3.1–25.4°
c = 17.6114 (5) ŵ = 0.40 mm1
α = 84.345 (2)°T = 173 K
β = 84.631 (2)°Block, yellow
γ = 71.711 (2)°0.17 × 0.12 × 0.08 mm
V = 1402.89 (7) Å3
Data collection top
Nonius KappaCCD
diffractometer
4435 reflections with I > 2σ(I)
Radiation source: rotating anodeRint = 0.019
MONTEL, graded multilayered X-ray optics monochromatorθmax = 25.4°, θmin = 3.3°
CCD; rotation images; thick slices scansh = 88
9496 measured reflectionsk = 1313
5124 independent reflectionsl = 2021
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.037Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.093H-atom parameters constrained
S = 1.10 w = 1/[σ2(Fo2) + (0.025P)2 + 1.7791P]
where P = (Fo2 + 2Fc2)/3
5124 reflections(Δ/σ)max = 0.001
399 parametersΔρmax = 0.29 e Å3
0 restraintsΔρmin = 0.38 e Å3
Crystal data top
C15H12O5S2γ = 71.711 (2)°
Mr = 336.39V = 1402.89 (7) Å3
Triclinic, P1Z = 4
a = 7.3649 (2) ÅMo Kα radiation
b = 11.4723 (3) ŵ = 0.40 mm1
c = 17.6114 (5) ÅT = 173 K
α = 84.345 (2)°0.17 × 0.12 × 0.08 mm
β = 84.631 (2)°
Data collection top
Nonius KappaCCD
diffractometer
4435 reflections with I > 2σ(I)
9496 measured reflectionsRint = 0.019
5124 independent reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0370 restraints
wR(F2) = 0.093H-atom parameters constrained
S = 1.10Δρmax = 0.29 e Å3
5124 reflectionsΔρmin = 0.38 e Å3
399 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > 2σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R-factors based on all data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
S10.64347 (9)0.35339 (5)0.08928 (3)0.02238 (14)
S20.64751 (9)0.25433 (6)0.24987 (3)0.02422 (15)
O10.8215 (3)0.35541 (16)0.04909 (10)0.0295 (4)
O20.4828 (3)0.36877 (16)0.04470 (9)0.0289 (4)
O30.8294 (3)0.21116 (17)0.28301 (10)0.0323 (4)
O40.4931 (3)0.21619 (17)0.28849 (10)0.0336 (4)
O50.7530 (3)0.12438 (15)0.13537 (10)0.0314 (4)
C10.5826 (3)0.4621 (2)0.15891 (13)0.0232 (5)
C20.5810 (3)0.4154 (2)0.23440 (13)0.0233 (5)
C30.5398 (4)0.4931 (2)0.29365 (14)0.0280 (5)
H30.53840.46130.34550.034*
C40.5008 (4)0.6182 (2)0.27511 (15)0.0301 (6)
H40.47180.67310.31470.036*
C50.5035 (4)0.6643 (2)0.19921 (15)0.0297 (6)
H50.47730.75040.18770.036*
C60.5439 (4)0.5870 (2)0.14008 (14)0.0268 (5)
H60.54500.61880.08820.032*
C70.6748 (3)0.2207 (2)0.15259 (13)0.0222 (5)
C80.7040 (3)0.1042 (2)0.13583 (14)0.0248 (5)
H80.70870.04760.17930.030*
C90.7299 (3)0.0493 (2)0.06317 (14)0.0237 (5)
C100.7700 (3)0.1060 (2)0.00806 (14)0.0241 (5)
H100.78930.18440.01010.029*
C110.7821 (3)0.0502 (2)0.07497 (14)0.0237 (5)
H110.80920.09000.12260.028*
C120.7542 (3)0.0654 (2)0.07256 (14)0.0250 (5)
C130.7247 (3)0.1262 (2)0.00221 (15)0.0273 (5)
H130.71340.20670.00000.033*
C140.7122 (3)0.0693 (2)0.06378 (15)0.0262 (5)
H140.69090.11130.11140.031*
C150.7570 (4)0.0591 (2)0.20891 (15)0.0328 (6)
H15A0.87920.04130.21870.049*
H15B0.65120.01820.20990.049*
H15C0.74340.10970.24840.049*
S30.06712 (9)0.22772 (5)0.71282 (3)0.02390 (15)
S40.00344 (9)0.46523 (5)0.62306 (3)0.02375 (15)
O60.2566 (3)0.15179 (16)0.73049 (10)0.0338 (4)
O70.0825 (3)0.17105 (16)0.72510 (10)0.0349 (4)
O80.1567 (3)0.51075 (16)0.59109 (10)0.0331 (4)
O90.1808 (3)0.52166 (16)0.59230 (10)0.0336 (4)
O100.3914 (3)0.20996 (16)0.44004 (10)0.0325 (4)
C160.0027 (3)0.3599 (2)0.76490 (13)0.0218 (5)
C170.0216 (3)0.4715 (2)0.72270 (13)0.0218 (5)
C180.0697 (3)0.5813 (2)0.75786 (14)0.0253 (5)
H180.08660.65760.72850.030*
C190.0923 (4)0.5763 (2)0.83682 (14)0.0277 (5)
H190.12330.64990.86230.033*
C200.0701 (4)0.4644 (2)0.87937 (14)0.0284 (5)
H200.08800.46300.93350.034*
C210.0226 (4)0.3551 (2)0.84416 (14)0.0264 (5)
H210.00770.27900.87340.032*
C220.0720 (3)0.3032 (2)0.62085 (13)0.0226 (5)
C230.1276 (3)0.2572 (2)0.55205 (14)0.0252 (5)
H230.12870.31840.51170.030*
C240.1858 (3)0.1340 (2)0.52707 (13)0.0234 (5)
C250.2688 (4)0.1172 (2)0.45215 (13)0.0261 (5)
H250.27970.18660.42000.031*
C260.3345 (4)0.0027 (2)0.42451 (14)0.0267 (5)
H260.39140.00700.37390.032*
C270.3171 (4)0.0996 (2)0.47123 (14)0.0247 (5)
C280.2291 (3)0.0849 (2)0.54467 (13)0.0247 (5)
H280.21310.15400.57570.030*
C290.1654 (4)0.0303 (2)0.57202 (14)0.0249 (5)
H290.10650.03980.62230.030*
C300.3957 (5)0.3186 (2)0.48879 (16)0.0379 (7)
H30A0.46640.32100.53370.057*
H30B0.45920.39170.46060.057*
H30C0.26430.31740.50540.057*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
S10.0289 (3)0.0221 (3)0.0162 (3)0.0091 (2)0.0007 (2)0.0013 (2)
S20.0285 (3)0.0270 (3)0.0170 (3)0.0099 (3)0.0010 (2)0.0032 (2)
O10.0348 (10)0.0310 (10)0.0238 (9)0.0143 (8)0.0070 (8)0.0020 (7)
O20.0352 (10)0.0293 (9)0.0216 (9)0.0074 (8)0.0091 (7)0.0008 (7)
O30.0334 (10)0.0374 (10)0.0236 (9)0.0074 (8)0.0087 (8)0.0049 (8)
O40.0381 (11)0.0392 (11)0.0262 (9)0.0197 (9)0.0068 (8)0.0018 (8)
O50.0418 (11)0.0221 (9)0.0313 (10)0.0111 (8)0.0000 (8)0.0051 (7)
C10.0221 (12)0.0296 (13)0.0186 (12)0.0093 (10)0.0020 (9)0.0005 (10)
C20.0221 (12)0.0279 (13)0.0210 (12)0.0098 (10)0.0017 (9)0.0011 (10)
C30.0313 (14)0.0360 (14)0.0180 (12)0.0124 (11)0.0007 (10)0.0024 (10)
C40.0285 (14)0.0353 (15)0.0255 (13)0.0071 (11)0.0003 (11)0.0086 (11)
C50.0319 (14)0.0246 (13)0.0321 (14)0.0075 (11)0.0047 (11)0.0008 (11)
C60.0311 (14)0.0281 (13)0.0211 (12)0.0092 (11)0.0035 (10)0.0012 (10)
C70.0236 (12)0.0254 (12)0.0176 (11)0.0088 (10)0.0011 (9)0.0024 (9)
C80.0226 (12)0.0263 (13)0.0241 (12)0.0076 (10)0.0014 (10)0.0043 (10)
C90.0202 (12)0.0228 (12)0.0270 (13)0.0056 (10)0.0022 (10)0.0010 (10)
C100.0211 (12)0.0202 (12)0.0308 (13)0.0066 (10)0.0005 (10)0.0011 (10)
C110.0217 (12)0.0224 (12)0.0265 (13)0.0076 (10)0.0014 (10)0.0001 (10)
C120.0217 (12)0.0201 (12)0.0320 (14)0.0045 (10)0.0011 (10)0.0035 (10)
C130.0246 (13)0.0181 (12)0.0379 (15)0.0056 (10)0.0017 (11)0.0008 (10)
C140.0220 (12)0.0216 (12)0.0319 (14)0.0043 (10)0.0019 (10)0.0043 (10)
C150.0423 (16)0.0279 (14)0.0289 (14)0.0114 (12)0.0007 (12)0.0054 (11)
S30.0316 (3)0.0185 (3)0.0196 (3)0.0067 (2)0.0012 (2)0.0023 (2)
S40.0327 (3)0.0194 (3)0.0186 (3)0.0085 (2)0.0012 (2)0.0021 (2)
O60.0394 (11)0.0259 (9)0.0274 (10)0.0017 (8)0.0043 (8)0.0032 (7)
O70.0465 (12)0.0287 (10)0.0340 (10)0.0215 (9)0.0108 (9)0.0037 (8)
O80.0471 (12)0.0310 (10)0.0262 (9)0.0223 (9)0.0083 (8)0.0012 (8)
O90.0401 (11)0.0290 (10)0.0271 (10)0.0034 (8)0.0110 (8)0.0034 (8)
O100.0474 (11)0.0234 (9)0.0250 (9)0.0096 (8)0.0036 (8)0.0035 (7)
C160.0196 (12)0.0212 (12)0.0238 (12)0.0061 (9)0.0014 (9)0.0007 (9)
C170.0217 (12)0.0227 (12)0.0204 (12)0.0072 (10)0.0002 (9)0.0007 (9)
C180.0279 (13)0.0213 (12)0.0276 (13)0.0094 (10)0.0006 (10)0.0004 (10)
C190.0279 (13)0.0283 (13)0.0281 (13)0.0099 (11)0.0020 (10)0.0070 (10)
C200.0287 (13)0.0337 (14)0.0221 (13)0.0098 (11)0.0026 (10)0.0027 (10)
C210.0285 (13)0.0261 (13)0.0225 (12)0.0072 (10)0.0003 (10)0.0035 (10)
C220.0271 (13)0.0187 (12)0.0209 (12)0.0069 (10)0.0002 (10)0.0020 (9)
C230.0276 (13)0.0264 (13)0.0211 (12)0.0094 (10)0.0031 (10)0.0048 (10)
C240.0241 (12)0.0239 (12)0.0219 (12)0.0064 (10)0.0025 (10)0.0023 (10)
C250.0334 (14)0.0279 (13)0.0181 (12)0.0126 (11)0.0024 (10)0.0039 (10)
C260.0335 (14)0.0313 (13)0.0159 (11)0.0118 (11)0.0000 (10)0.0005 (10)
C270.0284 (13)0.0248 (13)0.0214 (12)0.0083 (10)0.0036 (10)0.0029 (10)
C280.0287 (13)0.0257 (13)0.0201 (12)0.0100 (10)0.0007 (10)0.0013 (10)
C290.0276 (13)0.0282 (13)0.0184 (12)0.0091 (10)0.0009 (10)0.0001 (10)
C300.0569 (19)0.0241 (14)0.0305 (14)0.0117 (13)0.0034 (13)0.0003 (11)
Geometric parameters (Å, º) top
S1—O11.4360 (18)S3—O71.4353 (18)
S1—O21.4362 (18)S3—O61.4380 (19)
S1—C11.763 (2)S3—C221.763 (2)
S1—C71.763 (2)S3—C161.763 (2)
S2—O31.4328 (18)S4—O81.4343 (18)
S2—O41.4342 (18)S4—O91.4389 (19)
S2—C21.757 (2)S4—C171.754 (2)
S2—C71.772 (2)S4—C221.770 (2)
O5—C121.354 (3)O10—C271.360 (3)
O5—C151.433 (3)O10—C301.436 (3)
C1—C61.383 (3)C16—C171.385 (3)
C1—C21.384 (3)C16—C211.389 (3)
C2—C31.390 (3)C17—C181.388 (3)
C3—C41.384 (4)C18—C191.383 (4)
C3—H30.9500C18—H180.9500
C4—C51.389 (4)C19—C201.392 (4)
C4—H40.9500C19—H190.9500
C5—C61.385 (4)C20—C211.384 (4)
C5—H50.9500C20—H200.9500
C6—H60.9500C21—H210.9500
C7—C81.343 (3)C22—C231.346 (3)
C8—C91.452 (3)C23—C241.442 (3)
C8—H80.9500C23—H230.9500
C9—C141.405 (3)C24—C291.404 (3)
C9—C101.405 (3)C24—C251.406 (3)
C10—C111.378 (3)C25—C261.371 (4)
C10—H100.9500C25—H250.9500
C11—C121.400 (3)C26—C271.398 (3)
C11—H110.9500C26—H260.9500
C12—C131.394 (4)C27—C281.393 (3)
C13—C141.370 (4)C28—C291.376 (3)
C13—H130.9500C28—H280.9500
C14—H140.9500C29—H290.9500
C15—H15A0.9800C30—H30A0.9800
C15—H15B0.9800C30—H30B0.9800
C15—H15C0.9800C30—H30C0.9800
O1—S1—O2117.71 (11)O7—S3—O6116.77 (12)
O1—S1—C1108.95 (11)O7—S3—C22112.52 (11)
O2—S1—C1110.29 (11)O6—S3—C22110.41 (11)
O1—S1—C7111.23 (11)O7—S3—C16108.99 (11)
O2—S1—C7109.43 (11)O6—S3—C16109.12 (11)
C1—S1—C797.34 (11)C22—S3—C1697.21 (11)
O3—S2—O4117.61 (11)O8—S4—O9116.81 (11)
O3—S2—C2108.98 (11)O8—S4—C17110.52 (11)
O4—S2—C2110.83 (11)O9—S4—C17109.14 (11)
O3—S2—C7110.16 (11)O8—S4—C22110.39 (11)
O4—S2—C7110.04 (11)O9—S4—C22110.62 (11)
C2—S2—C797.32 (11)C17—S4—C2297.69 (11)
C12—O5—C15118.30 (19)C27—O10—C30117.44 (19)
C6—C1—C2121.2 (2)C17—C16—C21120.5 (2)
C6—C1—S1122.46 (18)C17—C16—S3116.57 (18)
C2—C1—S1116.29 (19)C21—C16—S3122.91 (18)
C1—C2—C3120.8 (2)C16—C17—C18121.4 (2)
C1—C2—S2116.23 (18)C16—C17—S4115.80 (18)
C3—C2—S2122.88 (19)C18—C17—S4122.71 (18)
C4—C3—C2118.2 (2)C19—C18—C17118.0 (2)
C4—C3—H3120.9C19—C18—H18121.0
C2—C3—H3120.9C17—C18—H18121.0
C3—C4—C5120.7 (2)C18—C19—C20120.7 (2)
C3—C4—H4119.7C18—C19—H19119.6
C5—C4—H4119.7C20—C19—H19119.6
C6—C5—C4121.2 (2)C21—C20—C19121.2 (2)
C6—C5—H5119.4C21—C20—H20119.4
C4—C5—H5119.4C19—C20—H20119.4
C1—C6—C5117.9 (2)C20—C21—C16118.2 (2)
C1—C6—H6121.0C20—C21—H21120.9
C5—C6—H6121.0C16—C21—H21120.9
C8—C7—S1128.34 (19)C23—C22—S3130.49 (19)
C8—C7—S2118.91 (18)C23—C22—S4116.88 (18)
S1—C7—S2112.62 (13)S3—C22—S4112.52 (13)
C7—C8—C9131.6 (2)C22—C23—C24133.1 (2)
C7—C8—H8114.2C22—C23—H23113.4
C9—C8—H8114.2C24—C23—H23113.4
C14—C9—C10117.3 (2)C29—C24—C25117.9 (2)
C14—C9—C8117.7 (2)C29—C24—C23124.8 (2)
C10—C9—C8125.0 (2)C25—C24—C23117.3 (2)
C11—C10—C9121.3 (2)C26—C25—C24121.3 (2)
C11—C10—H10119.3C26—C25—H25119.3
C9—C10—H10119.3C24—C25—H25119.3
C10—C11—C12119.8 (2)C25—C26—C27119.6 (2)
C10—C11—H11120.1C25—C26—H26120.2
C12—C11—H11120.1C27—C26—H26120.2
O5—C12—C13116.2 (2)O10—C27—C28124.1 (2)
O5—C12—C11124.1 (2)O10—C27—C26115.6 (2)
C13—C12—C11119.7 (2)C28—C27—C26120.2 (2)
C14—C13—C12119.7 (2)C29—C28—C27119.6 (2)
C14—C13—H13120.1C29—C28—H28120.2
C12—C13—H13120.1C27—C28—H28120.2
C13—C14—C9122.0 (2)C28—C29—C24121.3 (2)
C13—C14—H14119.0C28—C29—H29119.3
C9—C14—H14119.0C24—C29—H29119.3
O5—C15—H15A109.5O10—C30—H30A109.5
O5—C15—H15B109.5O10—C30—H30B109.5
H15A—C15—H15B109.5H30A—C30—H30B109.5
O5—C15—H15C109.5O10—C30—H30C109.5
H15A—C15—H15C109.5H30A—C30—H30C109.5
H15B—C15—H15C109.5H30B—C30—H30C109.5
O1—S1—C1—C663.6 (2)O7—S3—C16—C17117.07 (19)
O2—S1—C1—C667.1 (2)O6—S3—C16—C17114.37 (19)
C7—S1—C1—C6179.0 (2)C22—S3—C16—C170.2 (2)
O1—S1—C1—C2114.48 (19)O7—S3—C16—C2163.2 (2)
O2—S1—C1—C2114.90 (19)O6—S3—C16—C2165.4 (2)
C7—S1—C1—C21.0 (2)C22—S3—C16—C21180.0 (2)
C6—C1—C2—C30.2 (4)C21—C16—C17—C180.7 (4)
S1—C1—C2—C3178.31 (18)S3—C16—C17—C18179.10 (18)
C6—C1—C2—S2176.12 (19)C21—C16—C17—S4177.07 (19)
S1—C1—C2—S22.0 (3)S3—C16—C17—S43.2 (3)
O3—S2—C2—C1110.47 (19)O8—S4—C17—C16119.63 (19)
O4—S2—C2—C1118.59 (19)O9—S4—C17—C16110.60 (19)
C7—S2—C2—C13.8 (2)C22—S4—C17—C164.4 (2)
O3—S2—C2—C365.8 (2)O8—S4—C17—C1862.7 (2)
O4—S2—C2—C365.1 (2)O9—S4—C17—C1867.1 (2)
C7—S2—C2—C3179.9 (2)C22—S4—C17—C18177.9 (2)
C1—C2—C3—C40.2 (4)C16—C17—C18—C190.2 (4)
S2—C2—C3—C4175.95 (19)S4—C17—C18—C19177.78 (19)
C2—C3—C4—C50.2 (4)C17—C18—C19—C201.0 (4)
C3—C4—C5—C60.5 (4)C18—C19—C20—C210.8 (4)
C2—C1—C6—C50.0 (4)C19—C20—C21—C160.0 (4)
S1—C1—C6—C5177.93 (19)C17—C16—C21—C200.8 (4)
C4—C5—C6—C10.4 (4)S3—C16—C21—C20178.96 (19)
O1—S1—C7—C874.0 (2)O7—S3—C22—C2372.5 (3)
O2—S1—C7—C857.7 (3)O6—S3—C22—C2360.0 (3)
C1—S1—C7—C8172.3 (2)C16—S3—C22—C23173.5 (2)
O1—S1—C7—S2110.16 (14)O7—S3—C22—S4111.31 (14)
O2—S1—C7—S2118.08 (13)O6—S3—C22—S4116.27 (14)
C1—S1—C7—S23.49 (15)C16—S3—C22—S42.74 (15)
O3—S2—C7—C874.7 (2)O8—S4—C22—C2357.4 (2)
O4—S2—C7—C856.5 (2)O9—S4—C22—C2373.5 (2)
C2—S2—C7—C8171.9 (2)C17—S4—C22—C23172.7 (2)
O3—S2—C7—S1109.02 (14)O8—S4—C22—S3119.43 (14)
O4—S2—C7—S1119.71 (13)O9—S4—C22—S3109.73 (14)
C2—S2—C7—S14.33 (15)C17—S4—C22—S34.12 (15)
S1—C7—C8—C94.0 (4)S3—C22—C23—C246.4 (4)
S2—C7—C8—C9179.6 (2)S4—C22—C23—C24177.5 (2)
C7—C8—C9—C14165.1 (3)C22—C23—C24—C2911.6 (4)
C7—C8—C9—C1014.5 (4)C22—C23—C24—C25168.5 (3)
C14—C9—C10—C113.2 (3)C29—C24—C25—C262.3 (4)
C8—C9—C10—C11176.4 (2)C23—C24—C25—C26177.7 (2)
C9—C10—C11—C120.1 (4)C24—C25—C26—C270.6 (4)
C15—O5—C12—C13171.8 (2)C30—O10—C27—C286.4 (4)
C15—O5—C12—C117.9 (3)C30—O10—C27—C26173.3 (2)
C10—C11—C12—O5176.3 (2)C25—C26—C27—O10178.0 (2)
C10—C11—C12—C133.4 (4)C25—C26—C27—C281.7 (4)
O5—C12—C13—C14176.0 (2)O10—C27—C28—C29177.4 (2)
C11—C12—C13—C143.7 (4)C26—C27—C28—C292.3 (4)
C12—C13—C14—C90.6 (4)C27—C28—C29—C240.6 (4)
C10—C9—C14—C132.9 (4)C25—C24—C29—C281.7 (4)
C8—C9—C14—C13176.7 (2)C23—C24—C29—C28178.3 (2)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C6—H6···O2i0.952.363.259 (3)159
C19—H19···O5ii0.952.463.332 (3)152
C20—H20···O1iii0.952.423.252 (3)146
C23—H23···O9iv0.952.553.496 (3)172
C28—H28···O3v0.952.533.282 (3)137
Symmetry codes: (i) x+1, y+1, z; (ii) x1, y+1, z+1; (iii) x1, y, z+1; (iv) x, y+1, z+1; (v) x+1, y, z+1.

Experimental details

Crystal data
Chemical formulaC15H12O5S2
Mr336.39
Crystal system, space groupTriclinic, P1
Temperature (K)173
a, b, c (Å)7.3649 (2), 11.4723 (3), 17.6114 (5)
α, β, γ (°)84.345 (2), 84.631 (2), 71.711 (2)
V3)1402.89 (7)
Z4
Radiation typeMo Kα
µ (mm1)0.40
Crystal size (mm)0.17 × 0.12 × 0.08
Data collection
DiffractometerNonius KappaCCD
diffractometer
Absorption correction
No. of measured, independent and
observed [I > 2σ(I)] reflections
9496, 5124, 4435
Rint0.019
(sin θ/λ)max1)0.603
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.037, 0.093, 1.10
No. of reflections5124
No. of parameters399
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.29, 0.38

Computer programs: COLLECT (Hooft, 2004), DENZO and SCALEPACK (Otwinowski & Minor, 1997), SIR97 (Altomare et al., 1999), SHELXL97 (Sheldrick, 2008), ORTEP-3 (Farrugia, 1997) and OLEX2 (Dolomanov et al., 2004), PLATON (Spek, 2009).

 

Acknowledgements

The authors thank Professor Peter Klüfers for generous allocation of diffractometer time.

References

First citationAlba, A. R., Companyo, X. & Rios, R. (2010). Chem. Soc. Rev. 39, 2018–2033.  Web of Science CrossRef CAS PubMed Google Scholar
First citationAltomare, A., Burla, M. C., Camalli, M., Cascarano, G. L., Giacovazzo, C., Guagliardi, A., Moliterni, A. G. G., Polidori, G. & Spagna, R. (1999). J. Appl. Cryst. 32, 115–119.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationDolomanov, O. V., Gildea, R. & Puschmann, H. (2004). OLEX2. OlexSys Ltd, Durham, England.  Google Scholar
First citationFarrugia, L. J. (1997). J. Appl. Cryst. 30, 565.  CrossRef IUCr Journals Google Scholar
First citationGiacometti, A., De Lucchi, O., Dilillo, F., Cossu, S., Peters, K., Peters, E.-M. & von Schnering, H. G. (1994). Tetrahedron, 50, 7913–7922.  CSD CrossRef CAS Web of Science Google Scholar
First citationHooft, R. W. W. (2004). COLLECT. Bruker–Nonius BV, Delft, The Netherlands.  Google Scholar
First citationNajera, C. & Yus, M. (1999). Tetrahedron, 55, 10547–10658.  CAS Google Scholar
First citationNielsen, M., Jacobsen, C. B., Holub, N., Paixao, M. W. & Jorgensen, K. A. J. (2010). Angew. Chem. Int. Ed. 49, 2668–2679.  CrossRef CAS Google Scholar
First citationOtwinowski, Z. & Minor, W. (1997). Methods in Enzymology, Vol. 276, Macromolecular Crystallography, Part A, edited by C. W. Carter Jr & R. M. Sweet, pp. 307–326. New York: Academic Press.  Google Scholar
First citationPrilezhaeva, E. N. (2000). Russ. Chem. Rev. 69, 367–408.  CrossRef CAS Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSimpkins, N. S. (1993). In Sulfones in Organic Synthesis. Oxford: Pergamon Press.  Google Scholar
First citationSpek, A. L. (2009). Acta Cryst. D65, 148–155.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationZhang, S., Li, J., Zhao, S. & Wang, W. (2010). Tetrahedron Lett. 51, 1766–1769.  Web of Science CSD CrossRef CAS Google Scholar
First citationZhu, Q. & Lu, Y. (2009). Aust. J. Chem. 62, 951–955.  Web of Science CrossRef CAS Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds