organic compounds
1,1,3,3-Tetraethylisoindolin-2-ium chloride
aScience and Engineering Faculty, Queensland University of Technology, GPO Box 2434, Brisbane, Queensland 4001, Australia
*Correspondence e-mail: g.smith@qut.edu.au
In the title compound, C16H26N+·Cl−, the cations and anions form discrete centrosymetric cyclic dimers through N—H⋯Cl hydrogen-bonding associations with graph-set R42(8).
Related literature
For the structures of related isoindoline and isoindolinium compounds, see: Fairhurst et al. (1996); Micallef et al. (1999). For the synthesis of alkyl-substituted isoindolines, see: Tönjes et al. (1964); Griffiths et al. (1983). For graph-set anlysis, see: Etter et al. (1990).
Experimental
Crystal data
|
Refinement
|
Data collection: CrysAlis PRO (Oxford Diffraction, 2010); cell CrysAlis PRO; data reduction: CrysAlis PRO; program(s) used to solve structure: SIR92 (Altomare et al., 1994); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008) within WinGX (Farrugia, 1999); molecular graphics: PLATON (Spek, 2009); software used to prepare material for publication: PLATON.
Supporting information
10.1107/S1600536812004588/lh5407sup1.cif
contains datablocks global, I. DOI:Structure factors: contains datablock I. DOI: 10.1107/S1600536812004588/lh5407Isup2.hkl
Supporting information file. DOI: 10.1107/S1600536812004588/lh5407Isup3.cml
The title compound was synthesized using a modification of the method of Tönjes et al. (1964) for the synthesis of the 1,1,3,3-tetramethyl analogue (Griffiths et al., 1983). The modification involved the use of ethylmagnesium iodide in the reaction with N-benzylphthalimide followed by hydrogenation and conversion to the chloride salt. Colourless needles were obtained from a solution in glacial acetic acid and a specimen was cleaved for the X-ray analysis.
Hydrogen atoms involved in hydrogen-bonding interactions were located in a difference Fourier and their positional and isotropic displacement parameters were refined. Other H-atoms were included in the
at calculated positions [C–H = 0.93–0.97 Å, with Uiso(H) = 1.2Ueq (aromatic or methylene C) or 1.5Ueq(methyl C)], using a riding-model approximation.Data collection: CrysAlis PRO (Oxford Diffraction, 2010); cell
CrysAlis PRO (Oxford Diffraction, 2010); data reduction: CrysAlis PRO (Oxford Diffraction, 2010); program(s) used to solve structure: SIR92 (Altomare et al., 1994); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008) within WinGX (Farrugia, 1999); molecular graphics: PLATON (Spek, 2009); software used to prepare material for publication: PLATON (Spek, 2009).C16H26N+·Cl− | F(000) = 1168 |
Mr = 267.83 | Dx = 1.164 Mg m−3 |
Orthorhombic, Pbca | Mo Kα radiation, λ = 0.71073 Å |
Hall symbol: -P 2ac 2ab | Cell parameters from 4071 reflections |
a = 12.7282 (4) Å | θ = 3.2–28.8° |
b = 14.0676 (4) Å | µ = 0.24 mm−1 |
c = 17.0771 (5) Å | T = 200 K |
V = 3057.74 (16) Å3 | Needle, colourless |
Z = 8 | 0.45 × 0.12 × 0.08 mm |
Oxford Diffraction Gemini-S CCD diffractometer | 3007 independent reflections |
Radiation source: Enhance (Mo) X-ray source | 2126 reflections with I > 2σ(I) |
Graphite monochromator | Rint = 0.028 |
Detector resolution: 16.077 pixels mm-1 | θmax = 26.0°, θmin = 3.2° |
ω scans | h = −14→15 |
Absorption correction: multi-scan (CrysAlis PRO; Oxford Diffraction, 2010) | k = −17→16 |
Tmin = 0.980, Tmax = 0.990 | l = −9→21 |
9765 measured reflections |
Refinement on F2 | Primary atom site location: structure-invariant direct methods |
Least-squares matrix: full | Secondary atom site location: difference Fourier map |
R[F2 > 2σ(F2)] = 0.034 | Hydrogen site location: inferred from neighbouring sites |
wR(F2) = 0.086 | H atoms treated by a mixture of independent and constrained refinement |
S = 0.91 | w = 1/[σ2(Fo2) + (0.0507P)2] where P = (Fo2 + 2Fc2)/3 |
3007 reflections | (Δ/σ)max < 0.001 |
171 parameters | Δρmax = 0.25 e Å−3 |
0 restraints | Δρmin = −0.15 e Å−3 |
C16H26N+·Cl− | V = 3057.74 (16) Å3 |
Mr = 267.83 | Z = 8 |
Orthorhombic, Pbca | Mo Kα radiation |
a = 12.7282 (4) Å | µ = 0.24 mm−1 |
b = 14.0676 (4) Å | T = 200 K |
c = 17.0771 (5) Å | 0.45 × 0.12 × 0.08 mm |
Oxford Diffraction Gemini-S CCD diffractometer | 3007 independent reflections |
Absorption correction: multi-scan (CrysAlis PRO; Oxford Diffraction, 2010) | 2126 reflections with I > 2σ(I) |
Tmin = 0.980, Tmax = 0.990 | Rint = 0.028 |
9765 measured reflections |
R[F2 > 2σ(F2)] = 0.034 | 0 restraints |
wR(F2) = 0.086 | H atoms treated by a mixture of independent and constrained refinement |
S = 0.91 | Δρmax = 0.25 e Å−3 |
3007 reflections | Δρmin = −0.15 e Å−3 |
171 parameters |
Geometry. Bond distances, angles etc. have been calculated using the rounded fractional coordinates. All su's are estimated from the variances of the (full) variance-covariance matrix. The cell e.s.d.'s are taken into account in the estimation of distances, angles and torsion angles |
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger. |
x | y | z | Uiso*/Ueq | ||
N2 | 0.57440 (10) | 0.11256 (10) | 0.59705 (8) | 0.0215 (4) | |
C1 | 0.53181 (12) | 0.11091 (11) | 0.68132 (9) | 0.0231 (5) | |
C3 | 0.66601 (12) | 0.18396 (10) | 0.58973 (9) | 0.0228 (5) | |
C4 | 0.71046 (12) | 0.31935 (11) | 0.68650 (9) | 0.0265 (5) | |
C5 | 0.68541 (13) | 0.36369 (11) | 0.75667 (10) | 0.0294 (5) | |
C6 | 0.60529 (13) | 0.32973 (11) | 0.80353 (9) | 0.0281 (5) | |
C7 | 0.55023 (12) | 0.24882 (11) | 0.78244 (9) | 0.0262 (5) | |
C8 | 0.57612 (12) | 0.20269 (10) | 0.71300 (9) | 0.0213 (5) | |
C9 | 0.65433 (11) | 0.23876 (10) | 0.66514 (9) | 0.0210 (5) | |
C11 | 0.58119 (13) | 0.02388 (11) | 0.72323 (9) | 0.0296 (5) | |
C12 | 0.55776 (16) | 0.01439 (14) | 0.81002 (10) | 0.0443 (7) | |
C13 | 0.41208 (12) | 0.10409 (12) | 0.68007 (10) | 0.0306 (5) | |
C14 | 0.35314 (13) | 0.19029 (12) | 0.65082 (11) | 0.0391 (6) | |
C31 | 0.65211 (13) | 0.24731 (12) | 0.51751 (9) | 0.0313 (6) | |
C32 | 0.55947 (15) | 0.31571 (13) | 0.51940 (11) | 0.0406 (6) | |
C33 | 0.77174 (12) | 0.13089 (12) | 0.58608 (11) | 0.0338 (6) | |
C34 | 0.79401 (15) | 0.07602 (14) | 0.51062 (12) | 0.0484 (7) | |
Cl1 | 0.41410 (3) | 0.10600 (3) | 0.45532 (2) | 0.0300 (1) | |
H1A | 0.5909 (13) | 0.0523 (13) | 0.5829 (11) | 0.038 (5)* | |
H1B | 0.5243 (13) | 0.1283 (11) | 0.5609 (10) | 0.025 (4)* | |
H4 | 0.76350 | 0.34300 | 0.65460 | 0.0320* | |
H5 | 0.72310 | 0.41700 | 0.77240 | 0.0350* | |
H6 | 0.58820 | 0.36150 | 0.84960 | 0.0340* | |
H7 | 0.49670 | 0.22560 | 0.81420 | 0.0310* | |
H11A | 0.55690 | −0.03330 | 0.69710 | 0.0350* | |
H11B | 0.65680 | 0.02690 | 0.71660 | 0.0350* | |
H12A | 0.59160 | −0.04150 | 0.83010 | 0.0660* | |
H12B | 0.48330 | 0.00930 | 0.81770 | 0.0660* | |
H12C | 0.58360 | 0.06940 | 0.83720 | 0.0660* | |
H13A | 0.39270 | 0.05030 | 0.64760 | 0.0370* | |
H13B | 0.38830 | 0.09050 | 0.73280 | 0.0370* | |
H14A | 0.27900 | 0.17790 | 0.65230 | 0.0590* | |
H14B | 0.37400 | 0.20390 | 0.59800 | 0.0590* | |
H14C | 0.36890 | 0.24390 | 0.68360 | 0.0590* | |
H31A | 0.71590 | 0.28410 | 0.51050 | 0.0370* | |
H31B | 0.64460 | 0.20660 | 0.47200 | 0.0370* | |
H32A | 0.55800 | 0.35200 | 0.47180 | 0.0610* | |
H32B | 0.56670 | 0.35790 | 0.56320 | 0.0610* | |
H32C | 0.49530 | 0.28030 | 0.52440 | 0.0610* | |
H33A | 0.82770 | 0.17680 | 0.59370 | 0.0410* | |
H33B | 0.77460 | 0.08650 | 0.62950 | 0.0410* | |
H34A | 0.86140 | 0.04570 | 0.51440 | 0.0730* | |
H34B | 0.79410 | 0.11920 | 0.46710 | 0.0730* | |
H34C | 0.74060 | 0.02880 | 0.50300 | 0.0730* |
U11 | U22 | U33 | U12 | U13 | U23 | |
N2 | 0.0211 (7) | 0.0257 (7) | 0.0177 (7) | −0.0002 (6) | −0.0007 (6) | −0.0027 (6) |
C1 | 0.0233 (8) | 0.0279 (8) | 0.0181 (8) | −0.0014 (7) | 0.0032 (6) | −0.0008 (7) |
C3 | 0.0205 (8) | 0.0284 (8) | 0.0196 (8) | −0.0049 (7) | 0.0027 (6) | −0.0033 (7) |
C4 | 0.0260 (9) | 0.0310 (9) | 0.0226 (9) | −0.0042 (7) | 0.0025 (7) | 0.0020 (7) |
C5 | 0.0354 (10) | 0.0260 (8) | 0.0269 (9) | −0.0036 (7) | −0.0052 (7) | −0.0031 (7) |
C6 | 0.0367 (10) | 0.0283 (9) | 0.0194 (8) | 0.0081 (7) | −0.0007 (7) | −0.0042 (7) |
C7 | 0.0277 (9) | 0.0314 (9) | 0.0195 (8) | 0.0033 (7) | 0.0047 (6) | 0.0037 (7) |
C8 | 0.0206 (8) | 0.0250 (8) | 0.0182 (8) | 0.0022 (6) | −0.0002 (6) | 0.0010 (7) |
C9 | 0.0195 (8) | 0.0262 (8) | 0.0173 (8) | 0.0028 (7) | −0.0007 (6) | −0.0006 (7) |
C11 | 0.0345 (10) | 0.0274 (9) | 0.0269 (9) | 0.0008 (8) | −0.0001 (8) | 0.0027 (7) |
C12 | 0.0594 (13) | 0.0461 (11) | 0.0274 (10) | 0.0057 (10) | 0.0009 (9) | 0.0078 (9) |
C13 | 0.0241 (8) | 0.0378 (9) | 0.0298 (9) | −0.0025 (8) | 0.0038 (7) | 0.0009 (8) |
C14 | 0.0277 (10) | 0.0511 (11) | 0.0384 (11) | 0.0086 (9) | 0.0028 (8) | −0.0024 (9) |
C31 | 0.0369 (10) | 0.0400 (10) | 0.0169 (9) | −0.0107 (8) | 0.0024 (7) | −0.0002 (8) |
C32 | 0.0508 (12) | 0.0372 (10) | 0.0338 (10) | −0.0044 (9) | −0.0092 (8) | 0.0118 (9) |
C33 | 0.0225 (9) | 0.0419 (10) | 0.0370 (11) | −0.0001 (8) | 0.0066 (7) | −0.0069 (8) |
C34 | 0.0368 (11) | 0.0508 (12) | 0.0576 (14) | −0.0053 (9) | 0.0198 (10) | −0.0192 (11) |
Cl1 | 0.0298 (2) | 0.0341 (2) | 0.0260 (2) | 0.0029 (2) | −0.0059 (2) | −0.0047 (2) |
N2—C1 | 1.538 (2) | C6—H6 | 0.9300 |
N2—C3 | 1.544 (2) | C7—H7 | 0.9300 |
N2—H1A | 0.906 (18) | C11—H11A | 0.9700 |
N2—H1B | 0.915 (17) | C11—H11B | 0.9700 |
C1—C8 | 1.509 (2) | C12—H12A | 0.9600 |
C1—C13 | 1.527 (2) | C12—H12B | 0.9600 |
C1—C11 | 1.551 (2) | C12—H12C | 0.9600 |
C3—C31 | 1.532 (2) | C13—H13A | 0.9700 |
C3—C33 | 1.540 (2) | C13—H13B | 0.9700 |
C3—C9 | 1.508 (2) | C14—H14A | 0.9600 |
C4—C5 | 1.388 (2) | C14—H14B | 0.9600 |
C4—C9 | 1.389 (2) | C14—H14C | 0.9600 |
C5—C6 | 1.382 (2) | C31—H31A | 0.9700 |
C6—C7 | 1.384 (2) | C31—H31B | 0.9700 |
C7—C8 | 1.391 (2) | C32—H32A | 0.9600 |
C8—C9 | 1.384 (2) | C32—H32B | 0.9600 |
C11—C12 | 1.518 (2) | C32—H32C | 0.9600 |
C13—C14 | 1.511 (2) | C33—H33A | 0.9700 |
C31—C32 | 1.522 (3) | C33—H33B | 0.9700 |
C33—C34 | 1.529 (3) | C34—H34A | 0.9600 |
C4—H4 | 0.9300 | C34—H34B | 0.9600 |
C5—H5 | 0.9300 | C34—H34C | 0.9600 |
C1—N2—C3 | 110.59 (12) | C12—C11—H11A | 108.00 |
H1A—N2—H1B | 102.0 (15) | C12—C11—H11B | 108.00 |
C1—N2—H1A | 108.5 (12) | H11A—C11—H11B | 107.00 |
C1—N2—H1B | 112.9 (11) | C11—C12—H12A | 109.00 |
C3—N2—H1A | 114.3 (11) | C11—C12—H12B | 110.00 |
C3—N2—H1B | 108.3 (10) | C11—C12—H12C | 109.00 |
N2—C1—C13 | 109.85 (12) | H12A—C12—H12B | 109.00 |
C8—C1—C11 | 111.00 (12) | H12A—C12—H12C | 109.00 |
N2—C1—C11 | 107.51 (12) | H12B—C12—H12C | 109.00 |
N2—C1—C8 | 101.00 (12) | C1—C13—H13A | 108.00 |
C11—C1—C13 | 111.17 (13) | C1—C13—H13B | 108.00 |
C8—C1—C13 | 115.57 (13) | C14—C13—H13A | 108.00 |
C9—C3—C33 | 111.62 (13) | C14—C13—H13B | 108.00 |
C9—C3—C31 | 112.25 (12) | H13A—C13—H13B | 107.00 |
N2—C3—C9 | 100.89 (12) | C13—C14—H14A | 109.00 |
N2—C3—C31 | 110.88 (12) | C13—C14—H14B | 109.00 |
N2—C3—C33 | 110.35 (12) | C13—C14—H14C | 110.00 |
C31—C3—C33 | 110.51 (13) | H14A—C14—H14B | 109.00 |
C5—C4—C9 | 118.39 (14) | H14A—C14—H14C | 109.00 |
C4—C5—C6 | 120.95 (15) | H14B—C14—H14C | 109.00 |
C5—C6—C7 | 120.49 (14) | C3—C31—H31A | 108.00 |
C6—C7—C8 | 119.03 (14) | C3—C31—H31B | 108.00 |
C1—C8—C9 | 111.76 (13) | C32—C31—H31A | 108.00 |
C7—C8—C9 | 120.17 (14) | C32—C31—H31B | 108.00 |
C1—C8—C7 | 128.03 (14) | H31A—C31—H31B | 107.00 |
C3—C9—C8 | 112.81 (13) | C31—C32—H32A | 109.00 |
C4—C9—C8 | 120.94 (14) | C31—C32—H32B | 109.00 |
C3—C9—C4 | 126.21 (13) | C31—C32—H32C | 109.00 |
C1—C11—C12 | 116.13 (14) | H32A—C32—H32B | 109.00 |
C1—C13—C14 | 116.72 (14) | H32A—C32—H32C | 110.00 |
C3—C31—C32 | 116.11 (14) | H32B—C32—H32C | 109.00 |
C3—C33—C34 | 116.16 (14) | C3—C33—H33A | 108.00 |
C5—C4—H4 | 121.00 | C3—C33—H33B | 108.00 |
C9—C4—H4 | 121.00 | C34—C33—H33A | 108.00 |
C4—C5—H5 | 120.00 | C34—C33—H33B | 108.00 |
C6—C5—H5 | 119.00 | H33A—C33—H33B | 107.00 |
C5—C6—H6 | 120.00 | C33—C34—H34A | 109.00 |
C7—C6—H6 | 120.00 | C33—C34—H34B | 109.00 |
C6—C7—H7 | 121.00 | C33—C34—H34C | 109.00 |
C8—C7—H7 | 120.00 | H34A—C34—H34B | 109.00 |
C1—C11—H11A | 108.00 | H34A—C34—H34C | 110.00 |
C1—C11—H11B | 108.00 | H34B—C34—H34C | 110.00 |
C3—N2—C1—C8 | 17.41 (15) | C31—C3—C9—C8 | 122.53 (14) |
C3—N2—C1—C11 | −98.96 (14) | C33—C3—C9—C4 | 69.65 (19) |
C3—N2—C1—C13 | 139.94 (13) | C33—C3—C9—C8 | −112.77 (15) |
C1—N2—C3—C33 | 104.26 (14) | N2—C3—C31—C32 | 66.66 (17) |
C1—N2—C3—C9 | −13.87 (15) | C9—C3—C31—C32 | −45.33 (19) |
C1—N2—C3—C31 | −132.96 (13) | C33—C3—C31—C32 | −170.65 (14) |
N2—C1—C8—C9 | −14.63 (16) | N2—C3—C33—C34 | 71.03 (18) |
C13—C1—C8—C7 | 49.6 (2) | C9—C3—C33—C34 | −177.64 (14) |
C11—C1—C8—C7 | −78.24 (19) | C31—C3—C33—C34 | −51.97 (18) |
C11—C1—C8—C9 | 99.12 (15) | C9—C4—C5—C6 | −1.2 (2) |
N2—C1—C8—C7 | 168.01 (15) | C5—C4—C9—C3 | 176.62 (14) |
C13—C1—C11—C12 | −65.51 (18) | C5—C4—C9—C8 | −0.8 (2) |
N2—C1—C13—C14 | −69.14 (18) | C4—C5—C6—C7 | 1.9 (2) |
C8—C1—C13—C14 | 44.3 (2) | C5—C6—C7—C8 | −0.6 (2) |
C11—C1—C13—C14 | 171.99 (14) | C6—C7—C8—C1 | 175.77 (15) |
C13—C1—C8—C9 | −133.09 (14) | C6—C7—C8—C9 | −1.4 (2) |
N2—C1—C11—C12 | 174.22 (14) | C1—C8—C9—C3 | 6.78 (18) |
C8—C1—C11—C12 | 64.62 (18) | C1—C8—C9—C4 | −175.50 (14) |
N2—C3—C9—C4 | −173.14 (14) | C7—C8—C9—C3 | −175.63 (13) |
N2—C3—C9—C8 | 4.44 (16) | C7—C8—C9—C4 | 2.1 (2) |
C31—C3—C9—C4 | −55.1 (2) |
D—H···A | D—H | H···A | D···A | D—H···A |
N2—H1A···Cl1i | 0.906 (18) | 2.322 (18) | 3.2054 (15) | 165.0 (15) |
N2—H1B···Cl1 | 0.915 (17) | 2.306 (17) | 3.1669 (14) | 156.8 (14) |
C4—H4···Cl1ii | 0.93 | 2.78 | 3.6995 (16) | 172 |
C11—H11A···Cl1i | 0.97 | 2.82 | 3.5551 (16) | 133 |
C34—H34C···Cl1i | 0.96 | 2.82 | 3.730 (2) | 158 |
Symmetry codes: (i) −x+1, −y, −z+1; (ii) x+1/2, −y+1/2, −z+1. |
Experimental details
Crystal data | |
Chemical formula | C16H26N+·Cl− |
Mr | 267.83 |
Crystal system, space group | Orthorhombic, Pbca |
Temperature (K) | 200 |
a, b, c (Å) | 12.7282 (4), 14.0676 (4), 17.0771 (5) |
V (Å3) | 3057.74 (16) |
Z | 8 |
Radiation type | Mo Kα |
µ (mm−1) | 0.24 |
Crystal size (mm) | 0.45 × 0.12 × 0.08 |
Data collection | |
Diffractometer | Oxford Diffraction Gemini-S CCD diffractometer |
Absorption correction | Multi-scan (CrysAlis PRO; Oxford Diffraction, 2010) |
Tmin, Tmax | 0.980, 0.990 |
No. of measured, independent and observed [I > 2σ(I)] reflections | 9765, 3007, 2126 |
Rint | 0.028 |
(sin θ/λ)max (Å−1) | 0.617 |
Refinement | |
R[F2 > 2σ(F2)], wR(F2), S | 0.034, 0.086, 0.91 |
No. of reflections | 3007 |
No. of parameters | 171 |
H-atom treatment | H atoms treated by a mixture of independent and constrained refinement |
Δρmax, Δρmin (e Å−3) | 0.25, −0.15 |
Computer programs: CrysAlis PRO (Oxford Diffraction, 2010), SIR92 (Altomare et al., 1994), SHELXL97 (Sheldrick, 2008) within WinGX (Farrugia, 1999), PLATON (Spek, 2009).
D—H···A | D—H | H···A | D···A | D—H···A |
N2—H1A···Cl1i | 0.906 (18) | 2.322 (18) | 3.2054 (15) | 165.0 (15) |
N2—H1B···Cl1 | 0.915 (17) | 2.306 (17) | 3.1669 (14) | 156.8 (14) |
Symmetry code: (i) −x+1, −y, −z+1. |
Acknowledgements
The authors acknowledge financial support from the Australian Research Council, and the Science and Engineering Faculty and the University Library, Queensland University of Technology.
References
Altomare, A., Cascarano, G., Giacovazzo, C., Guagliardi, A., Burla, M. C., Polidori, G. & Camalli, M. (1994). J. Appl. Cryst. 27, 435. CrossRef Web of Science IUCr Journals Google Scholar
Etter, M. C., MacDonald, J. C. & Bernstein, J. (1990). Acta Cryst. B46, 256–262. CrossRef CAS Web of Science IUCr Journals Google Scholar
Fairhurst, S. A., Gillies, D. G., Smith, G. W., Sutcliffe, L. H. & Wu, X. (1996). J. Mol. Struct. 375, 105–115. CSD CrossRef CAS Web of Science Google Scholar
Farrugia, L. J. (1999). J. Appl. Cryst. 32, 837–838. CrossRef CAS IUCr Journals Google Scholar
Griffiths, P. G., Moad, G., Rizzardo, E. & Solomon, D. H. (1983). Aust. J. Chem. 36, 397–401. CrossRef CAS Google Scholar
Micallef, A. S., Bott, R. C., Bottle, S. E., Smith, G., White, J. M., Matsuda, K. & Iwamura, H. (1999). J. Chem. Soc. Perkin Trans. 2, pp. 65–71. CSD CrossRef Google Scholar
Oxford Diffraction (2010). CrysAlis PRO. Oxford Diffraction Ltd, Yarnton, Oxfordshire, England. Google Scholar
Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. Web of Science CrossRef CAS IUCr Journals Google Scholar
Spek, A. L. (2009). Acta Cryst. D65, 148–155. Web of Science CrossRef CAS IUCr Journals Google Scholar
Tönjes, H., Heidenbluth, K. & Scheffler, R. (1964). J. Prakt. Chem. 26, 218–224. Google Scholar
This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.
The 1,1,3,3-tetraalkyl-substituted isoindolines have been useful intermediates for the synthesis of nitroxide free-radical scavengers (Griffiths et al., 1983). However, few structures of these compounds are found in the crystallographic literature, e.g. 5-nitro-1,1,3,3-tetramethylisoindoline (Fairhurst et al., 1996) and the salt hydrate 1,1,3,3-tetramethylisoindolinium bromide dihydrate (Micallef et al., 1999). The analogous anhydrous 1,1,3,3-tetraethyl-substituted salt C16H26N+ Cl-, the title compound, has been synthesized and the structure is reported here.
The molecular structure of the title compound is shown in Fig. 1. The cations and the chloride anions form discrete centrosymetric cyclic dimers through N—H···Cl hydrogen-bonding associations [graph set R24(8) (Etter et al., 1990)] (Table 1, Fig. 2). The ethyl substituent groups of the molecule adopt various conformations [torsion angles N2—C1—C11—C12, 174.22 (14)°; N2—C1—C13—C14, -69.14 (18)°; N2—C3—C31—C32, 66.66 (17)°; N2—C3—C33—C34, 71.03 (18)°].