organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Di­ethyl 4,4′-(3,6-dioxa­octane-1,8-diyl­di­oxy)dibenzoate

aSchool of Chemistry and Chemical Engeneering, Guangxi University, Guangxi 530004, People's Republic of China
*Correspondence e-mail: mzmz2009@sohu.com

(Received 18 December 2011; accepted 4 February 2012; online 17 February 2012)

The title compound, C24H30O8, was obtained by reaction of ethyl 4-hy­droxy­benzoate with 1,2-dichloro­ethane. The mol­ecule occupies a crystallographic inversion center, with its central ethyl­ene bridge in an anti conformation. The other ethyl­ene bridge has a gauche conformation, with the corresponding O—C—C—O torsion angle being 74.2 (1)°. The benzene rings are almost coplanar with the adjacent eth­oxy­carbonyl groups, with an r.m.s. deviation of 0.078 Å.

Related literature

For the synthesis, structures and applications of diesters, see Hou & Kan (2007[Hou, L.-M. & Kan, Y.-H. (2007). Acta Cryst. E63, o2157-o2158.]); Tashiro et al. (1990[Tashiro, K., Hou, J., Kobayashi, M. & Inoue, T. (1990). J. Am. Chem. Soc. 112, 8273-8279.]); Zhang et al. (2007[Zhang, L.-P., Jia, Z.-F., Wei, G.-H. & Liu, Y.-Y. (2007). Acta Cryst. E63, o4674.]). For binding properties and applications of diesters, see: Chen & Liu (2002[Chen, X. & Liu, G. (2002). Chem. Eur. J. 8, 4811-4817.]). For the synthesis of the title compound, see: Ma & Liu (2002[Ma, Z. & Liu, S. X. (2002). Chin. J. Struct. Chem. 21, 533-537.]); Ma & Cao (2011[Ma, Z. & Cao, Y. (2011). Acta Cryst. E67, o1503.]); Ma & Yang, (2011[Ma, Z. & Yang, H. (2011). Acta Cryst. E67, o1623.]). For standard bond lengths, see: Allen et al. (1987[Allen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1-19.]).

[Scheme 1]

Experimental

Crystal data
  • C24H30O8

  • Mr = 446.48

  • Monoclinic, P 21 /c

  • a = 9.2471 (17) Å

  • b = 12.530 (2) Å

  • c = 13.275 (2) Å

  • β = 131.528 (10)°

  • V = 1151.5 (3) Å3

  • Z = 2

  • Mo Kα radiation

  • μ = 0.10 mm−1

  • T = 298 K

  • 0.46 × 0.41 × 0.39 mm

Data collection
  • Bruker SMART CCD area-detector diffractometer

  • Absorption correction: multi-scan (SADABS; Sheldrick, 1996[Sheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.]) Tmin = 0.957, Tmax = 0.963

  • 16767 measured reflections

  • 5154 independent reflections

  • 2879 reflections with I > 2σ(I)

  • Rint = 0.028

Refinement
  • R[F2 > 2σ(F2)] = 0.051

  • wR(F2) = 0.164

  • S = 1.05

  • 5154 reflections

  • 146 parameters

  • H-atom parameters constrained

  • Δρmax = 0.34 e Å−3

  • Δρmin = −0.23 e Å−3

Data collection: SMART (Bruker, 2001[Bruker (2001). SMART. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2002[Bruker (2002). SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); software used to prepare material for publication: SHELXL97.

Supporting information


Comment top

This paper represents a part of our continuing study on the synthesis and structural characterization of dialdehydes and diesters (Ma & Liu, 2002; Ma & Cao, 2011a; Ma & Yang, 2011b). We are interested in utilization of these compounds as precusors for the synthesis of macrocyclic or macrobicyclic compounds, and for manufacturing of different coordination topologies (Chen & Liu 2002) for various applications (Hou & Kan, 2007; Tashiro et al., 1990; Zhang et al., 2007). We report here the X-ray structure of a new diester compound (Fig. 1) along with elemental analysis and IR data. All bond lengths are within normal ranges (Allen et al., 1987). The two aromatic rings are parallel to each other because of the molecular symmetry.

Related literature top

For the synthesis, structures and applications of diesters, see Hou & Kan (2007); Tashiro et al. (1990); Zhang et al. (2007). For binding properties and applications of diesters, see: Chen & Liu (2002). For the synthesis of the title compound, see: Ma & Liu (2002); Ma & Cao (2011); Ma & Yang, (2011). For standard bond lengths, see: Allen et al. (1987).

Experimental top

The title compound was obtained by the reaction of ethyl 4-hydroxybenzoate with 1,2-bis(2-chloro-ethoxy)ethane in N,N'-dimethylformamide (DMF) in the presence of K2CO3 according to a reported procedure (Ma & Liu, 2002; Ma & Cao, 2011; Ma & Yang, 2011). In a 100 cm3 flask fitted with a funnel, ethyl 4-hydroxybenzoate (8.3 g, 50 mM) and potassium carbonate (14 g, 100 mM) were mixed in 50 cm3 of DMF. A stoichiometric quantity of 1,2-bis(2-chloro-ethoxy)ethane (4.7 g, 25 mM) dissolved in 20 cm3 of DMF has been added dropwise to this solution for a period of one hour with continuous stirring. The mixture was then stirred for 24 h at 353 K. The solution was concentrated under reduced pressure and the white solid formed by adding a large quantity of water (200 cm3) was filtered off and recrystallized from ethanol and decolored with activated carbon. A colorless solid was obtained (Yield 80 %, m.p: 337–339 K). Anal. Calcd. for [C24H30O8](C2H6O)1/2 (%): C, 63.95; H, 7.08; found: C, 64.23; H, 6.87; IR (KBr), (cm-1): 2938 (w), 1707, (s, C=O), 1606, 1513, 1466 (s, C=C of aryl), 1281, 1253, 1175, 1131, 1106 (CH2—O—CH2), 1066, 1048, 1014, 929-653, (Ar—H). Slow evaporation of a solution of the title compound in ethanol and dichloromethane (1:1) led to the formation of colorless crystals, which were suitable for X-ray characterization.

Refinement top

All H atoms were positioned geometrically and refined using riding and rotating model with C—H = 0.93 - 0.97 Å, with Uiso(H) = 1.5 times Ueq(C) for methyl H atoms and Uiso(H) = 1.2 times Ueq(C) for all other H atoms.

Computing details top

Data collection: SMART (Bruker, 2001); cell refinement: SAINT (Bruker, 2002); data reduction: SAINT (Bruker, 2002); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXL97 (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. The molecular structure of the title compound with the atom numbering scheme. Displacement ellipsoids are drawn at the 50% probability level. H atoms are presented as small spheres of arbitrary radius.
ethyl 4-[2-(2-{2-[4-(ethoxycarbonyl)phenoxy]ethoxy}ethoxy)ethoxy]benzoate top
Crystal data top
C24H30O8F(000) = 476
Mr = 446.48Dx = 1.288 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ybcCell parameters from 16767 reflections
a = 9.2471 (17) Åθ = 2.6–35.5°
b = 12.530 (2) ŵ = 0.10 mm1
c = 13.275 (2) ÅT = 298 K
β = 131.528 (10)°Prism, colorless
V = 1151.5 (3) Å30.46 × 0.41 × 0.39 mm
Z = 2
Data collection top
Bruker SMART CCD area-detector
diffractometer
5154 independent reflections
Radiation source: fine-focus sealed tube2879 reflections with I > 2σ(I)
Graphite Monochromator monochromatorRint = 0.028
Detector resolution: 0 pixels mm-1θmax = 35.5°, θmin = 2.6°
phi and ω scansh = 1515
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
k = 2020
Tmin = 0.957, Tmax = 0.963l = 2120
16767 measured reflections
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.051Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.164H-atom parameters constrained
S = 1.05 w = 1/[σ2(Fo2) + (0.0674P)2 + 0.1605P]
where P = (Fo2 + 2Fc2)/3
5154 reflections(Δ/σ)max < 0.001
146 parametersΔρmax = 0.34 e Å3
0 restraintsΔρmin = 0.23 e Å3
Crystal data top
C24H30O8V = 1151.5 (3) Å3
Mr = 446.48Z = 2
Monoclinic, P21/cMo Kα radiation
a = 9.2471 (17) ŵ = 0.10 mm1
b = 12.530 (2) ÅT = 298 K
c = 13.275 (2) Å0.46 × 0.41 × 0.39 mm
β = 131.528 (10)°
Data collection top
Bruker SMART CCD area-detector
diffractometer
5154 independent reflections
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
2879 reflections with I > 2σ(I)
Tmin = 0.957, Tmax = 0.963Rint = 0.028
16767 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0510 restraints
wR(F2) = 0.164H-atom parameters constrained
S = 1.05Δρmax = 0.34 e Å3
5154 reflectionsΔρmin = 0.23 e Å3
146 parameters
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > 2sigma(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
O10.82218 (13)0.56947 (7)0.25960 (9)0.0452 (2)
O20.61141 (15)0.54988 (8)0.28929 (11)0.0530 (3)
O30.42322 (12)0.15018 (7)0.07878 (8)0.0403 (2)
O40.11518 (12)0.04803 (7)0.33477 (8)0.0406 (2)
C10.68021 (16)0.51813 (9)0.24305 (12)0.0374 (2)
C20.61826 (15)0.41940 (9)0.16212 (11)0.0341 (2)
C30.68284 (16)0.39335 (10)0.09580 (12)0.0379 (2)
H3A0.77240.43700.10510.045*
C40.61502 (17)0.30326 (10)0.01627 (12)0.0392 (3)
H4A0.65820.28680.02830.047*
C50.48191 (15)0.23687 (9)0.00255 (11)0.0332 (2)
C60.41928 (18)0.26088 (10)0.07013 (13)0.0418 (3)
H6A0.33290.21590.06310.050*
C70.48635 (18)0.35259 (10)0.14845 (13)0.0421 (3)
H7A0.44230.36950.19230.051*
C80.27474 (17)0.08362 (10)0.10606 (11)0.0384 (2)
H8A0.16160.12610.14240.046*
H8B0.31990.05000.02370.046*
C90.22479 (18)0.00033 (10)0.20575 (11)0.0399 (3)
H9A0.34200.03050.17910.048*
H9B0.15050.05630.20860.048*
C100.06051 (19)0.02821 (10)0.43318 (12)0.0441 (3)
H10A0.01320.08520.43610.053*
H10B0.17430.05900.41190.053*
C110.8867 (2)0.67038 (10)0.33238 (13)0.0460 (3)
H10.77650.70840.30880.055*
H20.94330.71410.30600.055*
C121.0324 (2)0.65276 (11)0.48130 (15)0.0538 (3)
H31.07560.72040.52660.081*
H41.14050.61400.50460.081*
H50.97450.61260.50820.081*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
O10.0496 (5)0.0386 (4)0.0516 (5)0.0099 (4)0.0354 (5)0.0108 (4)
O20.0629 (6)0.0488 (5)0.0639 (6)0.0099 (4)0.0490 (6)0.0171 (4)
O30.0443 (4)0.0400 (4)0.0390 (4)0.0081 (3)0.0286 (4)0.0109 (3)
O40.0449 (4)0.0384 (4)0.0283 (4)0.0018 (3)0.0200 (4)0.0060 (3)
C10.0387 (5)0.0340 (5)0.0365 (6)0.0004 (4)0.0237 (5)0.0012 (4)
C20.0342 (5)0.0336 (5)0.0318 (5)0.0002 (4)0.0207 (5)0.0015 (4)
C30.0350 (5)0.0391 (6)0.0418 (6)0.0050 (4)0.0265 (5)0.0048 (5)
C40.0398 (6)0.0429 (6)0.0419 (6)0.0015 (5)0.0301 (5)0.0058 (5)
C50.0337 (5)0.0334 (5)0.0279 (5)0.0001 (4)0.0184 (4)0.0018 (4)
C60.0493 (6)0.0420 (6)0.0451 (6)0.0120 (5)0.0359 (6)0.0090 (5)
C70.0505 (7)0.0439 (6)0.0438 (6)0.0073 (5)0.0362 (6)0.0085 (5)
C80.0412 (6)0.0407 (6)0.0307 (5)0.0063 (5)0.0227 (5)0.0054 (4)
C90.0435 (6)0.0361 (6)0.0325 (5)0.0030 (5)0.0220 (5)0.0029 (4)
C100.0472 (6)0.0412 (6)0.0331 (6)0.0003 (5)0.0220 (5)0.0096 (5)
C110.0531 (7)0.0315 (6)0.0506 (7)0.0063 (5)0.0333 (6)0.0033 (5)
C120.0563 (8)0.0441 (7)0.0519 (8)0.0086 (6)0.0320 (7)0.0073 (6)
Geometric parameters (Å, º) top
O1—C11.3428 (14)C6—H6A0.9300
O1—C111.4573 (15)C7—H7A0.9300
O2—C11.2072 (14)C8—C91.4978 (16)
O3—C51.3650 (13)C8—H8A0.9700
O3—C81.4327 (14)C8—H8B0.9700
O4—C101.4140 (13)C9—H9A0.9700
O4—C91.4199 (14)C9—H9B0.9700
C1—C21.4821 (15)C10—C10i1.506 (3)
C2—C71.3886 (16)C10—H10A0.9700
C2—C31.3912 (16)C10—H10B0.9700
C3—C41.3800 (16)C11—C121.497 (2)
C3—H3A0.9300C11—H10.9700
C4—C51.3939 (16)C11—H20.9700
C4—H4A0.9300C12—H30.9600
C5—C61.3856 (15)C12—H40.9600
C6—C71.3896 (17)C12—H50.9600
C1—O1—C11116.75 (10)O3—C8—H8B110.1
C5—O3—C8118.36 (9)C9—C8—H8B110.1
C10—O4—C9111.23 (9)H8A—C8—H8B108.4
O2—C1—O1123.13 (11)O4—C9—C8109.14 (10)
O2—C1—C2124.26 (11)O4—C9—H9A109.9
O1—C1—C2112.62 (10)C8—C9—H9A109.9
C7—C2—C3118.97 (10)O4—C9—H9B109.9
C7—C2—C1118.80 (10)C8—C9—H9B109.9
C3—C2—C1122.19 (10)H9A—C9—H9B108.3
C4—C3—C2120.53 (10)O4—C10—C10i107.61 (12)
C4—C3—H3A119.7O4—C10—H10A110.2
C2—C3—H3A119.7C10i—C10—H10A110.2
C3—C4—C5120.15 (10)O4—C10—H10B110.2
C3—C4—H4A119.9C10i—C10—H10B110.2
C5—C4—H4A119.9H10A—C10—H10B108.5
O3—C5—C6124.56 (10)O1—C11—C12111.23 (11)
O3—C5—C4115.59 (9)O1—C11—H1109.4
C6—C5—C4119.85 (10)C12—C11—H1109.4
C5—C6—C7119.55 (10)O1—C11—H2109.4
C5—C6—H6A120.2C12—C11—H2109.4
C7—C6—H6A120.2H1—C11—H2108.0
C2—C7—C6120.93 (10)C11—C12—H3109.5
C2—C7—H7A119.5C11—C12—H4109.5
C6—C7—H7A119.5H3—C12—H4109.5
O3—C8—C9108.14 (9)C11—C12—H5109.5
O3—C8—H8A110.1H3—C12—H5109.5
C9—C8—H8A110.1H4—C12—H5109.5
C11—O1—C1—O22.72 (18)C3—C4—C5—C60.70 (18)
C11—O1—C1—C2177.11 (10)O3—C5—C6—C7178.83 (11)
O2—C1—C2—C76.63 (18)C4—C5—C6—C71.60 (19)
O1—C1—C2—C7173.54 (10)C3—C2—C7—C60.10 (19)
O2—C1—C2—C3171.16 (12)C1—C2—C7—C6177.96 (11)
O1—C1—C2—C38.67 (16)C5—C6—C7—C21.3 (2)
C7—C2—C3—C40.82 (18)C5—O3—C8—C9175.32 (9)
C1—C2—C3—C4176.96 (11)C10—O4—C9—C8178.60 (10)
C2—C3—C4—C50.53 (18)O3—C8—C9—O474.22 (12)
C8—O3—C5—C65.50 (17)C9—O4—C10—C10i177.97 (13)
C8—O3—C5—C4174.91 (10)C1—O1—C11—C1283.70 (14)
C3—C4—C5—O3179.70 (10)
Symmetry code: (i) x, y, z+1.

Experimental details

Crystal data
Chemical formulaC24H30O8
Mr446.48
Crystal system, space groupMonoclinic, P21/c
Temperature (K)298
a, b, c (Å)9.2471 (17), 12.530 (2), 13.275 (2)
β (°) 131.528 (10)
V3)1151.5 (3)
Z2
Radiation typeMo Kα
µ (mm1)0.10
Crystal size (mm)0.46 × 0.41 × 0.39
Data collection
DiffractometerBruker SMART CCD area-detector
diffractometer
Absorption correctionMulti-scan
(SADABS; Sheldrick, 1996)
Tmin, Tmax0.957, 0.963
No. of measured, independent and
observed [I > 2σ(I)] reflections
16767, 5154, 2879
Rint0.028
(sin θ/λ)max1)0.818
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.051, 0.164, 1.05
No. of reflections5154
No. of parameters146
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.34, 0.23

Computer programs: SMART (Bruker, 2001), SAINT (Bruker, 2002), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), SHELXTL (Sheldrick, 2008).

 

Acknowledgements

The authors are grateful for financial support from the Scientific Fund of Guangxi University (grant No. X061144).

References

First citationAllen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1–19.  CrossRef Web of Science Google Scholar
First citationBruker (2001). SMART. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationBruker (2002). SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationChen, X. & Liu, G. (2002). Chem. Eur. J. 8, 4811–4817.  CrossRef PubMed CAS Google Scholar
First citationHou, L.-M. & Kan, Y.-H. (2007). Acta Cryst. E63, o2157–o2158.  Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
First citationMa, Z. & Cao, Y. (2011). Acta Cryst. E67, o1503.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationMa, Z. & Liu, S. X. (2002). Chin. J. Struct. Chem. 21, 533–537.  CAS Google Scholar
First citationMa, Z. & Yang, H. (2011). Acta Cryst. E67, o1623.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationSheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationTashiro, K., Hou, J., Kobayashi, M. & Inoue, T. (1990). J. Am. Chem. Soc. 112, 8273–8279.  CSD CrossRef CAS Web of Science Google Scholar
First citationZhang, L.-P., Jia, Z.-F., Wei, G.-H. & Liu, Y.-Y. (2007). Acta Cryst. E63, o4674.  Web of Science CSD CrossRef IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds