organic compounds
3-Methoxy-3-oxopropanaminium chloride
aChemistry Research Laboratory, Department of Chemistry, University of Oxford, Mansfield Road, Oxford OX1 3TA, England, and bChemical Crystallography, Chemistry Research Laboratory, Department of Chemistry, University of Oxford, Mansfield Road, Oxford OX1 3TA, England
*Correspondence e-mail: amber.thompson@chem.ox.ac.uk
In the title compound, C4H10NO2+·Cl−, the central ethylene bond of the cation adopts a gauche conformation. The three H atoms of the –NH3+ group are engaged in strong and highly directional intermolecular N—H⋯Cl hydrogen bonds, which result in a tape-like arrangement along [010] of the respective ion pairs. In addition, weak intermolecular C—H⋯Cl and C—H⋯O interactions are present.
Related literature
For the synthesis of the title compound, see: Hansen (1963). For related structures, see: Akkerman et al. (2003); Robinson et al. (2004); Vilela et al. (2009); Tarafdar & Swamy (2010); Gossage et al. (2010); He et al. (2010). For information on the gauche effect, see: Amos et al. (1992). For details of the H-atom treatment, see: Cooper et al. (2010). For the weighting scheme used in the see: Watkin (1994); Prince (1982).
Experimental
Crystal data
|
Refinement
|
Data collection: COLLECT (Nonius, 2001).; cell DENZO and SCALEPACK (Otwinowski & Minor, 1997); data reduction: DENZO and SCALEPACK; program(s) used to solve structure: SIR92 (Altomare et al., 1994); program(s) used to refine structure: CRYSTALS (Betteridge et al., 2003); molecular graphics: CAMERON (Watkin et al., 1996); software used to prepare material for publication: CRYSTALS and PLATON (Spek, 2009).
Supporting information
10.1107/S1600536812003297/lh5384sup1.cif
contains datablocks I, global. DOI:Structure factors: contains datablock I. DOI: 10.1107/S1600536812003297/lh5384Isup2.hkl
Supporting information file. DOI: 10.1107/S1600536812003297/lh5384Isup3.cdx
Supporting information file. DOI: 10.1107/S1600536812003297/lh5384Isup4.cml
The title compound was prepared from 2-aminoethanol and acetyl chloride according to the literature (Hansen, 1963). Crystals suitable for X-ray diffraction were obtained by slow evaporation of a solution of (I) in chloroform.
The structure was refined freely, except for the hydrogen atoms which were refined prior to the generation of the riding model (Cooper et al., 2010). Weights were applied using a five parameter Chebychev polynomial (Watkin, 1994, Prince, 1982).
Dihedral angles calculated with PLATON (Spek, 2009); all other standard uncertainties calculated from the full variance co-variance matrix within CRYSTALS (Betteridge et al., 2003).
Data collection: COLLECT (Nonius, 2001).; cell
DENZO and SCALEPACK (Otwinowski & Minor, 1997); data reduction: DENZO and SCALEPACK (Otwinowski & Minor, 1997); program(s) used to solve structure: SIR92 (Altomare et al., 1994); program(s) used to refine structure: CRYSTALS (Betteridge et al., 2003); molecular graphics: CAMERON (Watkin et al., 1996); software used to prepare material for publication: CRYSTALS (Betteridge et al., 2003) and PLATON (Spek, 2009).C4H10NO2+·Cl− | F(000) = 296 |
Mr = 139.58 | Dx = 1.349 Mg m−3 |
Monoclinic, P21/c | Mo Kα radiation, λ = 0.71073 Å |
Hall symbol: -P 2ybc | Cell parameters from 1729 reflections |
a = 9.8469 (2) Å | θ = 5–27° |
b = 5.3263 (1) Å | µ = 0.47 mm−1 |
c = 13.2804 (2) Å | T = 150 K |
β = 99.4638 (10)° | Block, clear_pale_colourless |
V = 687.04 (2) Å3 | 0.28 × 0.13 × 0.08 mm |
Z = 4 |
Nonius KappaCCD diffractometer | 1413 reflections with I > 2σ(I) |
Graphite monochromator | Rint = 0.014 |
ω scans | θmax = 27.5°, θmin = 5.2° |
Absorption correction: multi-scan DENZO/SCALEPACK (Otwinowski & Minor, 1997) | h = −12→12 |
Tmin = 0.94, Tmax = 0.96 | k = −6→6 |
14336 measured reflections | l = −17→17 |
1563 independent reflections |
Refinement on F2 | Primary atom site location: structure-invariant direct methods |
Least-squares matrix: full | Hydrogen site location: difference Fourier map |
R[F2 > 2σ(F2)] = 0.032 | H-atom parameters constrained |
wR(F2) = 0.080 | Method, part 1, Chebychev polynomial, (Watkin, 1994; Prince, 1982) [weight] = 1.0/[A0*T0(x) + A1*T1(x) ··· + An-1]*Tn-1(x)] where Ai are the Chebychev coefficients listed below and x = F /Fmax Method = Robust Weighting (Prince, 1982) W = [weight] * [1-(deltaF/6*sigmaF)2]2 Ai are: 37.6 62.5 38.0 16.9 4.31 |
S = 0.93 | (Δ/σ)max = 0.001 |
1563 reflections | Δρmax = 0.25 e Å−3 |
73 parameters | Δρmin = −0.28 e Å−3 |
0 restraints |
C4H10NO2+·Cl− | V = 687.04 (2) Å3 |
Mr = 139.58 | Z = 4 |
Monoclinic, P21/c | Mo Kα radiation |
a = 9.8469 (2) Å | µ = 0.47 mm−1 |
b = 5.3263 (1) Å | T = 150 K |
c = 13.2804 (2) Å | 0.28 × 0.13 × 0.08 mm |
β = 99.4638 (10)° |
Nonius KappaCCD diffractometer | 1563 independent reflections |
Absorption correction: multi-scan DENZO/SCALEPACK (Otwinowski & Minor, 1997) | 1413 reflections with I > 2σ(I) |
Tmin = 0.94, Tmax = 0.96 | Rint = 0.014 |
14336 measured reflections |
R[F2 > 2σ(F2)] = 0.032 | 0 restraints |
wR(F2) = 0.080 | H-atom parameters constrained |
S = 0.93 | Δρmax = 0.25 e Å−3 |
1563 reflections | Δρmin = −0.28 e Å−3 |
73 parameters |
x | y | z | Uiso*/Ueq | ||
Cl1 | 0.92411 (3) | 0.72604 (6) | 0.59816 (2) | 0.0244 | |
O2 | 0.72167 (10) | 1.11170 (19) | 0.75243 (7) | 0.0236 | |
C3 | 0.62577 (14) | 1.0662 (3) | 0.66935 (11) | 0.0241 | |
O4 | 0.53381 (11) | 0.9165 (2) | 0.66871 (8) | 0.0335 | |
C5 | 0.64993 (16) | 1.2257 (3) | 0.58178 (12) | 0.0307 | |
C6 | 0.70489 (15) | 0.9789 (3) | 0.84455 (10) | 0.0257 | |
C7 | 0.76188 (14) | 0.7166 (3) | 0.84666 (10) | 0.0240 | |
N8 | 0.91018 (12) | 0.7208 (2) | 0.83652 (9) | 0.0235 | |
H51 | 0.7403 | 1.1944 | 0.5697 | 0.0451* | |
H52 | 0.6422 | 1.3972 | 0.6003 | 0.0448* | |
H53 | 0.5842 | 1.1883 | 0.5224 | 0.0448* | |
H61 | 0.7569 | 1.0756 | 0.8995 | 0.0291* | |
H62 | 0.6067 | 0.9749 | 0.8523 | 0.0288* | |
H71 | 0.7136 | 0.6156 | 0.7909 | 0.0287* | |
H72 | 0.7551 | 0.6399 | 0.9112 | 0.0286* | |
H81 | 0.9506 | 0.5763 | 0.8594 | 0.0342* | |
H82 | 0.9161 | 0.7420 | 0.7690 | 0.0341* | |
H83 | 0.9517 | 0.8494 | 0.8726 | 0.0346* |
U11 | U22 | U33 | U12 | U13 | U23 | |
Cl1 | 0.02820 (19) | 0.02258 (18) | 0.02136 (18) | −0.00083 (12) | 0.00108 (12) | −0.00105 (12) |
O2 | 0.0248 (5) | 0.0223 (5) | 0.0222 (5) | −0.0002 (4) | −0.0009 (4) | 0.0002 (4) |
C3 | 0.0238 (6) | 0.0228 (6) | 0.0243 (6) | 0.0016 (5) | −0.0005 (5) | −0.0012 (5) |
O4 | 0.0303 (5) | 0.0348 (6) | 0.0329 (6) | −0.0080 (5) | −0.0025 (4) | 0.0039 (5) |
C5 | 0.0332 (8) | 0.0305 (8) | 0.0268 (7) | −0.0027 (6) | 0.0000 (6) | 0.0047 (6) |
C6 | 0.0292 (7) | 0.0278 (7) | 0.0200 (6) | 0.0021 (6) | 0.0041 (5) | −0.0010 (5) |
C7 | 0.0268 (7) | 0.0229 (6) | 0.0215 (6) | −0.0016 (5) | 0.0017 (5) | 0.0021 (5) |
N8 | 0.0287 (6) | 0.0202 (5) | 0.0208 (5) | 0.0032 (4) | 0.0015 (4) | 0.0012 (4) |
O2—C3 | 1.3509 (16) | C6—H61 | 0.968 |
O2—C6 | 1.4459 (17) | C6—H62 | 0.989 |
C3—O4 | 1.2057 (18) | C7—N8 | 1.4886 (18) |
C3—C5 | 1.490 (2) | C7—H71 | 0.973 |
C5—H51 | 0.945 | C7—H72 | 0.961 |
C5—H52 | 0.952 | N8—H81 | 0.896 |
C5—H53 | 0.955 | N8—H82 | 0.915 |
C6—C7 | 1.504 (2) | N8—H83 | 0.895 |
C3—O2—C6 | 116.20 (11) | C7—C6—H62 | 110.2 |
O2—C3—O4 | 123.21 (13) | H61—C6—H62 | 109.8 |
O2—C3—C5 | 110.81 (12) | C6—C7—N8 | 110.65 (11) |
O4—C3—C5 | 125.98 (13) | C6—C7—H71 | 111.4 |
C3—C5—H51 | 107.9 | N8—C7—H71 | 107.7 |
C3—C5—H52 | 108.4 | C6—C7—H72 | 109.3 |
H51—C5—H52 | 109.3 | N8—C7—H72 | 107.5 |
C3—C5—H53 | 110.6 | H71—C7—H72 | 110.2 |
H51—C5—H53 | 110.7 | C7—N8—H81 | 110.1 |
H52—C5—H53 | 109.9 | C7—N8—H82 | 108.2 |
O2—C6—C7 | 112.08 (11) | H81—N8—H82 | 110.0 |
O2—C6—H61 | 104.9 | C7—N8—H83 | 109.3 |
C7—C6—H61 | 109.3 | H81—N8—H83 | 109.7 |
O2—C6—H62 | 110.3 | H82—N8—H83 | 109.5 |
D—H···A | D—H | H···A | D···A | D—H···A |
N8—H81···Cl1i | 0.90 | 2.26 | 3.1456 (12) | 171 (1) |
N8—H82···Cl1 | 0.92 | 2.29 | 3.1910 (12) | 171 (1) |
N8—H83···Cl1ii | 0.90 | 2.35 | 3.1923 (12) | 157 (1) |
C5—H53···O4iii | 0.96 | 2.67 | 3.5965 (18) | 163 (1) |
C7—H72···Cl1iv | 0.96 | 2.84 | 3.4708 (14) | 124 (1) |
Symmetry codes: (i) −x+2, y−1/2, −z+3/2; (ii) −x+2, y+1/2, −z+3/2; (iii) −x+1, −y+2, −z+1; (iv) x, −y+3/2, z+1/2. |
Experimental details
Crystal data | |
Chemical formula | C4H10NO2+·Cl− |
Mr | 139.58 |
Crystal system, space group | Monoclinic, P21/c |
Temperature (K) | 150 |
a, b, c (Å) | 9.8469 (2), 5.3263 (1), 13.2804 (2) |
β (°) | 99.4638 (10) |
V (Å3) | 687.04 (2) |
Z | 4 |
Radiation type | Mo Kα |
µ (mm−1) | 0.47 |
Crystal size (mm) | 0.28 × 0.13 × 0.08 |
Data collection | |
Diffractometer | Nonius KappaCCD diffractometer |
Absorption correction | Multi-scan DENZO/SCALEPACK (Otwinowski & Minor, 1997) |
Tmin, Tmax | 0.94, 0.96 |
No. of measured, independent and observed [I > 2σ(I)] reflections | 14336, 1563, 1413 |
Rint | 0.014 |
(sin θ/λ)max (Å−1) | 0.649 |
Refinement | |
R[F2 > 2σ(F2)], wR(F2), S | 0.032, 0.080, 0.93 |
No. of reflections | 1563 |
No. of parameters | 73 |
H-atom treatment | H-atom parameters constrained |
Δρmax, Δρmin (e Å−3) | 0.25, −0.28 |
Computer programs: COLLECT (Nonius, 2001)., DENZO and SCALEPACK (Otwinowski & Minor, 1997), SIR92 (Altomare et al., 1994), CAMERON (Watkin et al., 1996), CRYSTALS (Betteridge et al., 2003) and PLATON (Spek, 2009).
D—H···A | D—H | H···A | D···A | D—H···A |
N8—H81···Cl1i | 0.896 | 2.2566 | 3.1456 (12) | 171.32 (3) |
N8—H82···Cl1 | 0.915 | 2.2851 | 3.1910 (12) | 170.64 (3) |
N8—H83···Cl1ii | 0.895 | 2.3484 | 3.1923 (12) | 157.11 (3) |
C5—H53···O4iii | 0.955 | 2.6710 | 3.5965 (18) | 163.27 (4) |
C7—H72···Cl1iv | 0.961 | 2.8438 | 3.4708 (14) | 123.70 (3) |
Symmetry codes: (i) −x+2, y−1/2, −z+3/2; (ii) −x+2, y+1/2, −z+3/2; (iii) −x+1, −y+2, −z+1; (iv) x, −y+3/2, z+1/2. |
Footnotes
‡Present address: Institut für Organische Chemie, TU Braunschweig, Hagenring 30, D-38106 Braunschweig, Germany.
Acknowledgements
TG thanks Deutsche Forschungsgemeinschaft (DFG), Germany, for generous funding (GR 3693/1–1:1).
References
Akkerman, F., Buschmann, J., Lentz, D., Luger, P. & Rödel, E. (2003). J. Chem. Crystallogr. 33, 969–975. Web of Science CSD CrossRef CAS Google Scholar
Altomare, A., Cascarano, G., Giacovazzo, C., Guagliardi, A., Burla, M. C., Polidori, G. & Camalli, M. (1994). J. Appl. Cryst. 27, 435. CrossRef Web of Science IUCr Journals Google Scholar
Amos, R. D., Handy, N. C., Jones, P. G., Kirby, A. J., Parker, J. K., Percy, J. M. & Su, M. D. (1992). J. Chem. Soc. Perkin Trans. 2, pp. 549–558. CrossRef Web of Science Google Scholar
Betteridge, P. W., Carruthers, J. R., Cooper, R. I., Prout, K. & Watkin, D. J. (2003). J. Appl. Cryst. 36, 1487. Web of Science CrossRef IUCr Journals Google Scholar
Cooper, R. I., Thompson, A. L. & Watkin, D. J. (2010). J. Appl. Cryst. 43, 1100–1107. Web of Science CrossRef CAS IUCr Journals Google Scholar
Gossage, R. A., Jenkins, H. A. & Quail, J. W. (2010). J. Chem. Crystallogr. 40, 272–277. Web of Science CSD CrossRef CAS Google Scholar
Hansen, B. (1963). Acta Chem. Scand. 17, 1307–1314. CrossRef CAS Web of Science Google Scholar
He, Y.-J., Zou, P., Wang, H.-Y., Wu, H. & Xie, M.-H. (2010). Acta Cryst. E66, o2115. Web of Science CSD CrossRef IUCr Journals Google Scholar
Nonius (2001). COLLECT. Nonius BV, Delft, The Netherlands. Google Scholar
Otwinowski, Z. & Minor, W. (1997). Methods in Enzymology, Vol. 276, Macromolecular Crystallography, Part A, edited by C. W. Carter Jr & R. M. Sweet, pp. 307–326. New York: Academic Press. Google Scholar
Prince, E. (1982). Mathematical Techniques in Crystallography and Materials Science. New York: Springer-Verlag. Google Scholar
Robinson, R. I., Stephens, J. C., Worden, S. M., Blake, A. J., Wilson, C. & Woodward, S. (2004). Eur. J. Org. Chem. pp. 4596–4605. Web of Science CSD CrossRef Google Scholar
Spek, A. L. (2009). Acta Cryst. D65, 148–155. Web of Science CrossRef CAS IUCr Journals Google Scholar
Tarafdar, P. K. & Swamy, M. J. (2010). Biochim. Biophys. Acta, 1978, 872–881. CrossRef Google Scholar
Vilela, S. M. F., Almeida Paz, F. A., Tomé, J. P. C., Zea Bermudez, V. de, Cavaleiro, J. A. S. & Rocha, J. (2009). Acta Cryst. E65, o1970. Web of Science CSD CrossRef IUCr Journals Google Scholar
Watkin, D. (1994). Acta Cryst. A50, 411–437. CrossRef CAS Web of Science IUCr Journals Google Scholar
Watkin, D. J., Prout, C. K. & Pearce, L. J. (1996). CAMERON. Chemical Crystallography Laboratory, Oxford, England. Google Scholar
This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.
The asymmetic unit of the title compound, (I), consists of a 2-acetoxy-ethyl-ammonium cation and a chloride ion as shown in Figure 1. The ester motif [atoms C6/O2/C3/O4/C5] is approximately planar with the largest deviation from the mean plane for O2 (d = 0.029 Å). The central —CH2—CH2— unit is not in the often favoured antiperiplanar conformation, instead adopting a gauche conformation with a torsion angle of 57.42 (14)° for atoms O2—C6—C7—N8. This may be attributed to the stereoselective gauche effect (Amos et al., 1992), though an influence of the crystal packing on the molecular conformation of (I) cannot be ruled out. For comparison, the observed torsion angle is 67.6° in 1,2-difluoroethane (Akkerman et al., 2003), 73.7° for O-stearoylethanolamine hydrochloride (Tarafdar & Swamy, 2010) and 71.7° in 2-(benzoyloxy)ethanaminium nitrate (Gossage et al., 2010).
The three N—H units of (I) are engaged in apparently strong and highly directional N+—H···Cl- hydrogen bonds with three symmetry-related Cl- ions (Table 1). These interactions result in a tape-like arrangement of the respective ion pairs parallel to the crystallographic b axis (Figure 2). In the packing, the corrugated two dimensional supramolecular network defined by the N—H···Cl interactions is connected with neighbouring strands via weak C—H···Cl and C—H···O contacts (Table 1) in the direction of the crystallographic c and a axes, respectively. Interestingly, the observed packing behaviour is very similar to the structure of glycine ethyl ester hydrochloride (He et al., 2010), an isomer of (I), and the analogous glycine methyl ester (Vilela et al., 2009).