organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

DL-Methyl 4-(4-meth­­oxy­phen­yl)-2,7,7-tri­methyl-5-oxo-1,4,5,6,7,8-hexa­hydro­quinoline-3-carboxyl­ate

aInstitute of Higher Vocational Education, Tongliao Vocational College, Inner Mongolia Autonomous Region Tongliao, Huolinhe Street No. 152, 028000, People's Republic of China
*Correspondence e-mail: zhaojmtl@hotmail.com

(Received 9 January 2012; accepted 10 February 2012; online 17 February 2012)

In the title compound, C21H25NO4, the dihydropyridine ring adopts a flattened boat conformation. The N atom and the sp3 C atom deviate in the same direction from the mean plane of the other four C atoms, by 0.269 (6) and 0.111 (6) Å, respectively. This mean plane is inclined to the 4-methoxy­phenyl ring by 87.3 (5)°. The cyclohexenone ring has a sofa conformation with the C atom bearing the methyl groups deviating from the mean plane through the other five C atoms by 0.628 (6) Å. There is a short C—H⋯O hydrogen bond in the molecule. In the crystal, molecules are linked by an N—H⋯O hydrogen bond to form chains propagating along the c-axis direction.

Related literature

For related structures and hydrogen-bond definition, see: Yang et al. (2010[Yang, X.-H., Zhou, Y.-H., Zhang, M. & Song, X. (2010). Acta Cryst. E66, o2767.]). For the syntheis method, see: Tamaddon et al. (2010[Tamaddon, F., Razmi, A. & Jafari, A. (2010). Tetrahedron Lett. 51, 1187-1189.]); Yang et al. (2011[Yang, X. H., Zhang, P. H., Zhou, Y. H., Liu, C. G., Lin, X. Y. & Cui, J. F. (2011). Arkivoc, pp. 327-337.]). For related literature about the biological activity of 1,4-dihydropyridines and their derivatives, see: Davies et al. (2005[Davies, D. T., Markwell, R. E., Pearson, N. D. & Takle, A. K. (2005). US Patent 6911442.]); Rose & Draeger (1992[Rose, U. & Draeger, M. (1992). J. Med. Chem. 35, 2238-2243.]); Warrior et al. (2005[Warrior, P., Heiman, D. F., Fugiel, J. A. & Petracek, P. D. (2005). WO Patent 2005060748.]).

[Scheme 1]

Experimental

Crystal data
  • C21H25NO4

  • Mr = 355.42

  • Tetragonal, [P \overline 42_1 c ]

  • a = 16.058 (2) Å

  • c = 14.343 (3) Å

  • V = 3698.5 (11) Å3

  • Z = 8

  • Mo Kα radiation

  • μ = 0.09 mm−1

  • T = 293 K

  • 0.20 × 0.10 × 0.10 mm

Data collection
  • Nonius CAD-4 diffractometer

  • Absorption correction: ψ scan (North et al., 1968[North, A. C. T., Phillips, D. C. & Mathews, F. S. (1968). Acta Cryst. A24, 351-359.]). Tmin = 0.983, Tmax = 0.991

  • 6166 measured reflections

  • 3353 independent reflections

  • 1856 reflections with I > 2σ(I)

  • Rint = 0.069

  • 3 standard reflections every 200 reflections intensity decay: 1%

Refinement
  • R[F2 > 2σ(F2)] = 0.066

  • wR(F2) = 0.161

  • S = 1.01

  • 3353 reflections

  • 235 parameters

  • H-atom parameters constrained

  • Δρmax = 0.21 e Å−3

  • Δρmin = −0.19 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
N—H0A⋯O1i 0.86 2.02 2.868 (4) 169
C12—H12A⋯O3 0.96 2.17 2.895 (6) 131
Symmetry code: (i) [y-{\script{1\over 2}}, x+{\script{1\over 2}}, z+{\script{1\over 2}}].

Data collection: CAD-4 EXPRESS (Enraf–Nonius, 1994[Enraf-Nonius (1994). CAD-4 EXPRESS. Enraf-Nonius, Delft, The Netherlands.]); cell refinement: CAD-4 EXPRESS; data reduction: XCAD4 (Harms & Wocadlo, 1996[Harms, K. & Wocadlo, S. (1996). XCAD4. University of Marburg, Germany.]); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); software used to prepare material for publication: SHELXTL.

Supporting information


Comment top

1,4-Dihydropyridines and their derivatives are an important class of pharmaceutical compounds with a broad spectrum of biological activities. For example, they have calcium modulatory properties (Rose & Draeger 1992), antibacterial (Davies et al. 2005), fungicidal (Warrior et al. 2005), antioxidant activities (Yang et al. 2011) etc. Therefore, significant interest has been attracted to find out convenient and facile approaches for the synthesis of 1,4-dihydropyridines. In view of the exhibited biological activitiy, precise single-crystal structure determinations of these derivatives are expected to provide insights in their design and function.

Related literature top

For related structures and hydrogen-bond definition, see: Yang et al. (2010). For the syntheis method, see: Tamaddon et al. (2010); Yang et al. (2011). For related literature on the biological activities of 1,4-dihydropyridines and their derivatives, see: Davies et al. (2005); Rose & Draeger (1992); Warrior et al. (2005).

Experimental top

The title compound was obtained according to the reported method (Tamaddon et al., 2010). A mixture of 4-Methoxybenzaldehyde (2 mmol), methyl acetoacetate (2 mmol), 5,5-dimethylcyclohexane-1,3-dione (2 mmol) and NH4HCO3 (2 mmol) was stirred in water (2 ml) under reflux. After completion of the reaction (TLC monitoring), the mixture was diluted with cold water (20 ml) and filtered to obtain the precipitated product which was further purified by recrystallization. Single crystals suitable for X-ray diffraction were obtained by slow evaporation of an ethanol solution. IR (KBr) v/cm-1: 3181, 3067, 2960, 1703, 1604; 1H NMR (300 MHz, DMSO-d6) δ/p.p.m.: 9.07 (s, 1H, NH), 7.04(d, 2H, ArH, J = 8.4 Hz), 6.74 (d, 2H, ArH, J = 8.4 Hz), 4.80 (s, 1H, H4), 3.67, 3.53 (2 s, 6H, 2OCH3), 1.92–2.51 (m, 7H, cyclohexaneone), 1.00, 0.84 (2 s, 6H, 2CH3); MS (ESI) m/z: 378.2 [M+Na]+, 394.2 [M+K]+

Refinement top

All H atoms were located in a difference map and refined isotropically. The N—H distance was constrained to 0.86 Å. All other H atoms were positioned geometrically and treated as riding, with C—H distances in the range 0.93–0.96 Å, and Uiso(H) = 1.2 or 1.5 times Ueq(C). The methyl groups were allowed to rotate during the refinement.

Computing details top

Data collection: CAD-4 EXPRESS (Enraf–Nonius, 1994); cell refinement: CAD-4 EXPRESS (Enraf–Nonius, 1994); data reduction: XCAD4 (Harms & Wocadlo, 1996); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. Molecular structure of the title compound, showing the atom-numbering scheme. Displacement ellipsoids are drawn at the 50% probability level.
[Figure 2] Fig. 2. The packing of the title compound, viewed along the a axis. Dashed lines indicate hydrogen bonds.
DL-Methyl 4-(4-methoxyphenyl)-2,7,7-trimethyl-5-oxo- 1,4,5,6,7,8-hexahydroquinoline-3-carboxylate top
Crystal data top
C21H25NO4Dx = 1.277 Mg m3
Mr = 355.42Mo Kα radiation, λ = 0.71073 Å
Tetragonal, P421cCell parameters from 25 reflections
Hall symbol: P -4 2nθ = 9–12°
a = 16.058 (2) ŵ = 0.09 mm1
c = 14.343 (3) ÅT = 293 K
V = 3698.5 (11) Å3Block, light yellow
Z = 80.20 × 0.10 × 0.10 mm
F(000) = 1520
Data collection top
Nonius CAD-4
diffractometer
1856 reflections with I > 2σ(I)
Radiation source: fine-focus sealed tubeRint = 0.069
Graphite monochromatorθmax = 25.4°, θmin = 1.8°
ω/2θ scansh = 019
Absorption correction: ψ scan
For Semi-empirical (using intensity measurements) absorption, see: (North et al., 1968).
k = 1019
Tmin = 0.983, Tmax = 0.991l = 017
6166 measured reflections3 standard reflections every 200 reflections
3353 independent reflections intensity decay: 1%
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.066Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.161H-atom parameters constrained
S = 1.01 w = 1/[σ2(Fo2) + (0.060P)2]
where P = (Fo2 + 2Fc2)/3
3353 reflections(Δ/σ)max < 0.001
235 parametersΔρmax = 0.21 e Å3
0 restraintsΔρmin = 0.19 e Å3
Crystal data top
C21H25NO4Z = 8
Mr = 355.42Mo Kα radiation
Tetragonal, P421cµ = 0.09 mm1
a = 16.058 (2) ÅT = 293 K
c = 14.343 (3) Å0.20 × 0.10 × 0.10 mm
V = 3698.5 (11) Å3
Data collection top
Nonius CAD-4
diffractometer
1856 reflections with I > 2σ(I)
Absorption correction: ψ scan
For Semi-empirical (using intensity measurements) absorption, see: (North et al., 1968).
Rint = 0.069
Tmin = 0.983, Tmax = 0.9913 standard reflections every 200 reflections
6166 measured reflections intensity decay: 1%
3353 independent reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0660 restraints
wR(F2) = 0.161H-atom parameters constrained
S = 1.01Δρmax = 0.21 e Å3
3353 reflectionsΔρmin = 0.19 e Å3
235 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
N0.4727 (3)0.8718 (2)0.5450 (2)0.0371 (11)
H0A0.45650.87570.60200.044*
O10.4081 (2)0.9125 (2)0.2288 (2)0.0550 (10)
C10.3498 (3)0.9515 (3)0.5073 (3)0.0404 (13)
H1A0.36951.00680.52340.049*
H1B0.32650.92670.56310.049*
O20.3890 (3)0.5017 (2)0.2656 (3)0.0583 (10)
C20.2815 (3)0.9593 (3)0.4341 (3)0.0344 (12)
O30.6966 (2)0.7414 (3)0.4707 (3)0.0709 (13)
C30.3222 (3)0.9807 (3)0.3409 (3)0.0406 (13)
H3A0.27990.97930.29260.049*
H3B0.34351.03710.34410.049*
O40.6735 (2)0.7892 (2)0.3268 (2)0.0474 (10)
C40.3928 (3)0.9230 (3)0.3128 (3)0.0357 (13)
C50.4399 (3)0.8842 (3)0.3850 (3)0.0313 (12)
C60.4217 (3)0.9006 (3)0.4758 (3)0.0339 (12)
C70.5083 (3)0.8241 (3)0.3582 (3)0.0353 (12)
H7A0.53780.84670.30400.042*
C80.5700 (3)0.8157 (3)0.4383 (3)0.0331 (12)
C90.5500 (3)0.8365 (3)0.5264 (3)0.0343 (12)
C100.2205 (3)1.0282 (3)0.4621 (4)0.0581 (16)
H10A0.19521.01450.52070.087*
H10B0.17811.03340.41520.087*
H10C0.24991.08000.46780.087*
C110.2338 (4)0.8785 (3)0.4250 (4)0.0589 (16)
H11A0.27150.83460.40790.088*
H11B0.19180.88430.37790.088*
H11C0.20800.86520.48350.088*
C120.6027 (3)0.8290 (3)0.6124 (3)0.0445 (14)
H12A0.65560.80530.59620.067*
H12B0.57520.79380.65680.067*
H12C0.61110.88320.63910.067*
C130.4736 (3)0.7388 (3)0.3322 (3)0.0339 (12)
C140.4306 (3)0.6932 (3)0.3972 (3)0.0427 (14)
H14A0.42080.71650.45550.051*
C150.4013 (3)0.6140 (3)0.3791 (3)0.0455 (14)
H15A0.37290.58430.42480.055*
C160.4147 (3)0.5795 (3)0.2921 (3)0.0402 (13)
C170.4554 (3)0.6252 (3)0.2247 (3)0.0458 (14)
H17A0.46300.60280.16550.055*
C180.4852 (3)0.7040 (3)0.2445 (3)0.0442 (14)
H18A0.51330.73390.19870.053*
C190.3666 (4)0.4456 (3)0.3372 (4)0.0629 (18)
H19A0.34910.39380.31010.094*
H19B0.32170.46880.37300.094*
H19C0.41370.43610.37700.094*
C200.6523 (3)0.7785 (3)0.4173 (3)0.0394 (13)
C210.7556 (3)0.7591 (4)0.3010 (4)0.0569 (16)
H21A0.76530.77000.23610.085*
H21B0.75890.70030.31230.085*
H21C0.79700.78720.33760.085*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
N0.046 (3)0.048 (3)0.0169 (19)0.002 (2)0.0004 (18)0.0006 (19)
O10.081 (3)0.063 (3)0.0214 (16)0.020 (2)0.0000 (19)0.0002 (18)
C10.049 (3)0.041 (3)0.032 (3)0.008 (3)0.005 (2)0.006 (2)
O20.072 (3)0.044 (2)0.060 (2)0.017 (2)0.007 (2)0.004 (2)
C20.040 (3)0.027 (3)0.036 (3)0.005 (3)0.000 (3)0.003 (2)
O30.051 (3)0.109 (4)0.052 (2)0.027 (2)0.004 (2)0.023 (3)
C30.045 (3)0.033 (3)0.043 (3)0.005 (3)0.000 (3)0.008 (3)
O40.044 (2)0.062 (2)0.036 (2)0.007 (2)0.0093 (17)0.0025 (19)
C40.045 (3)0.034 (3)0.027 (3)0.000 (3)0.001 (2)0.001 (2)
C50.035 (3)0.031 (3)0.029 (3)0.000 (2)0.007 (2)0.000 (2)
C60.045 (3)0.032 (3)0.025 (2)0.003 (3)0.001 (2)0.002 (2)
C70.035 (3)0.049 (3)0.022 (2)0.003 (3)0.001 (2)0.003 (2)
C80.040 (3)0.035 (3)0.024 (2)0.003 (2)0.001 (2)0.002 (2)
C90.040 (3)0.034 (3)0.029 (3)0.008 (3)0.004 (2)0.007 (2)
C100.054 (4)0.066 (4)0.054 (4)0.013 (3)0.007 (3)0.008 (3)
C110.056 (4)0.063 (4)0.058 (4)0.006 (3)0.003 (3)0.011 (3)
C120.050 (4)0.053 (3)0.031 (3)0.001 (3)0.007 (3)0.002 (2)
C130.030 (3)0.043 (3)0.028 (3)0.001 (2)0.000 (2)0.005 (2)
C140.053 (4)0.047 (4)0.028 (3)0.004 (3)0.004 (3)0.004 (3)
C150.047 (4)0.046 (4)0.043 (3)0.008 (3)0.003 (3)0.006 (3)
C160.039 (3)0.036 (3)0.046 (3)0.005 (3)0.012 (3)0.004 (3)
C170.059 (4)0.049 (4)0.029 (3)0.004 (3)0.005 (3)0.007 (3)
C180.049 (3)0.058 (4)0.026 (3)0.004 (3)0.004 (2)0.001 (3)
C190.063 (4)0.045 (4)0.081 (4)0.007 (3)0.013 (4)0.002 (3)
C200.042 (3)0.043 (3)0.033 (3)0.006 (3)0.002 (3)0.000 (3)
C210.037 (3)0.073 (4)0.061 (4)0.007 (3)0.014 (3)0.006 (3)
Geometric parameters (Å, º) top
N—C61.368 (6)C9—C121.501 (6)
N—C91.389 (6)C10—H10A0.9600
N—H0A0.8600C10—H10B0.9600
O1—C41.240 (5)C10—H10C0.9600
C1—C61.485 (7)C11—H11A0.9600
C1—C21.523 (6)C11—H11B0.9600
C1—H1A0.9700C11—H11C0.9600
C1—H1B0.9700C12—H12A0.9600
O2—C161.370 (6)C12—H12B0.9600
O2—C191.412 (6)C12—H12C0.9600
C2—C111.512 (7)C13—C141.371 (6)
C2—C31.528 (6)C13—C181.390 (6)
C2—C101.532 (6)C14—C151.380 (7)
O3—C201.203 (5)C14—H14A0.9300
C3—C41.518 (6)C15—C161.382 (6)
C3—H3A0.9700C15—H15A0.9300
C3—H3B0.9700C16—C171.379 (7)
O4—C201.352 (5)C17—C181.382 (7)
O4—C211.453 (5)C17—H17A0.9300
C4—C51.427 (6)C18—H18A0.9300
C5—C61.360 (6)C19—H19A0.9600
C5—C71.512 (7)C19—H19B0.9600
C7—C81.523 (6)C19—H19C0.9600
C7—C131.524 (7)C21—H21A0.9600
C7—H7A0.9800C21—H21B0.9600
C8—C91.346 (6)C21—H21C0.9600
C8—C201.482 (7)
C6—N—C9122.2 (4)H10A—C10—H10C109.5
C6—N—H0A118.9H10B—C10—H10C109.5
C9—N—H0A118.9C2—C11—H11A109.5
C6—C1—C2113.3 (4)C2—C11—H11B109.5
C6—C1—H1A108.9H11A—C11—H11B109.5
C2—C1—H1A108.9C2—C11—H11C109.5
C6—C1—H1B108.9H11A—C11—H11C109.5
C2—C1—H1B108.9H11B—C11—H11C109.5
H1A—C1—H1B107.7C9—C12—H12A109.5
C16—O2—C19117.2 (4)C9—C12—H12B109.5
C11—C2—C1110.7 (4)H12A—C12—H12B109.5
C11—C2—C3109.5 (4)C9—C12—H12C109.5
C1—C2—C3108.2 (4)H12A—C12—H12C109.5
C11—C2—C10108.6 (4)H12B—C12—H12C109.5
C1—C2—C10109.9 (4)C14—C13—C18117.9 (5)
C3—C2—C10109.9 (4)C14—C13—C7119.8 (4)
C4—C3—C2114.5 (4)C18—C13—C7122.2 (4)
C4—C3—H3A108.6C13—C14—C15122.4 (5)
C2—C3—H3A108.6C13—C14—H14A118.8
C4—C3—H3B108.6C15—C14—H14A118.8
C2—C3—H3B108.6C14—C15—C16119.1 (5)
H3A—C3—H3B107.6C14—C15—H15A120.4
C20—O4—C21115.5 (4)C16—C15—H15A120.4
O1—C4—C5122.7 (5)O2—C16—C17115.7 (5)
O1—C4—C3119.3 (4)O2—C16—C15124.7 (5)
C5—C4—C3118.0 (4)C17—C16—C15119.5 (5)
C6—C5—C4119.8 (4)C18—C17—C16120.5 (5)
C6—C5—C7121.6 (4)C18—C17—H17A119.7
C4—C5—C7118.6 (4)C16—C17—H17A119.7
C5—C6—N120.0 (4)C17—C18—C13120.5 (5)
C5—C6—C1124.4 (4)C17—C18—H18A119.8
N—C6—C1115.5 (4)C13—C18—H18A119.8
C5—C7—C8109.7 (4)O2—C19—H19A109.5
C5—C7—C13111.8 (4)O2—C19—H19B109.5
C8—C7—C13110.0 (4)H19A—C19—H19B109.5
C5—C7—H7A108.4O2—C19—H19C109.5
C8—C7—H7A108.4H19A—C19—H19C109.5
C13—C7—H7A108.4H19B—C19—H19C109.5
C9—C8—C20120.2 (4)O3—C20—O4121.7 (5)
C9—C8—C7122.1 (4)O3—C20—C8126.7 (4)
C20—C8—C7117.6 (4)O4—C20—C8111.5 (4)
C8—C9—N119.6 (4)O4—C21—H21A109.5
C8—C9—C12128.1 (5)O4—C21—H21B109.5
N—C9—C12112.3 (4)H21A—C21—H21B109.5
C2—C10—H10A109.5O4—C21—H21C109.5
C2—C10—H10B109.5H21A—C21—H21C109.5
H10A—C10—H10B109.5H21B—C21—H21C109.5
C2—C10—H10C109.5
C6—C1—C2—C1173.4 (6)C20—C8—C9—N179.7 (4)
C6—C1—C2—C346.7 (5)C7—C8—C9—N4.2 (7)
C6—C1—C2—C10166.7 (4)C20—C8—C9—C121.6 (8)
C11—C2—C3—C469.0 (5)C7—C8—C9—C12177.7 (5)
C1—C2—C3—C451.8 (5)C6—N—C9—C812.4 (7)
C10—C2—C3—C4171.8 (4)C6—N—C9—C12166.0 (4)
C2—C3—C4—O1152.0 (5)C5—C7—C13—C1461.7 (6)
C2—C3—C4—C529.1 (6)C8—C7—C13—C1460.4 (6)
O1—C4—C5—C6177.8 (5)C5—C7—C13—C18119.6 (5)
C3—C4—C5—C61.0 (7)C8—C7—C13—C18118.3 (5)
O1—C4—C5—C73.5 (8)C18—C13—C14—C152.0 (8)
C3—C4—C5—C7177.7 (4)C7—C13—C14—C15176.8 (5)
C4—C5—C6—N172.0 (4)C13—C14—C15—C160.8 (8)
C7—C5—C6—N9.3 (7)C19—O2—C16—C17164.3 (5)
C4—C5—C6—C15.6 (8)C19—O2—C16—C1516.6 (8)
C7—C5—C6—C1173.0 (5)C14—C15—C16—O2179.8 (5)
C9—N—C6—C59.8 (7)C14—C15—C16—C171.2 (8)
C9—N—C6—C1168.1 (4)O2—C16—C17—C18178.9 (5)
C2—C1—C6—C520.1 (7)C15—C16—C17—C182.0 (8)
C2—C1—C6—N162.1 (4)C16—C17—C18—C130.8 (8)
C6—C5—C7—C822.5 (6)C14—C13—C18—C171.2 (8)
C4—C5—C7—C8158.8 (4)C7—C13—C18—C17177.6 (5)
C6—C5—C7—C1399.8 (5)C21—O4—C20—O34.9 (7)
C4—C5—C7—C1378.9 (5)C21—O4—C20—C8176.4 (4)
C5—C7—C8—C920.0 (6)C9—C8—C20—O323.6 (8)
C13—C7—C8—C9103.3 (5)C7—C8—C20—O3152.7 (5)
C5—C7—C8—C20163.7 (4)C9—C8—C20—O4157.8 (5)
C13—C7—C8—C2072.9 (5)C7—C8—C20—O425.9 (6)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N—H0A···O1i0.862.022.868 (4)169
C12—H12A···O30.962.172.895 (6)131
Symmetry code: (i) y1/2, x+1/2, z+1/2.

Experimental details

Crystal data
Chemical formulaC21H25NO4
Mr355.42
Crystal system, space groupTetragonal, P421c
Temperature (K)293
a, c (Å)16.058 (2), 14.343 (3)
V3)3698.5 (11)
Z8
Radiation typeMo Kα
µ (mm1)0.09
Crystal size (mm)0.20 × 0.10 × 0.10
Data collection
DiffractometerNonius CAD-4
diffractometer
Absorption correctionψ scan
For Semi-empirical (using intensity measurements) absorption, see: (North et al., 1968).
Tmin, Tmax0.983, 0.991
No. of measured, independent and
observed [I > 2σ(I)] reflections
6166, 3353, 1856
Rint0.069
(sin θ/λ)max1)0.604
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.066, 0.161, 1.01
No. of reflections3353
No. of parameters235
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.21, 0.19

Computer programs: CAD-4 EXPRESS (Enraf–Nonius, 1994), XCAD4 (Harms & Wocadlo, 1996), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), SHELXTL (Sheldrick, 2008).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N—H0A···O1i0.862.022.868 (4)169
C12—H12A···O30.962.172.895 (6)131
Symmetry code: (i) y1/2, x+1/2, z+1/2.
 

References

First citationDavies, D. T., Markwell, R. E., Pearson, N. D. & Takle, A. K. (2005). US Patent 6911442.  Google Scholar
First citationEnraf–Nonius (1994). CAD-4 EXPRESS. Enraf–Nonius, Delft, The Netherlands.  Google Scholar
First citationHarms, K. & Wocadlo, S. (1996). XCAD4. University of Marburg, Germany.  Google Scholar
First citationNorth, A. C. T., Phillips, D. C. & Mathews, F. S. (1968). Acta Cryst. A24, 351–359.  CrossRef IUCr Journals Web of Science Google Scholar
First citationRose, U. & Draeger, M. (1992). J. Med. Chem. 35, 2238–2243.  CSD CrossRef PubMed CAS Web of Science Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationTamaddon, F., Razmi, A. & Jafari, A. (2010). Tetrahedron Lett. 51, 1187–1189.  Web of Science CrossRef CAS Google Scholar
First citationWarrior, P., Heiman, D. F., Fugiel, J. A. & Petracek, P. D. (2005). WO Patent 2005060748.  Google Scholar
First citationYang, X. H., Zhang, P. H., Zhou, Y. H., Liu, C. G., Lin, X. Y. & Cui, J. F. (2011). Arkivoc, pp. 327–337.  Google Scholar
First citationYang, X.-H., Zhou, Y.-H., Zhang, M. & Song, X. (2010). Acta Cryst. E66, o2767.  Web of Science CSD CrossRef IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds