organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 68| Part 3| March 2012| Pages o598-o599

3,6-Bis(4-chloro­phen­yl)-N1,N4-bis­­(1-phenyl­eth­yl)-1,2,4,5-tetra­zine-1,4-di­carboxamide

aCollege of Biology and Environmental Engineering, Zhejiang Shuren University, Hangzhou 310015, People's Republic of China, and bCollege of Pharmaceutical Science, Zhejiang University of Technology, Hangzhou 310014, People's Republic of China
*Correspondence e-mail: rgw@zjut.edu.cn

(Received 20 January 2012; accepted 28 January 2012; online 4 February 2012)

In the title mol­ecule, C32H28Cl2N6O2, the amide-substituted N atoms of the tetra­zine ring deviate from the approximate plane of the four other atoms in the ring by 0.468 (3) and 0.484 (3) Å, forming a boat conformation. The dihedral angle between the two phenyl rings is 67.0 (1)° and that between the two chloro-substituted benzene rings is 73.8 (1)°. Two intra­molecular N—H⋯N hydrogen bonds are observed.

Related literature

For chemical reactions of 1,2,4,5-tetra­zine derivatives, see: Domingo et al. (2009[Domingo, L. R., Picher, M. T. & Saez, J. A. (2009). J. Org. Chem. 74, 2726-2735.]); Lorincz et al. (2010[Lorincz, K., Kotschy, A., Tammiku-Taul, J., Sikk, L. & Burk, P. (2010). J. Org. Chem. 75, 6196-6200.]). For their biological activities, see: Devaraj et al. (2009[Devaraj, N. K., Upadhyay, R., Haun, J. B., Hilderbrand, S. A. & Weissleder, R. (2009). Angew. Chem. Int. Ed. 48, 7013-7016.]); Eremeev et al. (1978[Eremeev, A. V., Tikhomirv, D. A., Tyusheva, V. A. & Liepins, F. (1978). Khim. Geterotsikl. Soedin. 6, 753-757.], 1980[Eremeev, A. V., Tikhomirova, D. A. & Zidermane, A. (1980). USSR Patent No. 686336.]); Han et al. (2010[Han, H. S., Devaraj, N. K., Lee, J., Hilderbrand, S. A., Weissleder, R. & Bawendi, M. G. (2010). J. Am. Chem. Soc. 132, 7838-7839.]); Neunhoeffer (1984[Neunhoeffer, H. (1984). Comprehensive Heterocyclic Chemistry, 1st ed., edited by A. R. Katritzky, Vol. 3, pp. 531-572. Frankfurt: Pergamon.]); Sauer (1996[Sauer, J. (1996). Comprehensive Heterocyclic Chemistry, 2nd ed., edited by A. J. Boulton, Vol. 6, pp. 901-955. Oxford: Elsevier.]). For anti-tumor activity of 1,2,4,5-tetra­zine derivatives, see: Hu et al. (2002[Hu, W. X., Sun, Y. Q., Yuan, Q. & Yang, Z. Y. (2002). Chem. J. Chin. Univ. 23, 1877-1881.], 2004[Hu, W. X., Rao, G. W. & Sun, Y. Q. (2004). Bioorg. Med. Chem. Lett. 14, 1177-1181.]); Rao & Hu (2005[Rao, G. W. & Hu, W. X. (2005). Bioorg. Med. Chem. Lett. 15, 3174-3176.], 2006[Rao, G. W. & Hu, W. X. (2006). Bioorg. Med. Chem. Lett. 16, 3702-3705.]). For standard bond lengths, see: Allen et al. (1987[Allen, F. H., Kennard, O., Watson, D. G., Brammer, L. & Orpen, A. G. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1-19.]). For the synthesis of the title compound, see: Abdel-rahman et al. (1968[Abdel, N. O., Kira, M. A. & Tolba, M. N. (1968). Tetrahedron Lett. 9, 3871-3872.]); Hu et al. (2004[Hu, W. X., Rao, G. W. & Sun, Y. Q. (2004). Bioorg. Med. Chem. Lett. 14, 1177-1181.]); Rao & Hu (2006[Rao, G. W. & Hu, W. X. (2006). Bioorg. Med. Chem. Lett. 16, 3702-3705.]).

[Scheme 1]

Experimental

Crystal data
  • C32H28Cl2N6O2

  • Mr = 599.50

  • Orthorhombic, P 21 21 21

  • a = 9.715 (2) Å

  • b = 14.725 (3) Å

  • c = 21.159 (5) Å

  • V = 3027.0 (12) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.25 mm−1

  • T = 298 K

  • 0.23 × 0.19 × 0.12 mm

Data collection
  • Bruker SMART CCD diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 1997[Bruker (1997). SMART, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]) Tmin = 0.944, Tmax = 0.970

  • 19445 measured reflections

  • 7314 independent reflections

  • 4680 reflections with I > 2σ(I)

  • Rint = 0.033

Refinement
  • R[F2 > 2σ(F2)] = 0.042

  • wR(F2) = 0.099

  • S = 1.01

  • 7314 reflections

  • 380 parameters

  • H-atom parameters constrained

  • Δρmax = 0.13 e Å−3

  • Δρmin = −0.15 e Å−3

  • Absolute structure: Flack (1983[Flack, H. D. (1983). Acta Cryst. A39, 876-881.]), with 3185 Friedel pairs

  • Flack parameter: 0.03 (5)

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
N3—H3⋯N2 0.86 2.21 2.613 (2) 109
N6—H6⋯N5 0.86 2.13 2.573 (2) 112

Data collection: SMART (Bruker, 1997[Bruker (1997). SMART, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 1997[Bruker (1997). SMART, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: ORTEP-3 for Windows (Farrugia, 1997[Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.]); software used to prepare material for publication: WinGX (Farrugia, 1999[Farrugia, L. J. (1999). J. Appl. Cryst. 32, 837-838.]).

Supporting information


Comment top

Tetrazine derivatives have high activity in chemical reactions (Domingo et al., 2009; Lorincz et al., 2010), and have been widely used in medicines and pesticides (Devaraj et al., 2009; Eremeev et al., 1978, 1980; Han et al., 2010; Neunhoeffer, 1984; Sauer, 1996). In a continuation of our studies of antitumor activities in 1,2,4,5-tetrazine derivatives (Hu et al., 2002, 2004; Rao & Hu, 2005, 2006), we have obtained a yellow crystalline compound, (I). However, IR, NMR, and MS studies failed to prove whether the substituted groups of the nitrogen are located at the 1,4 or 1,2 position. The structure was confirmed by single-crystal X-ray diffraction. The molecular structure of (I) is illustrated in Fig. 1.

The N2C3 [1.282 (2) Å] and N5C6 [1.285 (2) Å] bonds are typical as are the C3—N4 [1.407 (3) Å], N4—N5 [1.429 (2) Å], C6—N1 [1.396 (2) Å] and N1—N2 [1.417 (2) Å] bonds (Allen et al., 1987). The tetrazine ring is a 1,4-dihydro structure with the N-substituted groups at the 1,4-positions.

In (I), atoms N2, C3, N5 and C6 are approximately planar, with the largest deviation from this plane being 0.0236 (9) Å. Atoms N1 and N4 deviate from this plane by 0.468 (3) and 0.484 (3) Å, respectively. The dihedral angle between the N2/C3/N5/C6 plane and the N1/N2/C6 plane is 38.00 (17)°, and between the N2/C3/N5/C6 plane and the N4/N5/C3 plane is 38.81 (14)°. The tetrazine ring has a boat conformation. The dihedral angles between the N2/C3/N5/C6 plane and the two benzene rings at the 3,6-positions are 35.91 (10) and 42.87 (8)°, respectively. And the two benzene rings form a dihedral angle of 73.8 (1)°. Two intramolecular N—H···N hydrogen bonds are observed.

Related literature top

For chemical reactions of 1,2,4,5-tetrazine derivatives, see: Domingo et al. (2009); Lorincz et al. (2010). For their biological activities, see: Devaraj et al. (2009); Eremeev et al. (1978, 1980); Han et al. (2010); Neunhoeffer (1984); Sauer (1996). For anti-tumor activity of 1,2,4,5-tetrazine derivatives, see: Hu et al. (2002, 2004); Rao & Hu (2005, 2006). For standard bond lengths, see: Allen et al. (1987). For the synthesis of the title compound, see: Abdel-rahman et al. (1968); Hu et al. (2004); Rao & Hu (2006).

Experimental top

The title compound was prepared according to the procedure of Abdel-rahman et al. (1968); Hu et al. (2004); Rao & Hu, (2006). A solution of the compound in ethanol was concentrated gradually at room temperature to afford yellow blocks.

Refinement top

H atoms were included in calculated positions and refined using a riding model. H atoms were given isotropic displacement parameters equal to 1.2 (or 1.5 for methyl H atoms) times the equivalent isotropic displacement parameters of their parent atoms, and C—H distances were set to 0.96 Å for methyl H atoms, 0.93 Å for phenyl H atoms and 0.98 Å for methine H atoms, while N—H distances were set to 0.86 Å.

Computing details top

Data collection: SMART (Bruker, 1997); cell refinement: SAINT (Bruker, 1997); data reduction: SAINT (Bruker, 1997); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 for Windows (Farrugia, 1997); software used to prepare material for publication: WinGX (Farrugia, 1999).

Figures top
[Figure 1] Fig. 1. The molecular structure of (I), shown with 30% probability displacement ellipsoids.
[Figure 2] Fig. 2. A portion of the crystal packing of (I). Hydrogen bonds are shown as dashed lines. H atoms not involved in hydrogen bonding were omitted for clarity.
3,6-Bis(4-chlorophenyl)-N1,N4-bis(1-phenylethyl)- 1,2,4,5-tetrazine-1,4-dicarboxamide top
Crystal data top
C32H28Cl2N6O2F(000) = 1248
Mr = 599.50Dx = 1.316 Mg m3
Orthorhombic, P212121Mo Kα radiation, λ = 0.71073 Å
Hall symbol: P 2ac 2abCell parameters from 4171 reflections
a = 9.715 (2) Åθ = 2.5–21.5°
b = 14.725 (3) ŵ = 0.25 mm1
c = 21.159 (5) ÅT = 298 K
V = 3027.0 (12) Å3Block, yellow
Z = 40.23 × 0.19 × 0.12 mm
Data collection top
Bruker SMART CCD
diffractometer
7314 independent reflections
Radiation source: fine-focus sealed tube4680 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.033
ϕ and ω scansθmax = 28.2°, θmin = 1.7°
Absorption correction: multi-scan
(SADABS; Bruker, 1997)
h = 1212
Tmin = 0.944, Tmax = 0.970k = 1917
19445 measured reflectionsl = 2723
Refinement top
Refinement on F2Hydrogen site location: inferred from neighbouring sites
Least-squares matrix: fullH-atom parameters constrained
R[F2 > 2σ(F2)] = 0.042 w = 1/[σ2(Fo2) + (0.0431P)2]
where P = (Fo2 + 2Fc2)/3
wR(F2) = 0.099(Δ/σ)max < 0.001
S = 1.01Δρmax = 0.13 e Å3
7314 reflectionsΔρmin = 0.15 e Å3
380 parametersExtinction correction: SHELXL97 (Sheldrick, 2008), Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
0 restraintsExtinction coefficient: 0.0032 (5)
Primary atom site location: structure-invariant direct methodsAbsolute structure: Flack (1983), with 3185 Friedel pairs
Secondary atom site location: difference Fourier mapAbsolute structure parameter: 0.03 (5)
Crystal data top
C32H28Cl2N6O2V = 3027.0 (12) Å3
Mr = 599.50Z = 4
Orthorhombic, P212121Mo Kα radiation
a = 9.715 (2) ŵ = 0.25 mm1
b = 14.725 (3) ÅT = 298 K
c = 21.159 (5) Å0.23 × 0.19 × 0.12 mm
Data collection top
Bruker SMART CCD
diffractometer
7314 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 1997)
4680 reflections with I > 2σ(I)
Tmin = 0.944, Tmax = 0.970Rint = 0.033
19445 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.042H-atom parameters constrained
wR(F2) = 0.099Δρmax = 0.13 e Å3
S = 1.01Δρmin = 0.15 e Å3
7314 reflectionsAbsolute structure: Flack (1983), with 3185 Friedel pairs
380 parametersAbsolute structure parameter: 0.03 (5)
0 restraints
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R-factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Cl10.97748 (8)0.65714 (4)0.24050 (3)0.0762 (2)
Cl21.29647 (10)1.51972 (5)0.14950 (5)0.1031 (3)
O11.00558 (16)0.89564 (10)0.01136 (7)0.0586 (4)
N21.06405 (18)1.12227 (11)0.05805 (8)0.0481 (4)
C90.9347 (2)0.92381 (13)0.13933 (9)0.0413 (4)
N10.99625 (16)1.03724 (10)0.05423 (7)0.0456 (4)
C120.9598 (2)0.76006 (14)0.20118 (10)0.0504 (5)
N40.85399 (17)1.15911 (11)0.10225 (8)0.0458 (4)
C140.8196 (2)0.87854 (15)0.16048 (10)0.0499 (5)
H140.73290.90360.15390.060*
N50.84906 (17)1.07490 (11)0.13578 (8)0.0470 (4)
C60.92133 (19)1.01363 (13)0.10807 (9)0.0422 (5)
C30.9867 (2)1.18387 (13)0.08194 (9)0.0443 (5)
C151.0540 (2)0.97121 (14)0.01349 (9)0.0464 (5)
C130.8316 (2)0.79653 (15)0.19127 (11)0.0542 (6)
H130.75350.76610.20520.065*
O20.73843 (16)1.29115 (10)0.08359 (8)0.0599 (4)
C160.7439 (2)1.21948 (15)0.11254 (10)0.0496 (5)
C111.0759 (2)0.80464 (16)0.18125 (11)0.0594 (6)
H111.16250.78000.18860.071*
C211.3807 (2)0.92538 (15)0.03766 (10)0.0486 (5)
C101.0625 (2)0.88628 (15)0.15023 (11)0.0536 (6)
H101.14090.91660.13640.064*
C21.1644 (2)1.29943 (15)0.05976 (11)0.0595 (6)
H21.19021.26550.02460.071*
C11.0499 (2)1.27347 (13)0.09516 (9)0.0467 (5)
C71.0867 (3)1.40218 (15)0.16293 (11)0.0608 (6)
H71.06041.43740.19730.073*
C221.4427 (3)0.84197 (17)0.04630 (11)0.0667 (7)
H221.39390.79530.06570.080*
C270.5366 (2)1.26970 (15)0.23883 (11)0.0546 (6)
C81.0115 (2)1.32642 (13)0.14618 (10)0.0515 (5)
H80.93391.31080.16950.062*
N31.15792 (19)1.00173 (12)0.02169 (9)0.0609 (5)
H31.17931.05840.02000.073*
C280.5385 (2)1.20923 (16)0.28849 (12)0.0659 (7)
H280.53161.14740.28000.079*
N60.6510 (2)1.18814 (14)0.15343 (10)0.0700 (6)
H60.66551.13600.17050.084*
C251.5885 (3)0.9750 (2)0.01361 (13)0.0771 (8)
H251.63711.02000.03490.093*
C261.4546 (3)0.99204 (16)0.00713 (12)0.0654 (6)
H261.41501.04870.00030.078*
C180.5259 (2)1.23737 (17)0.17096 (12)0.0665 (7)
H180.51901.29100.14380.080*
C171.2367 (2)0.94135 (14)0.06312 (10)0.0515 (5)
H171.18940.88260.06430.062*
C191.2379 (3)0.97911 (17)0.12969 (12)0.0685 (7)
H19A1.14500.98860.14370.103*
H19B1.28290.93690.15740.103*
H19C1.28661.03580.13020.103*
C51.2012 (3)1.42479 (15)0.12797 (13)0.0647 (7)
C241.6486 (3)0.8930 (2)0.00299 (13)0.0769 (8)
H241.73870.88230.01590.092*
C310.5579 (3)1.3885 (2)0.3163 (2)0.0925 (10)
H310.56381.45010.32570.111*
C231.5758 (3)0.8270 (2)0.02661 (13)0.0766 (8)
H231.61640.77080.03370.092*
C41.2394 (3)1.37479 (17)0.07648 (13)0.0691 (7)
H41.31591.39170.05280.083*
C290.5502 (3)1.2375 (2)0.35034 (14)0.0809 (8)
H290.55101.19510.38290.097*
C320.5464 (3)1.36083 (17)0.25330 (15)0.0758 (8)
H320.54531.40390.22110.091*
C200.3998 (3)1.1790 (2)0.15957 (15)0.0967 (10)
H20A0.39691.16100.11600.145*
H20B0.31851.21310.16960.145*
H20C0.40421.12600.18590.145*
C300.5606 (3)1.3271 (3)0.36354 (15)0.0865 (9)
H300.56951.34640.40520.104*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Cl10.1065 (5)0.0540 (3)0.0681 (4)0.0008 (4)0.0168 (4)0.0070 (3)
Cl20.1104 (6)0.0705 (5)0.1283 (7)0.0315 (4)0.0333 (5)0.0013 (4)
O10.0634 (9)0.0497 (8)0.0625 (10)0.0088 (8)0.0160 (8)0.0093 (7)
N20.0526 (10)0.0440 (9)0.0476 (10)0.0026 (9)0.0097 (8)0.0061 (8)
C90.0368 (11)0.0460 (11)0.0410 (11)0.0013 (9)0.0029 (9)0.0042 (9)
N10.0480 (9)0.0437 (9)0.0450 (9)0.0011 (8)0.0108 (8)0.0067 (7)
C120.0618 (15)0.0495 (11)0.0400 (12)0.0001 (11)0.0077 (11)0.0031 (9)
N40.0481 (10)0.0448 (9)0.0445 (10)0.0062 (8)0.0053 (8)0.0007 (8)
C140.0379 (11)0.0606 (13)0.0512 (13)0.0000 (10)0.0023 (10)0.0009 (11)
N50.0456 (10)0.0499 (10)0.0454 (10)0.0041 (8)0.0043 (8)0.0036 (8)
C60.0336 (10)0.0502 (12)0.0429 (11)0.0003 (9)0.0001 (9)0.0064 (9)
C30.0518 (12)0.0451 (11)0.0360 (10)0.0044 (10)0.0010 (9)0.0016 (9)
C150.0469 (12)0.0487 (12)0.0436 (12)0.0032 (10)0.0036 (10)0.0060 (9)
C130.0486 (13)0.0627 (14)0.0512 (13)0.0106 (11)0.0032 (11)0.0041 (11)
O20.0657 (10)0.0547 (9)0.0594 (10)0.0113 (8)0.0077 (8)0.0019 (8)
C160.0518 (13)0.0567 (13)0.0404 (12)0.0115 (11)0.0057 (10)0.0122 (10)
C110.0486 (13)0.0668 (15)0.0627 (15)0.0100 (12)0.0052 (11)0.0035 (12)
C210.0541 (13)0.0506 (13)0.0411 (12)0.0066 (11)0.0122 (10)0.0053 (10)
C100.0368 (12)0.0618 (13)0.0622 (15)0.0017 (11)0.0019 (10)0.0066 (11)
C20.0738 (16)0.0514 (13)0.0533 (14)0.0008 (12)0.0101 (12)0.0003 (11)
C10.0554 (13)0.0428 (11)0.0418 (11)0.0040 (10)0.0035 (10)0.0010 (9)
C70.0797 (18)0.0516 (14)0.0510 (14)0.0029 (13)0.0144 (13)0.0077 (10)
C220.0734 (17)0.0642 (15)0.0624 (15)0.0048 (14)0.0004 (13)0.0212 (12)
C270.0377 (12)0.0559 (13)0.0701 (15)0.0103 (10)0.0135 (11)0.0005 (11)
C80.0596 (13)0.0488 (12)0.0461 (12)0.0036 (11)0.0039 (10)0.0023 (10)
N30.0633 (12)0.0470 (10)0.0723 (13)0.0071 (9)0.0300 (10)0.0172 (9)
C280.0610 (16)0.0641 (15)0.0725 (17)0.0094 (13)0.0017 (13)0.0014 (13)
N60.0674 (13)0.0775 (14)0.0650 (13)0.0332 (11)0.0242 (10)0.0116 (11)
C250.0812 (19)0.0749 (19)0.0752 (19)0.0292 (16)0.0165 (15)0.0101 (15)
C260.0781 (17)0.0501 (13)0.0680 (16)0.0139 (13)0.0007 (14)0.0001 (11)
C180.0570 (14)0.0773 (16)0.0650 (16)0.0278 (13)0.0072 (12)0.0059 (12)
C170.0533 (13)0.0464 (12)0.0548 (14)0.0051 (10)0.0149 (11)0.0131 (10)
C190.0650 (16)0.0838 (17)0.0566 (16)0.0082 (14)0.0041 (12)0.0089 (13)
C50.0740 (17)0.0475 (13)0.0727 (18)0.0043 (12)0.0169 (14)0.0068 (13)
C240.0664 (17)0.100 (2)0.0646 (18)0.0030 (17)0.0029 (14)0.0123 (16)
C310.0721 (19)0.0754 (19)0.130 (3)0.0021 (16)0.014 (2)0.036 (2)
C230.0709 (18)0.0835 (19)0.0755 (18)0.0180 (16)0.0007 (14)0.0117 (15)
C40.0699 (16)0.0597 (15)0.0776 (19)0.0072 (13)0.0082 (14)0.0135 (13)
C290.0678 (17)0.102 (2)0.0729 (19)0.0139 (17)0.0053 (15)0.0014 (17)
C320.0687 (17)0.0626 (16)0.096 (2)0.0111 (13)0.0218 (16)0.0081 (15)
C200.0718 (18)0.127 (3)0.091 (2)0.0209 (19)0.0122 (16)0.032 (2)
C300.0590 (16)0.119 (3)0.082 (2)0.0147 (19)0.0102 (15)0.026 (2)
Geometric parameters (Å, º) top
Cl1—C121.737 (2)C22—H220.9300
Cl2—C51.737 (3)C27—C281.378 (3)
O1—C151.209 (2)C27—C321.380 (3)
N2—C31.282 (2)C27—C181.516 (3)
N2—N11.417 (2)C8—H80.9300
C9—C141.376 (3)N3—C171.465 (3)
C9—C101.379 (3)N3—H30.8600
C9—C61.485 (3)C28—C291.378 (4)
N1—C61.396 (2)C28—H280.9300
N1—C151.415 (2)N6—C181.463 (3)
C12—C111.371 (3)N6—H60.8600
C12—C131.373 (3)C25—C241.359 (4)
N4—C31.407 (3)C25—C261.396 (4)
N4—C161.408 (3)C25—H250.9300
N4—N51.429 (2)C26—H260.9300
C14—C131.377 (3)C18—C201.516 (4)
C14—H140.9300C18—H180.9800
N5—C61.285 (2)C17—C191.514 (3)
C3—C11.482 (3)C17—H170.9800
C15—N31.332 (3)C19—H19A0.9600
C13—H130.9300C19—H19B0.9600
O2—C161.221 (2)C19—H19C0.9600
C16—N61.332 (3)C5—C41.366 (4)
C11—C101.376 (3)C24—C231.355 (4)
C11—H110.9300C24—H240.9300
C21—C261.377 (3)C31—C301.348 (4)
C21—C221.380 (3)C31—C321.399 (4)
C21—C171.517 (3)C31—H310.9300
C10—H100.9300C23—H230.9300
C2—C41.374 (3)C4—H40.9300
C2—C11.395 (3)C29—C301.352 (4)
C2—H20.9300C29—H290.9300
C1—C81.383 (3)C32—H320.9300
C7—C51.377 (4)C20—H20A0.9600
C7—C81.380 (3)C20—H20B0.9600
C7—H70.9300C20—H20C0.9600
C22—C231.376 (4)C30—H300.9300
C3—N2—N1112.04 (16)C17—N3—H3119.1
C14—C9—C10118.89 (18)C27—C28—C29122.0 (2)
C14—C9—C6120.35 (18)C27—C28—H28119.0
C10—C9—C6120.69 (18)C29—C28—H28119.0
C6—N1—C15122.19 (16)C16—N6—C18123.7 (2)
C6—N1—N2114.56 (15)C16—N6—H6118.1
C15—N1—N2117.23 (15)C18—N6—H6118.1
C11—C12—C13120.78 (19)C24—C25—C26120.5 (3)
C11—C12—Cl1118.95 (17)C24—C25—H25119.7
C13—C12—Cl1120.26 (18)C26—C25—H25119.7
C3—N4—C16125.43 (17)C21—C26—C25120.3 (2)
C3—N4—N5114.03 (15)C21—C26—H26119.8
C16—N4—N5116.47 (16)C25—C26—H26119.8
C9—C14—C13120.7 (2)N6—C18—C20110.5 (2)
C9—C14—H14119.7N6—C18—C27109.80 (19)
C13—C14—H14119.7C20—C18—C27112.6 (2)
C6—N5—N4111.37 (16)N6—C18—H18107.9
N5—C6—N1118.85 (17)C20—C18—H18107.9
N5—C6—C9118.05 (18)C27—C18—H18107.9
N1—C6—C9122.67 (16)N3—C17—C19109.74 (19)
N2—C3—N4118.31 (17)N3—C17—C21111.32 (18)
N2—C3—C1117.47 (18)C19—C17—C21112.34 (18)
N4—C3—C1123.57 (18)N3—C17—H17107.7
O1—C15—N3125.77 (19)C19—C17—H17107.7
O1—C15—N1120.04 (18)C21—C17—H17107.7
N3—C15—N1114.14 (18)C17—C19—H19A109.5
C12—C13—C14119.5 (2)C17—C19—H19B109.5
C12—C13—H13120.3H19A—C19—H19B109.5
C14—C13—H13120.3C17—C19—H19C109.5
O2—C16—N6126.6 (2)H19A—C19—H19C109.5
O2—C16—N4120.1 (2)H19B—C19—H19C109.5
N6—C16—N4113.33 (19)C4—C5—C7121.2 (2)
C12—C11—C10119.2 (2)C4—C5—Cl2119.9 (2)
C12—C11—H11120.4C7—C5—Cl2119.0 (2)
C10—C11—H11120.4C23—C24—C25119.3 (3)
C26—C21—C22118.0 (2)C23—C24—H24120.4
C26—C21—C17122.4 (2)C25—C24—H24120.4
C22—C21—C17119.5 (2)C30—C31—C32120.8 (3)
C11—C10—C9121.0 (2)C30—C31—H31119.6
C11—C10—H10119.5C32—C31—H31119.6
C9—C10—H10119.5C24—C23—C22121.0 (3)
C4—C2—C1120.4 (2)C24—C23—H23119.5
C4—C2—H2119.8C22—C23—H23119.5
C1—C2—H2119.8C5—C4—C2119.8 (2)
C8—C1—C2118.7 (2)C5—C4—H4120.1
C8—C1—C3122.51 (19)C2—C4—H4120.1
C2—C1—C3118.25 (19)C30—C29—C28119.8 (3)
C5—C7—C8119.0 (2)C30—C29—H29120.1
C5—C7—H7120.5C28—C29—H29120.1
C8—C7—H7120.5C27—C32—C31120.0 (3)
C23—C22—C21120.8 (2)C27—C32—H32120.0
C23—C22—H22119.6C31—C32—H32120.0
C21—C22—H22119.6C18—C20—H20A109.5
C28—C27—C32117.3 (2)C18—C20—H20B109.5
C28—C27—C18121.4 (2)H20A—C20—H20B109.5
C32—C27—C18121.3 (2)C18—C20—H20C109.5
C7—C8—C1120.9 (2)H20A—C20—H20C109.5
C7—C8—H8119.6H20B—C20—H20C109.5
C1—C8—H8119.6C31—C30—C29120.0 (3)
C15—N3—C17121.72 (18)C31—C30—H30120.0
C15—N3—H3119.1C29—C30—H30120.0
C3—N2—N1—C643.9 (2)N2—C3—C1—C225.8 (3)
C3—N2—N1—C15162.73 (18)N4—C3—C1—C2163.65 (19)
C10—C9—C14—C130.9 (3)C26—C21—C22—C231.9 (3)
C6—C9—C14—C13177.96 (19)C17—C21—C22—C23176.6 (2)
C3—N4—N5—C644.5 (2)C5—C7—C8—C10.1 (3)
C16—N4—N5—C6156.90 (17)C2—C1—C8—C71.7 (3)
N4—N5—C6—N13.2 (2)C3—C1—C8—C7169.61 (19)
N4—N5—C6—C9175.90 (16)O1—C15—N3—C177.2 (4)
C15—N1—C6—N5166.24 (18)N1—C15—N3—C17175.42 (19)
N2—N1—C6—N541.9 (2)C32—C27—C28—C290.3 (4)
C15—N1—C6—C921.4 (3)C18—C27—C28—C29179.0 (2)
N2—N1—C6—C9130.45 (18)O2—C16—N6—C181.1 (4)
C14—C9—C6—N550.0 (3)N4—C16—N6—C18178.7 (2)
C10—C9—C6—N5127.1 (2)C22—C21—C26—C250.7 (3)
C14—C9—C6—N1137.6 (2)C17—C21—C26—C25177.9 (2)
C10—C9—C6—N145.3 (3)C24—C25—C26—C211.1 (4)
N1—N2—C3—N42.3 (2)C16—N6—C18—C20124.9 (3)
N1—N2—C3—C1173.40 (16)C16—N6—C18—C27110.3 (3)
C16—N4—C3—N2161.03 (18)C28—C27—C18—N667.0 (3)
N5—N4—C3—N242.6 (2)C32—C27—C18—N6112.3 (3)
C16—N4—C3—C128.5 (3)C28—C27—C18—C2056.6 (3)
N5—N4—C3—C1127.88 (18)C32—C27—C18—C20124.1 (3)
C6—N1—C15—O124.2 (3)C15—N3—C17—C19126.1 (2)
N2—N1—C15—O1175.37 (18)C15—N3—C17—C21108.9 (2)
C6—N1—C15—N3158.24 (18)C26—C21—C17—N336.0 (3)
N2—N1—C15—N37.0 (3)C22—C21—C17—N3145.54 (19)
C11—C12—C13—C140.5 (3)C26—C21—C17—C1987.6 (2)
Cl1—C12—C13—C14179.46 (16)C22—C21—C17—C1990.9 (2)
C9—C14—C13—C120.4 (3)C8—C7—C5—C41.4 (4)
C3—N4—C16—O227.1 (3)C8—C7—C5—Cl2179.52 (17)
N5—N4—C16—O2177.10 (18)C26—C25—C24—C231.7 (4)
C3—N4—C16—N6155.15 (19)C25—C24—C23—C220.4 (4)
N5—N4—C16—N60.7 (2)C21—C22—C23—C241.5 (4)
C13—C12—C11—C100.9 (3)C7—C5—C4—C21.4 (4)
Cl1—C12—C11—C10179.83 (17)Cl2—C5—C4—C2179.60 (18)
C12—C11—C10—C90.4 (3)C1—C2—C4—C50.3 (4)
C14—C9—C10—C110.5 (3)C27—C28—C29—C300.1 (4)
C6—C9—C10—C11177.59 (19)C28—C27—C32—C310.1 (4)
C4—C2—C1—C81.7 (3)C18—C27—C32—C31179.2 (2)
C4—C2—C1—C3169.9 (2)C30—C31—C32—C270.4 (4)
N2—C3—C1—C8145.6 (2)C32—C31—C30—C290.9 (5)
N4—C3—C1—C825.0 (3)C28—C29—C30—C310.7 (4)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N3—H3···N20.862.212.613 (2)109
N6—H6···N50.862.132.573 (2)112

Experimental details

Crystal data
Chemical formulaC32H28Cl2N6O2
Mr599.50
Crystal system, space groupOrthorhombic, P212121
Temperature (K)298
a, b, c (Å)9.715 (2), 14.725 (3), 21.159 (5)
V3)3027.0 (12)
Z4
Radiation typeMo Kα
µ (mm1)0.25
Crystal size (mm)0.23 × 0.19 × 0.12
Data collection
DiffractometerBruker SMART CCD
diffractometer
Absorption correctionMulti-scan
(SADABS; Bruker, 1997)
Tmin, Tmax0.944, 0.970
No. of measured, independent and
observed [I > 2σ(I)] reflections
19445, 7314, 4680
Rint0.033
(sin θ/λ)max1)0.666
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.042, 0.099, 1.01
No. of reflections7314
No. of parameters380
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.13, 0.15
Absolute structureFlack (1983), with 3185 Friedel pairs
Absolute structure parameter0.03 (5)

Computer programs: SMART (Bruker, 1997), SAINT (Bruker, 1997), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), ORTEP-3 for Windows (Farrugia, 1997), WinGX (Farrugia, 1999).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N3—H3···N20.862.212.613 (2)108.8
N6—H6···N50.862.132.573 (2)111.7
 

Acknowledgements

The authors are very grateful to the Natural Science Foundation of Zhejiang Province (grant No. Y2090985) and the National Natural Science Foundation of China (grant No. 20802069) for financial support.

References

First citationAbdel, N. O., Kira, M. A. & Tolba, M. N. (1968). Tetrahedron Lett. 9, 3871–3872.  CrossRef Google Scholar
First citationAllen, F. H., Kennard, O., Watson, D. G., Brammer, L. & Orpen, A. G. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1–19.  CrossRef Google Scholar
First citationBruker (1997). SMART, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationDevaraj, N. K., Upadhyay, R., Haun, J. B., Hilderbrand, S. A. & Weissleder, R. (2009). Angew. Chem. Int. Ed. 48, 7013–7016.  Web of Science CrossRef CAS Google Scholar
First citationDomingo, L. R., Picher, M. T. & Saez, J. A. (2009). J. Org. Chem. 74, 2726–2735.  Web of Science CrossRef PubMed CAS Google Scholar
First citationEremeev, A. V., Tikhomirova, D. A. & Zidermane, A. (1980). USSR Patent No. 686336.  Google Scholar
First citationEremeev, A. V., Tikhomirv, D. A., Tyusheva, V. A. & Liepins, F. (1978). Khim. Geterotsikl. Soedin. 6, 753–757.  Google Scholar
First citationFarrugia, L. J. (1997). J. Appl. Cryst. 30, 565.  CrossRef IUCr Journals Google Scholar
First citationFarrugia, L. J. (1999). J. Appl. Cryst. 32, 837–838.  CrossRef CAS IUCr Journals Google Scholar
First citationFlack, H. D. (1983). Acta Cryst. A39, 876–881.  CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationHan, H. S., Devaraj, N. K., Lee, J., Hilderbrand, S. A., Weissleder, R. & Bawendi, M. G. (2010). J. Am. Chem. Soc. 132, 7838–7839.  Web of Science CrossRef CAS PubMed Google Scholar
First citationHu, W. X., Rao, G. W. & Sun, Y. Q. (2004). Bioorg. Med. Chem. Lett. 14, 1177–1181.  Web of Science CSD CrossRef PubMed CAS Google Scholar
First citationHu, W. X., Sun, Y. Q., Yuan, Q. & Yang, Z. Y. (2002). Chem. J. Chin. Univ. 23, 1877–1881.  CAS Google Scholar
First citationLorincz, K., Kotschy, A., Tammiku-Taul, J., Sikk, L. & Burk, P. (2010). J. Org. Chem. 75, 6196–6200.  Web of Science CAS PubMed Google Scholar
First citationNeunhoeffer, H. (1984). Comprehensive Heterocyclic Chemistry, 1st ed., edited by A. R. Katritzky, Vol. 3, pp. 531–572. Frankfurt: Pergamon.  Google Scholar
First citationRao, G. W. & Hu, W. X. (2005). Bioorg. Med. Chem. Lett. 15, 3174–3176.  Web of Science CSD CrossRef PubMed CAS Google Scholar
First citationRao, G. W. & Hu, W. X. (2006). Bioorg. Med. Chem. Lett. 16, 3702–3705.  Web of Science CSD CrossRef PubMed CAS Google Scholar
First citationSauer, J. (1996). Comprehensive Heterocyclic Chemistry, 2nd ed., edited by A. J. Boulton, Vol. 6, pp. 901–955. Oxford: Elsevier.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 68| Part 3| March 2012| Pages o598-o599
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds