organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 68| Part 3| March 2012| Pages o593-o594

Methyl 6-amino-6-oxohexa­noate

aChemistry Research Laboratory, Department of Chemistry, University of Oxford, Mansfield Road, Oxford OX1 3TA, England, and bChemical Crystallography, Chemistry Research Laboratory, Department of Chemistry, University of Oxford, Mansfield Road, Oxford OX1 3TA, England
*Correspondence e-mail: amber.thompson@chem.ox.ac.uk

(Received 18 November 2011; accepted 25 January 2012; online 4 February 2012)

The title compound, C7H13NO3, adopts an approximately planar conformation. The torsion angles in the aliphatic chain between the carbonyl group C atoms range from 172.97 (14) to 179.38 (14)° and the r.m.s. deviation of all non-H atoms is 0.059 Å. The crystal packing is dominated by two strong N—H⋯O hydrogen bonds involving the amide groups and forming R22(8) rings and C(4) chains. Overall, a two-dimensional network parallel to (100) is formed. A weak inter­molecular C—H⋯O inter­action is also present.

Related literature

For the synthesis of the title compound, see: Kulikova et al. (1960[Kulikova, A. E., Zil'berman, E. N. & Sazanova, N. A. (1960). Zh. Obshch. Khim. 30, 2180-2183.]); Nishitani et al. (1982[Nishitani, T., Horikawa, H., Iwasaki, T., Matsumoto, K., Inoue, I. & Miyoshi, M. (1982). J. Org. Chem. 47, 1706-1712.]); Micovic et al. (1988[Micovic, V., Ivanovic, M. D. & Piatak, D. M. (1988). J. Serb. Chem. Soc. 53, 419-426.]). For information on the solid-state characteristics of different polymorphs of adipic acid, see: Fun & Chantrapromma (2009[Fun, H.-K. & Chantrapromma, S. (2009). Acta Cryst. E65, o624.]); Ranganathan et al. (2003[Ranganathan, A., Kulkarni, G. U. & Rao, C. N. R. (2003). J. Phys. Chem. A, 107, 6073-6081.]); Srinivasa Gopalan et al. (1999[Srinivasa Gopalan, R., Kumaradhas, P. & Kulkarni, G. U. (1999). J. Solid State Chem. 148, 129-134.], 2000[Srinivasa Gopalan, R., Kumaradhas, P., Kulkarni, G. U. & Rao, C. N. R. (2000). J. Mol. Struct. 521, 97-106.]); Pfefer & Boistelle (2000[Pfefer, G. & Boistelle, R. (2000). J. Cryst. Growth, 208, 615-622.]); Housty & Hospital (1965[Housty, J. & Hospital, M. (1965). Acta Cryst. 18, 693-697.]); Arevalo & Canut (1961[Arevalo, M. I. & Canut, M. L. (1961). Bol. R. Soc. Esp. Hist. Nat. (Sec. Geol.), 59, 37-40.]); Hirokawa (1950[Hirokawa, S. (1950). Bull. Chem. Soc. Jpn, 23, 91-94.]); Morrison & Robertson (1949[Morrison, J. D. & Robertson, J. M. (1949). J. Chem. Soc. pp. 987-92.]); MacGillavry (1941[MacGillavry, C. H. (1941). Recl Trav. Chim. Pays-Bas, 60, 605-617.]). For details on co-crystals of the title compound, see: Goswami et al. (2010[Goswami, S., Hazra, A. & Fun, H.-K. (2010). J. Inclusion Phenom. 68, 461-466.]); Delori et al. (2008[Delori, A., Suresh, E. & Pedireddi, V. R. (2008). Chem. Eur. J. 14, 6967-6977.]); Bucar et al. (2007[Bucar, D.-K., Henry, R. F., Lou, X., Borchardt, T. B. & Zhang, G. G. Z. (2007). Chem. Commun. pp. 525-527.]); Childs & Hardcastle (2007[Childs, S. L. & Hardcastle, K. I. (2007). Cryst. Growth Des. 7, 1291-1304.]); Duan et al. (2005[Duan, L.-M., Ye, L., Liu, Y.-B., Xie, F.-T., Yu, J.-H. & Xu, J.-Q. (2005). Pol. J. Chem. 79, 1835-1842.]); Li et al. (2001[Li, W., Zhang, J.-P., Tong, M.-L. & Chen, X.-M. (2001). Aust. J. Chem. 54, 213-217.]); Urbanczyk-Lipkowska & Gluzinski (1996[Urbanczyk-Lipkowska, Z. & Gluzinski, P. (1996). Supramol. Chem. 7, 113-118.]). For other reports of adipic acid derivatives, see: Li & Goddard (2002[Li, Y. & Goddard, W. A. (2002). Macromolecules, 35, 8440-8455.]); Seaton & Tremayne (2002[Seaton, C. C. & Tremayne, M. (2002). Chem. Commun. pp. 880-881.]); Hospital & Housty (1966[Hospital, M. & Housty, J. (1966). Acta Cryst. 20, 626-630.]). For uses of the title compound in heterocycle synthesis, see: Jungheim et al. (2005[Jungheim, L. N., McGill, J. M., Trasher, K. J., Herr, R. J. & Muralikrishna, V. (2005). PCT Int. Appl. 2005019184.]); Fukumoto et al. (2007[Fukumoto, S., Matsunaga, N., Ohra, T., Ohyabu, N., Hasui, T., Motoyaji, T., Siedem, C. S., Tang, T. P., Demeese, L. A. & Gauthier, C. (2007). PCT Int. Appl. 2007077961.]). For hydrogen-bond motifs, see: Bernstein et al. (1995[Bernstein, J., Davis, R. E., Shimoni, L. & Chang, N.-L. (1995). Angew. Chem. Int. Ed. Engl. 34, 1555-1573.]). For details of the H-atom treatment, see: Cooper et al. (2010[Cooper, R. I., Thompson, A. L. & Watkin, D. J. (2010). J. Appl. Cryst. 43, 1100-1107.]).

[Scheme 1]

Experimental

Crystal data
  • C7H13NO3

  • Mr = 159.19

  • Monoclinic, P 21 /c

  • a = 12.896 (3) Å

  • b = 7.2143 (8) Å

  • c = 9.6324 (12) Å

  • β = 106.474 (17)°

  • V = 859.4 (2) Å3

  • Z = 4

  • Cu Kα radiation

  • μ = 0.80 mm−1

  • T = 150 K

  • 0.18 × 0.12 × 0.02 mm

Data collection
  • Agilent SuperNova Dual (Cu at zero) diffractometer with an Atlas detector

  • Absorption correction: multi-scan (CrysAlis PRO; Agilent, 2010[Agilent (2010). CrysAlis PRO. Agilent Technologies, Yarnton, Oxfordshire, England.]) Tmin = 0.48, Tmax = 0.98

  • 7240 measured reflections

  • 1771 independent reflections

  • 1426 reflections with I > 2σ(I)

  • Rint = 0.035

  • Standard reflections: 0

Refinement
  • R[F2 > 2σ(F2)] = 0.044

  • wR(F2) = 0.128

  • S = 1.00

  • 1770 reflections

  • 100 parameters

  • H-atom parameters constrained

  • Δρmax = 0.24 e Å−3

  • Δρmin = −0.24 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
N3—H31⋯O1i 0.86 2.07 2.929 (2) 173 (1)
N3—H32⋯O1ii 0.86 2.09 2.922 (2) 162 (1)
C10—H101⋯O11iii 0.95 2.61 3.486 (3) 153 (1)
Symmetry codes: (i) -x, -y+3, -z+1; (ii) [x, -y+{\script{5\over 2}}, z+{\script{1\over 2}}]; (iii) [x, -y+{\script{1\over 2}}, z-{\script{1\over 2}}].

Data collection: CrysAlis PRO (Agilent, 2010[Agilent (2010). CrysAlis PRO. Agilent Technologies, Yarnton, Oxfordshire, England.]); cell refinement: CrysAlis PRO; data reduction: CrysAlis PRO; program(s) used to solve structure: SIR92 (Altomare et al., 1994[Altomare, A., Cascarano, G., Giacovazzo, C., Guagliardi, A., Burla, M. C., Polidori, G. & Camalli, M. (1994). J. Appl. Cryst. 27, 435.]); program(s) used to refine structure: CRYSTALS (Betteridge et al., 2003[Betteridge, P. W., Carruthers, J. R., Cooper, R. I., Prout, K. & Watkin, D. J. (2003). J. Appl. Cryst. 36, 1487.]); molecular graphics: CAMERON (Watkin et al., 1996[Watkin, D. J., Prout, C. K. & Pearce, L. J. (1996). CAMERON. Chemical Crystallography Laboratory, Oxford, England.]); software used to prepare material for publication: CRYSTALS and PLATON (Spek, 2009[Spek, A. L. (2009). Acta Cryst. D65, 148-155.]).

Supporting information


Comment top

Adipic acid has importance in various industrial applications including the production of polyamides and polyurethanes. The solid state characteristics of different polymorphs of adipic acid have already been investigated intensively (Fun & Chantrapromma, 2009; Ranganathan et al., 2003; Srinivasa Gopalan et al., 2000; Pfefer & Boistelle, 2000; Srinivasa Gopalan et al., 1999; Housty & Hospital, 1965; Arevalo & Canut, 1961; Hirokawa, 1950; Morrison & Robertson, 1949; MacGillavry, 1941), as have adipic acid co-crystals (Goswami et al., 2010; Delori et al., 2008; Bucar et al., 2007; Childs & Hardcastle, 2007; Duan et al., 2005, Li et al., 2001; Urbanczyk-Lipkowska & Gluzinski, 1996). Reports on single-crystal X-ray structures of adipic acid derivatives have focused on the important nylon-based materials (Li & Goddard, 2002). Here we describe the structure of a simple adipic acid derivative, viz. methyl 6-amino-6-oxohexanoate (I), an approved starting material for heterocyclic synthesis (Jungheim et al., 2005; Fukumoto et al., 2007).

Methyl 6-amino-6-oxohexanoate (I) crystallizes from methanol as colourless crystals in the monoclinic space group P21/c (Fig. 1). The molecule is approximately planar; the largest deviation from the mean plane defined by the non-hydrogen atoms is 0.116 Å for carbonyl oxygen O1 and the aliphatic chain between the carbonyl carbons is only slightly twisted with torsion angles ranging from 172.97 (14) to 179.38 (14)°. The crystal packing is dominated by two strong N—H···O hydrogen bonds (see Table 1), similar to those seen in the two polymorphs of adipamide (monoclinic: Hospital & Housty, 1966; triclinic: Seaton & Tremayne, 2002). In (I), the the amide nitrogen in serves as a double intermolecular hydrogen donor: N3—H31···O1i forms an R22(8) amide dimer around an inversion centre, while N3—H32···O1ii connects pairs of dimers to form C(4) chains parallel to the c axis. The combination of the C(4) and R22(8) motifs generates a secondary network of R106(24) as described for related compounds including benzamide etc. (Bernstein et al. (1995); Fig. 2).

Notably, the methyl ester carbonyl group is not involved in hydrogen bonding, however, it is in a suitable position to engage in a weak C—H···O intermolecular interaction with an ester methyl group [d(H···O) = 2.614 (3) Å].

In conclusion, the structure of (I), together with those similar and previously reported, suggest that the variation in the carbonyl substituent at adipic acid does not cause substantial changes to the conformation of the molecule.

Related literature top

For the synthesis of the title compound, see: Kulikova et al. (1960); Nishitani et al. (1982); Micovic et al. (1988). For information on the solid-state characteristics of different polymorphs of adipic acid, see: Fun & Chantrapromma (2009); Ranganathan et al. (2003); Srinivasa Gopalan et al. (1999, 2000); Pfefer & Boistelle (2000); Housty & Hospital (1965); Arevalo & Canut (1961); Hirokawa (1950); Morrison & Robertson (1949); MacGillavry (1941). For details on co-crystals of the title compound, see: Goswami et al. (2010); Delori et al. (2008); Bucar et al. (2007); Childs & Hardcastle (2007); Duan et al. (2005); Li et al. (2001); Urbanczyk-Lipkowska & Gluzinski (1996). For other reports of adipic acid derivatives, see: Li & Goddard (2002); Seaton & Tremayne (2002); Hospital & Housty (1966). For uses of the title compound in heterocycle synthesis, see: Jungheim et al. (2005); Fukumoto et al. (2007). For hydrogen-bond motifs, see: Bernstein et al. (1995). For details of the H-atom treatment, see: Cooper et al. (2010).

Experimental top

The title compound was recovered as a side product in 0.5% yield from the cyclization reaction of amino pimelic acid methylester in p-cymene via a redox process (Nishitani et al., 1982). Crystals suitable for X-ray diffraction were obtained by slow evaporation of a solution of the compound in methanol.

Alternatively, the title compound can also preprared by reaction of the respective acid chloride with ammonia (Micovic et al., 1988) and the partial hydrolysis of the corresponding nitrile (Kulikova et al., 1960).

Refinement top

The structure was refined by full-matrix least-squares. H atoms were treated in the usual manner: positioned geometrically (aliphatic) or located in the difference map (amide) and refined prior to inclusion in the model using riding constraints (Cooper et al., 2010).

Dihedral angles were calculated with PLATON (Spek, 2009); all other standard uncertainties calculated from the full variance co-variance matrix within CRYSTALS (Betteridge et al., 2003).

Computing details top

Data collection: CrysAlis PRO (Agilent, 2010); cell refinement: CrysAlis PRO (Agilent, 2010); data reduction: CrysAlis PRO (Agilent, 2010); program(s) used to solve structure: SIR92 (Altomare et al., 1994); program(s) used to refine structure: CRYSTALS (Betteridge et al., 2003); molecular graphics: CAMERON (Watkin et al., 1996); software used to prepare material for publication: CRYSTALS (Betteridge et al., 2003) and PLATON (Spek, 2009).

Figures top
[Figure 1] Fig. 1. Molecular structure of (I) with displacement ellipsoids drawn at 50% probability.
[Figure 2] Fig. 2. Hydrogen bonding in the crystal structure of (I) [i: -x,3 - y,1 - z; ii: x,5/2 - y,-1/2 + z; iii: x,5/2 - y,1/2 + z].
Methyl 6-amino-6-oxohexanoate top
Crystal data top
C7H13NO3F(000) = 344
Mr = 159.19Dx = 1.230 Mg m3
Monoclinic, P21/cMelting point: not measured K
Hall symbol: -P 2ybcCu Kα radiation, λ = 1.54184 Å
a = 12.896 (3) ÅCell parameters from 2081 reflections
b = 7.2143 (8) Åθ = 4–76°
c = 9.6324 (12) ŵ = 0.80 mm1
β = 106.474 (17)°T = 150 K
V = 859.4 (2) Å3Lath, clear_pale_colourless
Z = 40.18 × 0.12 × 0.02 mm
Data collection top
Agilent SuperNova Dual (Cu at zero)
diffractometer with an Atlas detector
1426 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.035
ω scansθmax = 76.0°, θmin = 3.6°
Absorption correction: multi-scan
(CrysAlis PRO; Agilent, 2010)
h = 1615
Tmin = 0.48, Tmax = 0.98k = 97
7240 measured reflectionsl = 1211
1771 independent reflections
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.044H-atom parameters constrained
wR(F2) = 0.128 Method = Modified Sheldrick w = 1/[σ2(F2) + ( 0.07P)2 + 0.22P],
where P = (max(Fo2,0) + 2Fc2)/3
S = 1.00(Δ/σ)max = 0.001
1770 reflectionsΔρmax = 0.24 e Å3
100 parametersΔρmin = 0.24 e Å3
0 restraints
Crystal data top
C7H13NO3V = 859.4 (2) Å3
Mr = 159.19Z = 4
Monoclinic, P21/cCu Kα radiation
a = 12.896 (3) ŵ = 0.80 mm1
b = 7.2143 (8) ÅT = 150 K
c = 9.6324 (12) Å0.18 × 0.12 × 0.02 mm
β = 106.474 (17)°
Data collection top
Agilent SuperNova Dual (Cu at zero)
diffractometer with an Atlas detector
1771 independent reflections
Absorption correction: multi-scan
(CrysAlis PRO; Agilent, 2010)
1426 reflections with I > 2σ(I)
Tmin = 0.48, Tmax = 0.98Rint = 0.035
7240 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0440 restraints
wR(F2) = 0.128H-atom parameters constrained
S = 1.00Δρmax = 0.24 e Å3
1770 reflectionsΔρmin = 0.24 e Å3
100 parameters
Special details top

Experimental. Agilent Technologies (2010). CrysAlisPro. Version 1.171.35.4 (release 09-12-2010 CrysAlis171 .NET) (compiled Dec 9 2010,10:47:41) Empirical absorption correction using spherical harmonics, implemented in SCALE3 ABSPACK scaling algorithm.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
O10.07129 (11)1.29877 (15)0.44865 (11)0.0413
C20.09105 (12)1.2640 (2)0.58008 (14)0.0323
N30.05751 (12)1.37331 (17)0.66941 (12)0.0372
H310.02421.47580.63890.0445*
H320.07171.34260.75890.0449*
C40.15519 (14)1.0967 (2)0.64774 (15)0.0380
C50.18119 (13)0.9615 (2)0.54141 (15)0.0339
C60.24703 (14)0.7987 (2)0.62007 (15)0.0373
C70.27433 (15)0.6613 (2)0.51664 (17)0.0417
C80.34505 (14)0.5046 (2)0.59123 (17)0.0411
O90.36947 (12)0.39151 (19)0.49492 (14)0.0571
C100.43990 (18)0.2384 (3)0.5546 (2)0.0604
H1010.44740.16310.47730.0899*
H1030.50970.28370.61230.0882*
H1020.40690.16460.61640.0903*
O110.37696 (14)0.48159 (19)0.71881 (14)0.0605
H710.31220.72490.45700.0507*
H720.20800.60620.45490.0501*
H620.31380.84360.68540.0443*
H610.20660.73540.67630.0458*
H520.22331.02580.48780.0396*
H510.11330.91630.47430.0412*
H410.22271.14080.71330.0470*
H420.11521.02850.70240.0471*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
O10.0675 (8)0.0363 (6)0.0230 (5)0.0117 (5)0.0176 (5)0.0041 (4)
C20.0438 (8)0.0298 (7)0.0251 (6)0.0007 (6)0.0126 (6)0.0004 (5)
N30.0586 (8)0.0333 (6)0.0223 (5)0.0073 (6)0.0154 (5)0.0023 (4)
C40.0549 (9)0.0355 (8)0.0247 (6)0.0069 (7)0.0133 (6)0.0033 (5)
C50.0441 (8)0.0312 (7)0.0269 (6)0.0011 (6)0.0109 (5)0.0001 (5)
C60.0521 (9)0.0317 (7)0.0281 (7)0.0030 (6)0.0112 (6)0.0006 (5)
C70.0532 (9)0.0378 (8)0.0327 (7)0.0066 (7)0.0100 (7)0.0031 (6)
C80.0461 (9)0.0330 (8)0.0408 (8)0.0015 (6)0.0070 (7)0.0036 (6)
O90.0645 (8)0.0499 (7)0.0489 (7)0.0206 (6)0.0031 (6)0.0128 (5)
C100.0552 (11)0.0471 (10)0.0707 (13)0.0130 (9)0.0046 (9)0.0113 (9)
O110.0857 (10)0.0492 (7)0.0424 (7)0.0185 (7)0.0111 (7)0.0068 (5)
Geometric parameters (Å, º) top
O1—C21.2441 (18)C6—H620.967
C2—N31.3269 (19)C6—H610.966
C2—C41.503 (2)C7—C81.501 (2)
N3—H310.864C7—H710.969
N3—H320.858C7—H720.977
C4—C51.5193 (19)C8—O91.338 (2)
C4—H410.972C8—O111.192 (2)
C4—H420.970O9—C101.442 (2)
C5—C61.520 (2)C10—H1010.949
C5—H520.967C10—H1030.971
C5—H510.984C10—H1020.981
C6—C71.516 (2)
O1—C2—N3121.98 (13)C7—C6—H62108.5
O1—C2—C4122.14 (13)C5—C6—H61109.3
N3—C2—C4115.88 (12)C7—C6—H61108.8
C2—N3—H31120.7H62—C6—H61108.4
C2—N3—H32118.8C6—C7—C8113.61 (13)
H31—N3—H32120.4C6—C7—H71109.3
C2—C4—C5115.01 (11)C8—C7—H71107.5
C2—C4—H41107.5C6—C7—H72109.9
C5—C4—H41108.7C8—C7—H72107.0
C2—C4—H42109.3H71—C7—H72109.5
C5—C4—H42107.1C7—C8—O9110.96 (14)
H41—C4—H42109.2C7—C8—O11125.70 (15)
C4—C5—C6111.05 (12)O9—C8—O11123.34 (16)
C4—C5—H52108.5C8—O9—C10115.85 (15)
C6—C5—H52108.5O9—C10—H101108.6
C4—C5—H51109.3O9—C10—H103110.4
C6—C5—H51109.8H101—C10—H103110.9
H52—C5—H51109.7O9—C10—H102109.0
C5—C6—C7112.25 (12)H101—C10—H102108.9
C5—C6—H62109.5H103—C10—H102109.1
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N3—H31···O1i0.862.072.929 (2)173 (1)
N3—H32···O1ii0.862.092.922 (2)162 (1)
C10—H101···O11iii0.952.613.486 (3)153 (1)
Symmetry codes: (i) x, y+3, z+1; (ii) x, y+5/2, z+1/2; (iii) x, y+1/2, z1/2.

Experimental details

Crystal data
Chemical formulaC7H13NO3
Mr159.19
Crystal system, space groupMonoclinic, P21/c
Temperature (K)150
a, b, c (Å)12.896 (3), 7.2143 (8), 9.6324 (12)
β (°) 106.474 (17)
V3)859.4 (2)
Z4
Radiation typeCu Kα
µ (mm1)0.80
Crystal size (mm)0.18 × 0.12 × 0.02
Data collection
DiffractometerAgilent SuperNova Dual (Cu at zero)
diffractometer with an Atlas detector
Absorption correctionMulti-scan
(CrysAlis PRO; Agilent, 2010)
Tmin, Tmax0.48, 0.98
No. of measured, independent and
observed [I > 2σ(I)] reflections
7240, 1771, 1426
Rint0.035
(sin θ/λ)max1)0.629
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.044, 0.128, 1.00
No. of reflections1770
No. of parameters100
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.24, 0.24

Computer programs: CrysAlis PRO (Agilent, 2010), SIR92 (Altomare et al., 1994), CAMERON (Watkin et al., 1996), CRYSTALS (Betteridge et al., 2003) and PLATON (Spek, 2009).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N3—H31···O1i0.863662.0692.929 (2)172.95 (5)
N3—H32···O1ii0.857922.0942.922 (2)161.75 (5)
C10—H101···O11iii0.948632.6143.486 (3)153.02 (6)
Symmetry codes: (i) x, y+3, z+1; (ii) x, y+5/2, z+1/2; (iii) x, y+1/2, z1/2.
 

Footnotes

Present address: Institut für Organische Chemie, TU Braunschweig, Hagenring 30, D-38106 Braunschweig, Germany.

Acknowledgements

TG thanks Deutsche Forschungsgemeinschaft (DFG), Germany, for generous funding (GR 3693/1–1:1).

References

First citationAgilent (2010). CrysAlis PRO. Agilent Technologies, Yarnton, Oxfordshire, England.  Google Scholar
First citationAltomare, A., Cascarano, G., Giacovazzo, C., Guagliardi, A., Burla, M. C., Polidori, G. & Camalli, M. (1994). J. Appl. Cryst. 27, 435.  CrossRef Web of Science IUCr Journals Google Scholar
First citationArevalo, M. I. & Canut, M. L. (1961). Bol. R. Soc. Esp. Hist. Nat. (Sec. Geol.), 59, 37–40.  CAS Google Scholar
First citationBernstein, J., Davis, R. E., Shimoni, L. & Chang, N.-L. (1995). Angew. Chem. Int. Ed. Engl. 34, 1555–1573.  CrossRef CAS Web of Science Google Scholar
First citationBetteridge, P. W., Carruthers, J. R., Cooper, R. I., Prout, K. & Watkin, D. J. (2003). J. Appl. Cryst. 36, 1487.  Web of Science CrossRef IUCr Journals Google Scholar
First citationBucar, D.-K., Henry, R. F., Lou, X., Borchardt, T. B. & Zhang, G. G. Z. (2007). Chem. Commun. pp. 525–527.  Google Scholar
First citationChilds, S. L. & Hardcastle, K. I. (2007). Cryst. Growth Des. 7, 1291–1304.  Web of Science CSD CrossRef CAS Google Scholar
First citationCooper, R. I., Thompson, A. L. & Watkin, D. J. (2010). J. Appl. Cryst. 43, 1100–1107.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationDelori, A., Suresh, E. & Pedireddi, V. R. (2008). Chem. Eur. J. 14, 6967–6977.  Web of Science CSD CrossRef PubMed CAS Google Scholar
First citationDuan, L.-M., Ye, L., Liu, Y.-B., Xie, F.-T., Yu, J.-H. & Xu, J.-Q. (2005). Pol. J. Chem. 79, 1835–1842.  CAS Google Scholar
First citationFukumoto, S., Matsunaga, N., Ohra, T., Ohyabu, N., Hasui, T., Motoyaji, T., Siedem, C. S., Tang, T. P., Demeese, L. A. & Gauthier, C. (2007). PCT Int. Appl. 2007077961.  Google Scholar
First citationFun, H.-K. & Chantrapromma, S. (2009). Acta Cryst. E65, o624.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationGoswami, S., Hazra, A. & Fun, H.-K. (2010). J. Inclusion Phenom. 68, 461–466.  CrossRef CAS Google Scholar
First citationHirokawa, S. (1950). Bull. Chem. Soc. Jpn, 23, 91–94.  CrossRef CAS Google Scholar
First citationHospital, M. & Housty, J. (1966). Acta Cryst. 20, 626–630.  CSD CrossRef CAS IUCr Journals Web of Science Google Scholar
First citationHousty, J. & Hospital, M. (1965). Acta Cryst. 18, 693–697.  CSD CrossRef CAS IUCr Journals Web of Science Google Scholar
First citationJungheim, L. N., McGill, J. M., Trasher, K. J., Herr, R. J. & Muralikrishna, V. (2005). PCT Int. Appl. 2005019184.  Google Scholar
First citationKulikova, A. E., Zil'berman, E. N. & Sazanova, N. A. (1960). Zh. Obshch. Khim. 30, 2180–2183.  CAS Google Scholar
First citationLi, Y. & Goddard, W. A. (2002). Macromolecules, 35, 8440–8455.  Web of Science CrossRef CAS Google Scholar
First citationLi, W., Zhang, J.-P., Tong, M.-L. & Chen, X.-M. (2001). Aust. J. Chem. 54, 213–217.  Web of Science CSD CrossRef Google Scholar
First citationMacGillavry, C. H. (1941). Recl Trav. Chim. Pays-Bas, 60, 605–617.  CAS Google Scholar
First citationMicovic, V., Ivanovic, M. D. & Piatak, D. M. (1988). J. Serb. Chem. Soc. 53, 419–426.  CAS Google Scholar
First citationMorrison, J. D. & Robertson, J. M. (1949). J. Chem. Soc. pp. 987–92.  CrossRef Web of Science Google Scholar
First citationNishitani, T., Horikawa, H., Iwasaki, T., Matsumoto, K., Inoue, I. & Miyoshi, M. (1982). J. Org. Chem. 47, 1706–1712.  CrossRef CAS Web of Science Google Scholar
First citationPfefer, G. & Boistelle, R. (2000). J. Cryst. Growth, 208, 615–622.  Web of Science CrossRef CAS Google Scholar
First citationRanganathan, A., Kulkarni, G. U. & Rao, C. N. R. (2003). J. Phys. Chem. A, 107, 6073–6081.  Web of Science CSD CrossRef CAS Google Scholar
First citationSeaton, C. C. & Tremayne, M. (2002). Chem. Commun. pp. 880–881.  Web of Science CSD CrossRef Google Scholar
First citationSpek, A. L. (2009). Acta Cryst. D65, 148–155.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSrinivasa Gopalan, R., Kumaradhas, P. & Kulkarni, G. U. (1999). J. Solid State Chem. 148, 129–134.  CSD CrossRef CAS Google Scholar
First citationSrinivasa Gopalan, R., Kumaradhas, P., Kulkarni, G. U. & Rao, C. N. R. (2000). J. Mol. Struct. 521, 97–106.  CSD CrossRef CAS Google Scholar
First citationUrbanczyk-Lipkowska, Z. & Gluzinski, P. (1996). Supramol. Chem. 7, 113–118.  CAS Google Scholar
First citationWatkin, D. J., Prout, C. K. & Pearce, L. J. (1996). CAMERON. Chemical Crystallography Laboratory, Oxford, England.  Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 68| Part 3| March 2012| Pages o593-o594
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds