organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

3-Meth­­oxy-3-oxopropanaminium chloride

aChemistry Research Laboratory, Department of Chemistry, University of Oxford, Mansfield Road, Oxford OX1 3TA, England, and bChemical Crystallography, Chemistry Research Laboratory, Department of Chemistry, University of Oxford, Mansfield Road, Oxford OX1 3TA, England
*Correspondence e-mail: amber.thompson@chem.ox.ac.uk

(Received 18 November 2011; accepted 25 January 2012; online 4 February 2012)

In the title compound, C4H10NO2+·Cl, the central ethyl­ene bond of the cation adopts a gauche conformation. The three H atoms of the –NH3+ group are engaged in strong and highly directional inter­molecular N—H⋯Cl hydrogen bonds, which result in a tape-like arrangement along [010] of the respective ion pairs. In addition, weak inter­molecular C—H⋯Cl and C—H⋯O inter­actions are present.

Related literature

For the synthesis of the title compound, see: Hansen (1963[Hansen, B. (1963). Acta Chem. Scand. 17, 1307-1314.]). For related structures, see: Akkerman et al. (2003[Akkerman, F., Buschmann, J., Lentz, D., Luger, P. & Rödel, E. (2003). J. Chem. Crystallogr. 33, 969-975.]); Robinson et al. (2004[Robinson, R. I., Stephens, J. C., Worden, S. M., Blake, A. J., Wilson, C. & Woodward, S. (2004). Eur. J. Org. Chem. pp. 4596-4605.]); Vilela et al. (2009[Vilela, S. M. F., Almeida Paz, F. A., Tomé, J. P. C., Zea Bermudez, V. de, Cavaleiro, J. A. S. & Rocha, J. (2009). Acta Cryst. E65, o1970.]); Tarafdar & Swamy (2010[Tarafdar, P. K. & Swamy, M. J. (2010). Biochim. Biophys. Acta, 1978, 872-881.]); Gossage et al. (2010[Gossage, R. A., Jenkins, H. A. & Quail, J. W. (2010). J. Chem. Crystallogr. 40, 272-277.]); He et al. (2010[He, Y.-J., Zou, P., Wang, H.-Y., Wu, H. & Xie, M.-H. (2010). Acta Cryst. E66, o2115.]). For information on the gauche effect, see: Amos et al. (1992[Amos, R. D., Handy, N. C., Jones, P. G., Kirby, A. J., Parker, J. K., Percy, J. M. & Su, M. D. (1992). J. Chem. Soc. Perkin Trans. 2, pp. 549-558.]). For details of the H-atom treatment, see: Cooper et al. (2010[Cooper, R. I., Thompson, A. L. & Watkin, D. J. (2010). J. Appl. Cryst. 43, 1100-1107.]). For the weighting scheme used in the refinement, see: Watkin (1994[Watkin, D. (1994). Acta Cryst. A50, 411-437.]); Prince (1982[Prince, E. (1982). Mathematical Techniques in Crystallography and Materials Science. New York: Springer-Verlag.]).

[Scheme 1]

Experimental

Crystal data
  • C4H10NO2+·Cl

  • Mr = 139.58

  • Monoclinic, P 21 /c

  • a = 9.8469 (2) Å

  • b = 5.3263 (1) Å

  • c = 13.2804 (2) Å

  • β = 99.4638 (10)°

  • V = 687.04 (2) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.47 mm−1

  • T = 150 K

  • 0.28 × 0.13 × 0.08 mm

Data collection
  • Nonius KappaCCD diffractometer

  • Absorption correction: multi-scan DENZO/SCALEPACK (Otwinowski & Minor, 1997[Otwinowski, Z. & Minor, W. (1997). Methods in Enzymology, Vol. 276, Macromolecular Crystallography, Part A, edited by C. W. Carter Jr & R. M. Sweet, pp. 307-326. New York: Academic Press.]) Tmin = 0.94, Tmax = 0.96

  • 14336 measured reflections

  • 1563 independent reflections

  • 1413 reflections with I > 2σ(I)

  • Rint = 0.014

Refinement
  • R[F2 > 2σ(F2)] = 0.032

  • wR(F2) = 0.080

  • S = 0.93

  • 1563 reflections

  • 73 parameters

  • H-atom parameters constrained

  • Δρmax = 0.25 e Å−3

  • Δρmin = −0.28 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
N8—H81⋯Cl1i 0.90 2.26 3.1456 (12) 171 (1)
N8—H82⋯Cl1 0.92 2.29 3.1910 (12) 171 (1)
N8—H83⋯Cl1ii 0.90 2.35 3.1923 (12) 157 (1)
C5—H53⋯O4iii 0.96 2.67 3.5965 (18) 163 (1)
C7—H72⋯Cl1iv 0.96 2.84 3.4708 (14) 124 (1)
Symmetry codes: (i) [-x+2, y-{\script{1\over 2}}, -z+{\script{3\over 2}}]; (ii) [-x+2, y+{\script{1\over 2}}, -z+{\script{3\over 2}}]; (iii) -x+1, -y+2, -z+1; (iv) [x, -y+{\script{3\over 2}}, z+{\script{1\over 2}}].

Data collection: COLLECT (Nonius, 2001[Nonius (2001). COLLECT. Nonius BV, Delft, The Netherlands.]).; cell refinement: DENZO and SCALEPACK (Otwinowski & Minor, 1997[Otwinowski, Z. & Minor, W. (1997). Methods in Enzymology, Vol. 276, Macromolecular Crystallography, Part A, edited by C. W. Carter Jr & R. M. Sweet, pp. 307-326. New York: Academic Press.]); data reduction: DENZO and SCALEPACK; program(s) used to solve structure: SIR92 (Altomare et al., 1994[Altomare, A., Cascarano, G., Giacovazzo, C., Guagliardi, A., Burla, M. C., Polidori, G. & Camalli, M. (1994). J. Appl. Cryst. 27, 435.]); program(s) used to refine structure: CRYSTALS (Betteridge et al., 2003[Betteridge, P. W., Carruthers, J. R., Cooper, R. I., Prout, K. & Watkin, D. J. (2003). J. Appl. Cryst. 36, 1487.]); molecular graphics: CAMERON (Watkin et al., 1996[Watkin, D. J., Prout, C. K. & Pearce, L. J. (1996). CAMERON. Chemical Crystallography Laboratory, Oxford, England.]); software used to prepare material for publication: CRYSTALS and PLATON (Spek, 2009[Spek, A. L. (2009). Acta Cryst. D65, 148-155.]).

Supporting information


Comment top

The asymmetic unit of the title compound, (I), consists of a 2-acetoxy-ethyl-ammonium cation and a chloride ion as shown in Figure 1. The ester motif [atoms C6/O2/C3/O4/C5] is approximately planar with the largest deviation from the mean plane for O2 (d = 0.029 Å). The central —CH2—CH2— unit is not in the often favoured antiperiplanar conformation, instead adopting a gauche conformation with a torsion angle of 57.42 (14)° for atoms O2—C6—C7—N8. This may be attributed to the stereoselective gauche effect (Amos et al., 1992), though an influence of the crystal packing on the molecular conformation of (I) cannot be ruled out. For comparison, the observed torsion angle is 67.6° in 1,2-difluoroethane (Akkerman et al., 2003), 73.7° for O-stearoylethanolamine hydrochloride (Tarafdar & Swamy, 2010) and 71.7° in 2-(benzoyloxy)ethanaminium nitrate (Gossage et al., 2010).

The three N—H units of (I) are engaged in apparently strong and highly directional N+—H···Cl- hydrogen bonds with three symmetry-related Cl- ions (Table 1). These interactions result in a tape-like arrangement of the respective ion pairs parallel to the crystallographic b axis (Figure 2). In the packing, the corrugated two dimensional supramolecular network defined by the N—H···Cl interactions is connected with neighbouring strands via weak C—H···Cl and C—H···O contacts (Table 1) in the direction of the crystallographic c and a axes, respectively. Interestingly, the observed packing behaviour is very similar to the structure of glycine ethyl ester hydrochloride (He et al., 2010), an isomer of (I), and the analogous glycine methyl ester (Vilela et al., 2009).

Related literature top

For the synthesis of the title compound, see: Hansen (1963). For related structures, see: Akkerman et al. (2003); Robinson et al. (2004); Vilela et al. (2009); Tarafdar & Swamy (2010); Gossage et al. (2010); He et al. (2010). For information on the gauche effect, see: Amos et al. (1992). For details of the H-atom treatment, see: Cooper et al. (2010). For the weighting scheme used in the refinement, see: Watkin (1994); Prince (1982).

Experimental top

The title compound was prepared from 2-aminoethanol and acetyl chloride according to the literature (Hansen, 1963). Crystals suitable for X-ray diffraction were obtained by slow evaporation of a solution of (I) in chloroform.

Refinement top

The structure was refined freely, except for the hydrogen atoms which were refined prior to the generation of the riding model (Cooper et al., 2010). Weights were applied using a five parameter Chebychev polynomial (Watkin, 1994, Prince, 1982).

Dihedral angles calculated with PLATON (Spek, 2009); all other standard uncertainties calculated from the full variance co-variance matrix within CRYSTALS (Betteridge et al., 2003).

Computing details top

Data collection: COLLECT (Nonius, 2001).; cell refinement: DENZO and SCALEPACK (Otwinowski & Minor, 1997); data reduction: DENZO and SCALEPACK (Otwinowski & Minor, 1997); program(s) used to solve structure: SIR92 (Altomare et al., 1994); program(s) used to refine structure: CRYSTALS (Betteridge et al., 2003); molecular graphics: CAMERON (Watkin et al., 1996); software used to prepare material for publication: CRYSTALS (Betteridge et al., 2003) and PLATON (Spek, 2009).

Figures top
[Figure 1] Fig. 1. Molecular structure of (I) with displacement ellipsoids drawn at 50% probability. The dotted line indicates a hydrogen bond.
[Figure 2] Fig. 2. The corrugated two dimensional supramolecular network defined by the N—H···Cl interactions forming tapes [i: 2 - x,1/2 + y,3/2 - z; ii: 2 - x,-1/2 + y,3/2 - z].
3-Methoxy-3-oxopropanaminium chloride top
Crystal data top
C4H10NO2+·ClF(000) = 296
Mr = 139.58Dx = 1.349 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ybcCell parameters from 1729 reflections
a = 9.8469 (2) Åθ = 5–27°
b = 5.3263 (1) ŵ = 0.47 mm1
c = 13.2804 (2) ÅT = 150 K
β = 99.4638 (10)°Block, clear_pale_colourless
V = 687.04 (2) Å30.28 × 0.13 × 0.08 mm
Z = 4
Data collection top
Nonius KappaCCD
diffractometer
1413 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.014
ω scansθmax = 27.5°, θmin = 5.2°
Absorption correction: multi-scan
DENZO/SCALEPACK (Otwinowski & Minor, 1997)
h = 1212
Tmin = 0.94, Tmax = 0.96k = 66
14336 measured reflectionsl = 1717
1563 independent reflections
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullHydrogen site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.032H-atom parameters constrained
wR(F2) = 0.080 Method, part 1, Chebychev polynomial, (Watkin, 1994; Prince, 1982) [weight] = 1.0/[A0*T0(x) + A1*T1(x) ··· + An-1]*Tn-1(x)]
where Ai are the Chebychev coefficients listed below and x = F /Fmax Method = Robust Weighting (Prince, 1982) W = [weight] * [1-(deltaF/6*sigmaF)2]2 Ai are: 37.6 62.5 38.0 16.9 4.31
S = 0.93(Δ/σ)max = 0.001
1563 reflectionsΔρmax = 0.25 e Å3
73 parametersΔρmin = 0.28 e Å3
0 restraints
Crystal data top
C4H10NO2+·ClV = 687.04 (2) Å3
Mr = 139.58Z = 4
Monoclinic, P21/cMo Kα radiation
a = 9.8469 (2) ŵ = 0.47 mm1
b = 5.3263 (1) ÅT = 150 K
c = 13.2804 (2) Å0.28 × 0.13 × 0.08 mm
β = 99.4638 (10)°
Data collection top
Nonius KappaCCD
diffractometer
1563 independent reflections
Absorption correction: multi-scan
DENZO/SCALEPACK (Otwinowski & Minor, 1997)
1413 reflections with I > 2σ(I)
Tmin = 0.94, Tmax = 0.96Rint = 0.014
14336 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0320 restraints
wR(F2) = 0.080H-atom parameters constrained
S = 0.93Δρmax = 0.25 e Å3
1563 reflectionsΔρmin = 0.28 e Å3
73 parameters
Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Cl10.92411 (3)0.72604 (6)0.59816 (2)0.0244
O20.72167 (10)1.11170 (19)0.75243 (7)0.0236
C30.62577 (14)1.0662 (3)0.66935 (11)0.0241
O40.53381 (11)0.9165 (2)0.66871 (8)0.0335
C50.64993 (16)1.2257 (3)0.58178 (12)0.0307
C60.70489 (15)0.9789 (3)0.84455 (10)0.0257
C70.76188 (14)0.7166 (3)0.84666 (10)0.0240
N80.91018 (12)0.7208 (2)0.83652 (9)0.0235
H510.74031.19440.56970.0451*
H520.64221.39720.60030.0448*
H530.58421.18830.52240.0448*
H610.75691.07560.89950.0291*
H620.60670.97490.85230.0288*
H710.71360.61560.79090.0287*
H720.75510.63990.91120.0286*
H810.95060.57630.85940.0342*
H820.91610.74200.76900.0341*
H830.95170.84940.87260.0346*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Cl10.02820 (19)0.02258 (18)0.02136 (18)0.00083 (12)0.00108 (12)0.00105 (12)
O20.0248 (5)0.0223 (5)0.0222 (5)0.0002 (4)0.0009 (4)0.0002 (4)
C30.0238 (6)0.0228 (6)0.0243 (6)0.0016 (5)0.0005 (5)0.0012 (5)
O40.0303 (5)0.0348 (6)0.0329 (6)0.0080 (5)0.0025 (4)0.0039 (5)
C50.0332 (8)0.0305 (8)0.0268 (7)0.0027 (6)0.0000 (6)0.0047 (6)
C60.0292 (7)0.0278 (7)0.0200 (6)0.0021 (6)0.0041 (5)0.0010 (5)
C70.0268 (7)0.0229 (6)0.0215 (6)0.0016 (5)0.0017 (5)0.0021 (5)
N80.0287 (6)0.0202 (5)0.0208 (5)0.0032 (4)0.0015 (4)0.0012 (4)
Geometric parameters (Å, º) top
O2—C31.3509 (16)C6—H610.968
O2—C61.4459 (17)C6—H620.989
C3—O41.2057 (18)C7—N81.4886 (18)
C3—C51.490 (2)C7—H710.973
C5—H510.945C7—H720.961
C5—H520.952N8—H810.896
C5—H530.955N8—H820.915
C6—C71.504 (2)N8—H830.895
C3—O2—C6116.20 (11)C7—C6—H62110.2
O2—C3—O4123.21 (13)H61—C6—H62109.8
O2—C3—C5110.81 (12)C6—C7—N8110.65 (11)
O4—C3—C5125.98 (13)C6—C7—H71111.4
C3—C5—H51107.9N8—C7—H71107.7
C3—C5—H52108.4C6—C7—H72109.3
H51—C5—H52109.3N8—C7—H72107.5
C3—C5—H53110.6H71—C7—H72110.2
H51—C5—H53110.7C7—N8—H81110.1
H52—C5—H53109.9C7—N8—H82108.2
O2—C6—C7112.08 (11)H81—N8—H82110.0
O2—C6—H61104.9C7—N8—H83109.3
C7—C6—H61109.3H81—N8—H83109.7
O2—C6—H62110.3H82—N8—H83109.5
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N8—H81···Cl1i0.902.263.1456 (12)171 (1)
N8—H82···Cl10.922.293.1910 (12)171 (1)
N8—H83···Cl1ii0.902.353.1923 (12)157 (1)
C5—H53···O4iii0.962.673.5965 (18)163 (1)
C7—H72···Cl1iv0.962.843.4708 (14)124 (1)
Symmetry codes: (i) x+2, y1/2, z+3/2; (ii) x+2, y+1/2, z+3/2; (iii) x+1, y+2, z+1; (iv) x, y+3/2, z+1/2.

Experimental details

Crystal data
Chemical formulaC4H10NO2+·Cl
Mr139.58
Crystal system, space groupMonoclinic, P21/c
Temperature (K)150
a, b, c (Å)9.8469 (2), 5.3263 (1), 13.2804 (2)
β (°) 99.4638 (10)
V3)687.04 (2)
Z4
Radiation typeMo Kα
µ (mm1)0.47
Crystal size (mm)0.28 × 0.13 × 0.08
Data collection
DiffractometerNonius KappaCCD
diffractometer
Absorption correctionMulti-scan
DENZO/SCALEPACK (Otwinowski & Minor, 1997)
Tmin, Tmax0.94, 0.96
No. of measured, independent and
observed [I > 2σ(I)] reflections
14336, 1563, 1413
Rint0.014
(sin θ/λ)max1)0.649
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.032, 0.080, 0.93
No. of reflections1563
No. of parameters73
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.25, 0.28

Computer programs: COLLECT (Nonius, 2001)., DENZO and SCALEPACK (Otwinowski & Minor, 1997), SIR92 (Altomare et al., 1994), CAMERON (Watkin et al., 1996), CRYSTALS (Betteridge et al., 2003) and PLATON (Spek, 2009).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N8—H81···Cl1i0.8962.25663.1456 (12)171.32 (3)
N8—H82···Cl10.9152.28513.1910 (12)170.64 (3)
N8—H83···Cl1ii0.8952.34843.1923 (12)157.11 (3)
C5—H53···O4iii0.9552.67103.5965 (18)163.27 (4)
C7—H72···Cl1iv0.9612.84383.4708 (14)123.70 (3)
Symmetry codes: (i) x+2, y1/2, z+3/2; (ii) x+2, y+1/2, z+3/2; (iii) x+1, y+2, z+1; (iv) x, y+3/2, z+1/2.
 

Footnotes

Present address: Institut für Organische Chemie, TU Braunschweig, Hagenring 30, D-38106 Braunschweig, Germany.

Acknowledgements

TG thanks Deutsche Forschungsgemeinschaft (DFG), Germany, for generous funding (GR 3693/1–1:1).

References

First citationAkkerman, F., Buschmann, J., Lentz, D., Luger, P. & Rödel, E. (2003). J. Chem. Crystallogr. 33, 969–975.  Web of Science CSD CrossRef CAS Google Scholar
First citationAltomare, A., Cascarano, G., Giacovazzo, C., Guagliardi, A., Burla, M. C., Polidori, G. & Camalli, M. (1994). J. Appl. Cryst. 27, 435.  CrossRef Web of Science IUCr Journals Google Scholar
First citationAmos, R. D., Handy, N. C., Jones, P. G., Kirby, A. J., Parker, J. K., Percy, J. M. & Su, M. D. (1992). J. Chem. Soc. Perkin Trans. 2, pp. 549–558.  CrossRef Web of Science Google Scholar
First citationBetteridge, P. W., Carruthers, J. R., Cooper, R. I., Prout, K. & Watkin, D. J. (2003). J. Appl. Cryst. 36, 1487.  Web of Science CrossRef IUCr Journals Google Scholar
First citationCooper, R. I., Thompson, A. L. & Watkin, D. J. (2010). J. Appl. Cryst. 43, 1100–1107.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationGossage, R. A., Jenkins, H. A. & Quail, J. W. (2010). J. Chem. Crystallogr. 40, 272–277.  Web of Science CSD CrossRef CAS Google Scholar
First citationHansen, B. (1963). Acta Chem. Scand. 17, 1307–1314.  CrossRef CAS Web of Science Google Scholar
First citationHe, Y.-J., Zou, P., Wang, H.-Y., Wu, H. & Xie, M.-H. (2010). Acta Cryst. E66, o2115.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationNonius (2001). COLLECT. Nonius BV, Delft, The Netherlands.  Google Scholar
First citationOtwinowski, Z. & Minor, W. (1997). Methods in Enzymology, Vol. 276, Macromolecular Crystallography, Part A, edited by C. W. Carter Jr & R. M. Sweet, pp. 307–326. New York: Academic Press.  Google Scholar
First citationPrince, E. (1982). Mathematical Techniques in Crystallography and Materials Science. New York: Springer-Verlag.  Google Scholar
First citationRobinson, R. I., Stephens, J. C., Worden, S. M., Blake, A. J., Wilson, C. & Woodward, S. (2004). Eur. J. Org. Chem. pp. 4596–4605.  Web of Science CSD CrossRef Google Scholar
First citationSpek, A. L. (2009). Acta Cryst. D65, 148–155.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationTarafdar, P. K. & Swamy, M. J. (2010). Biochim. Biophys. Acta, 1978, 872–881.  CrossRef Google Scholar
First citationVilela, S. M. F., Almeida Paz, F. A., Tomé, J. P. C., Zea Bermudez, V. de, Cavaleiro, J. A. S. & Rocha, J. (2009). Acta Cryst. E65, o1970.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationWatkin, D. (1994). Acta Cryst. A50, 411–437.  CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationWatkin, D. J., Prout, C. K. & Pearce, L. J. (1996). CAMERON. Chemical Crystallography Laboratory, Oxford, England.  Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds