metal-organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

{4,4′-Di­bromo-6,6′-dimeth­­oxy-2,2′-[1,2-phenyl­enebis(nitrilo­methanylyl­­idene)]-κ4O1,N,N′,O1′}nickel(II)

aDepartment of Biology, Dezhou University, Dezhou 253023, People's Republic of China
*Correspondence e-mail: sylswx@163.com

(Received 26 January 2012; accepted 2 February 2012; online 10 February 2012)

In the title complex, [Ni(C22H16Br2N2O4)], the NiII ion is coordinated by two N atoms and two O atoms of a tetra­dentate Schiff base ligand, forming a slightly distorted square-planar coordination environment. The dihedral angle between the two bromo-substituted benzene rings is 10.1 (3)°.

Related literature

For Schiff base ligands in coordination chemistry, see: Ghosh et al. (2006[Ghosh, R., Rahaman, S. H., Lin, C. N., Lu, T. H. & Ghosh, B. K. (2006). Polyhedron, 25, 3104-3112.]); Nayak et al. (2006[Nayak, M., Koner, R., Lin, H. H., Flörke, U., Wei, H. H. & Mohanta, S. (2006). Inorg. Chem. 45, 10764-10773.]). For related structures, see: Wang et al. (1994[Wang, H., Li, S. L., Liu, D. X., Cui, X. G. & Li, X. Y. (1994). Acta Chim. Sin. 52, 676-684.]); Bhattacharya et al. (2011[Bhattacharya, S., Mondal, S., Sasmal, S., Sparkes, H. A., Howard, J. A. K., Nayka, M. & Mohanta, S. (2011). CrystEngComm, 13, 1029-1036.]); Yu et al. (2009[Yu, M.-M., Xu, H., Shi, Q.-Z., Wei, Y.-N. & Li, Z.-X. (2009). Acta Cryst. E65, m225.]); Kargar et al. (2009[Kargar, H., Kia, R., Jamshidvand, A. & Fun, H.-K. (2009). Acta Cryst. E65, m498-m499.]); Felices et al. (2009[Felices, L. S., Escudero-Adan, E. C., Benet-Buchholz, J. & Kleij, A. W. (2009). Inorg. Chem. 48, 846-853.]).

[Scheme 1]

Experimental

Crystal data
  • [Ni(C22H16Br2N2O4)]

  • Mr = 590.90

  • Monoclinic, P 21 /n

  • a = 15.288 (7) Å

  • b = 8.213 (3) Å

  • c = 16.473 (7) Å

  • β = 90.171 (8)°

  • V = 2068.3 (15) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 4.84 mm−1

  • T = 293 K

  • 0.17 × 0.15 × 0.12 mm

Data collection
  • Bruker APEXII diffractometer

  • Absorption correction: multi-scan (SADABS; Sheldrick, 1996[Sheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.]) Tmin = 0.494, Tmax = 0.595

  • 9492 measured reflections

  • 3613 independent reflections

  • 2628 reflections with I > 2σ(I)

  • Rint = 0.088

Refinement
  • R[F2 > 2σ(F2)] = 0.065

  • wR(F2) = 0.170

  • S = 1.02

  • 3613 reflections

  • 282 parameters

  • H-atom parameters constrained

  • Δρmax = 1.61 e Å−3

  • Δρmin = −1.16 e Å−3

Data collection: APEX2 (Bruker, 2004[Bruker (2004). APEX2. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2001[Bruker (2001). SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); software used to prepare material for publication: SHELXTL.

Supporting information


Comment top

Schiff-bases ligands, especially for those which are chelating, play an important role in the development of coordination chemistry as they readily form stable complexes with most transition metals (Ghosh et al., 2006; Nayak et al., 2006). Here, we present the structure of a new Ni(II) complex based on the tetradentate chelating Schiff-base ligand 1,2-diaminobenzene-N,N'-bis (5-bromo-3-methoxysalicylideneimine).

The molecular structure of the title complex is shown in Figure 1. The coordination of the NiII ion is slightly distorted square-planar, formed by two N atoms and two O atoms of the Schiff-base ligand. The mean deviation from the plane formed by the two N atoms, two O atoms and the NiII ion is 0.0426 Å. The Ni—N and Ni—O bond lengths are consistent with the corresponding distances in other nickel(II) complexes containing similar chelating tetradentate schiff-base ligands (Wang et al., 1994; Bhattacharya et al., 2011; Yu et al., 2009; Kargar et al., 2009; Felices et al., 2009).

Related literature top

For Schiff bases ligands in coordination chemistry, see: Ghosh et al. (2006); Nayak et al. (2006). For related structures, see: Wang et al. (1994); Bhattacharya et al. (2011); Yu et al. (2009); Kargar et al. (2009); Felices et al. (2009).

Experimental top

The Schiff-base ligand can be readily synthesized by condensation 1,2-diaminobenzene and 5-bromo-2-hydroxy-3-methoxybenzaldehyde with the ratio 1:2 in ethanol. The preparation of the title complex was carried out by the reaction of Ni(ClO4)2.6H2O and the schiff-base ligand (1:1, molar ratio) in methanol. After the stirring process was continued for about half an hour at room temperature, the mixture was filtered and the filtrate was allowed to slowly evaporate in air for several days to produce crystals suitable for X-ray diffraction with a yield about 56%.

Refinement top

H atoms were placed in calculated positions with C—H distances of 0.93 and 0.96 Å, and were allowed for as riding atoms with Uiso(H) = 1.2Ueq(C) or 1.5Ueq(Cmethyl).

Computing details top

Data collection: APEX2 (Bruker, 2004); cell refinement: SAINT (Bruker, 2001); data reduction: SAINT (Bruker, 2001; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. The molecular structure. Displacement ellipsoids are drawn at the 30% probability level.
{4,4'-Dibromo-6,6'-dimethoxy-2,2'-[1,2- phenylenebis(nitrilomethanylylidene)]- κ4O1,N,N',O1'}nickel(II) top
Crystal data top
[Ni(C22H16Br2N2O4)]F(000) = 1168
Mr = 590.90Dx = 1.898 Mg m3
Monoclinic, P21/nMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ynCell parameters from 2246 reflections
a = 15.288 (7) Åθ = 2.5–25.7°
b = 8.213 (3) ŵ = 4.84 mm1
c = 16.473 (7) ÅT = 293 K
β = 90.171 (8)°Block, red-brown
V = 2068.3 (15) Å30.17 × 0.15 × 0.12 mm
Z = 4
Data collection top
Bruker APEXII
diffractometer
3613 independent reflections
Radiation source: fine-focus sealed tube2628 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.088
ϕ and ω scansθmax = 25.0°, θmin = 1.8°
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
h = 1518
Tmin = 0.494, Tmax = 0.595k = 99
9492 measured reflectionsl = 1917
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.065Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.170H-atom parameters constrained
S = 1.02 w = 1/[σ2(Fo2) + (0.1048P)2]
where P = (Fo2 + 2Fc2)/3
3613 reflections(Δ/σ)max = 0.001
282 parametersΔρmax = 1.61 e Å3
0 restraintsΔρmin = 1.16 e Å3
Crystal data top
[Ni(C22H16Br2N2O4)]V = 2068.3 (15) Å3
Mr = 590.90Z = 4
Monoclinic, P21/nMo Kα radiation
a = 15.288 (7) ŵ = 4.84 mm1
b = 8.213 (3) ÅT = 293 K
c = 16.473 (7) Å0.17 × 0.15 × 0.12 mm
β = 90.171 (8)°
Data collection top
Bruker APEXII
diffractometer
3613 independent reflections
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
2628 reflections with I > 2σ(I)
Tmin = 0.494, Tmax = 0.595Rint = 0.088
9492 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0650 restraints
wR(F2) = 0.170H-atom parameters constrained
S = 1.02Δρmax = 1.61 e Å3
3613 reflectionsΔρmin = 1.16 e Å3
282 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Ni10.03371 (5)0.81849 (9)0.06315 (4)0.0308 (3)
Br10.20569 (5)0.28032 (9)0.25514 (4)0.0469 (3)
Br20.01289 (5)1.43548 (10)0.38330 (5)0.0626 (3)
O10.1366 (3)0.7166 (5)0.0303 (3)0.0393 (11)
O20.2972 (3)0.6233 (6)0.0006 (3)0.0521 (13)
O30.1011 (3)0.9012 (5)0.1472 (2)0.0376 (10)
O40.2250 (3)1.0180 (5)0.2414 (3)0.0446 (12)
N10.0338 (3)0.7335 (6)0.0210 (3)0.0325 (12)
N20.0688 (3)0.9208 (6)0.0960 (3)0.0326 (12)
C10.1227 (4)0.7828 (7)0.0186 (4)0.0368 (15)
C20.1425 (4)0.8846 (7)0.0455 (4)0.0337 (14)
C30.2253 (4)0.9459 (8)0.0556 (4)0.0434 (17)
H30.23771.01510.09880.052*
C40.2910 (5)0.9029 (10)0.0002 (4)0.0535 (19)
H40.34740.94360.00610.064*
C50.2714 (5)0.7999 (9)0.0633 (4)0.0500 (18)
H50.31510.77100.09990.060*
C60.1887 (4)0.7393 (8)0.0735 (4)0.0404 (15)
H60.17650.66980.11650.048*
C70.0816 (4)0.5844 (7)0.0892 (3)0.0327 (14)
C80.1486 (4)0.6307 (7)0.0341 (4)0.0334 (14)
C90.2345 (4)0.5739 (8)0.0532 (4)0.0394 (16)
C100.2505 (4)0.4733 (8)0.1171 (4)0.0373 (15)
H100.30690.43550.12680.045*
C110.1814 (5)0.4272 (7)0.1684 (4)0.0388 (16)
C120.0991 (4)0.4797 (7)0.1560 (4)0.0368 (15)
H120.05410.44800.19070.044*
C130.0056 (4)0.6388 (7)0.0782 (4)0.0358 (15)
H130.04680.60290.11580.043*
C140.3853 (5)0.5783 (12)0.0163 (6)0.079 (3)
H14A0.39070.46190.01480.118*
H14B0.42350.62560.02360.118*
H14C0.40120.61710.06920.118*
C150.0078 (4)1.0701 (7)0.2093 (4)0.0317 (14)
C160.0768 (4)1.0105 (7)0.1998 (4)0.0332 (14)
C170.1444 (4)1.0825 (7)0.2515 (4)0.0363 (15)
C180.1245 (5)1.2049 (8)0.3053 (4)0.0429 (17)
H180.16811.25090.33740.051*
C190.0388 (5)1.2591 (8)0.3112 (4)0.0413 (16)
C200.0283 (4)1.1942 (7)0.2665 (4)0.0371 (15)
H200.08551.23020.27320.045*
C210.0772 (4)1.0202 (7)0.1578 (4)0.0329 (14)
H210.13281.06090.16860.039*
C220.2969 (4)1.1049 (9)0.2789 (4)0.0475 (18)
H22A0.29741.21540.25980.071*
H22B0.35111.05300.26490.071*
H22C0.28991.10400.33670.071*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Ni10.0287 (5)0.0273 (5)0.0365 (5)0.0011 (3)0.0063 (3)0.0006 (3)
Br10.0521 (5)0.0431 (5)0.0457 (4)0.0035 (3)0.0063 (3)0.0091 (3)
Br20.0549 (5)0.0639 (6)0.0688 (6)0.0049 (4)0.0057 (4)0.0335 (4)
O10.034 (3)0.038 (3)0.045 (3)0.0006 (19)0.0068 (19)0.008 (2)
O20.034 (3)0.063 (3)0.059 (3)0.001 (2)0.008 (2)0.021 (3)
O30.031 (2)0.035 (2)0.046 (3)0.0019 (19)0.0116 (18)0.005 (2)
O40.036 (3)0.038 (3)0.060 (3)0.001 (2)0.016 (2)0.012 (2)
N10.030 (3)0.032 (3)0.035 (3)0.006 (2)0.004 (2)0.003 (2)
N20.030 (3)0.029 (3)0.039 (3)0.003 (2)0.006 (2)0.005 (2)
C10.044 (4)0.027 (3)0.039 (4)0.003 (3)0.006 (3)0.005 (3)
C20.030 (3)0.028 (3)0.043 (4)0.001 (3)0.009 (3)0.005 (3)
C30.035 (4)0.048 (4)0.047 (4)0.007 (3)0.007 (3)0.003 (3)
C40.030 (4)0.074 (5)0.056 (5)0.005 (4)0.007 (3)0.004 (4)
C50.045 (4)0.055 (5)0.050 (4)0.004 (3)0.017 (3)0.003 (3)
C60.036 (4)0.046 (4)0.039 (4)0.003 (3)0.011 (3)0.001 (3)
C70.036 (4)0.028 (3)0.035 (3)0.002 (3)0.006 (3)0.005 (3)
C80.032 (3)0.031 (3)0.037 (3)0.000 (3)0.005 (3)0.002 (3)
C90.033 (4)0.035 (4)0.049 (4)0.007 (3)0.001 (3)0.002 (3)
C100.032 (4)0.036 (4)0.044 (4)0.003 (3)0.006 (3)0.001 (3)
C110.055 (5)0.027 (3)0.034 (4)0.001 (3)0.002 (3)0.000 (3)
C120.044 (4)0.030 (3)0.037 (4)0.007 (3)0.010 (3)0.002 (3)
C130.044 (4)0.025 (3)0.038 (4)0.008 (3)0.012 (3)0.002 (3)
C140.032 (4)0.117 (8)0.087 (6)0.003 (5)0.011 (4)0.041 (6)
C150.036 (4)0.025 (3)0.034 (3)0.004 (3)0.003 (3)0.001 (2)
C160.039 (4)0.024 (3)0.036 (3)0.003 (3)0.010 (3)0.001 (3)
C170.030 (4)0.029 (3)0.050 (4)0.002 (3)0.005 (3)0.001 (3)
C180.043 (4)0.040 (4)0.045 (4)0.003 (3)0.012 (3)0.009 (3)
C190.047 (4)0.039 (4)0.038 (4)0.002 (3)0.004 (3)0.009 (3)
C200.041 (4)0.031 (4)0.040 (4)0.003 (3)0.001 (3)0.002 (3)
C210.029 (3)0.030 (3)0.040 (4)0.001 (3)0.001 (3)0.003 (3)
C220.036 (4)0.045 (4)0.061 (4)0.005 (3)0.018 (3)0.007 (3)
Geometric parameters (Å, º) top
Ni1—O31.852 (4)C7—C81.418 (8)
Ni1—N21.859 (5)C7—C131.418 (9)
Ni1—N11.861 (5)C7—C121.423 (8)
Ni1—O11.863 (4)C8—C91.429 (9)
Br1—C111.908 (6)C9—C101.362 (9)
Br2—C191.915 (6)C10—C111.402 (9)
O1—C81.288 (7)C10—H100.9300
O2—C91.365 (7)C11—C121.347 (9)
O2—C141.426 (9)C12—H120.9300
O3—C161.302 (7)C13—H130.9300
O4—C171.351 (7)C14—H14A0.9600
O4—C221.448 (7)C14—H14B0.9600
N1—C131.297 (8)C14—H14C0.9600
N1—C11.419 (8)C15—C161.392 (9)
N2—C211.312 (7)C15—C211.417 (8)
N2—C21.430 (7)C15—C201.423 (8)
C1—C21.381 (9)C16—C171.462 (8)
C1—C61.398 (8)C17—C181.375 (9)
C2—C31.374 (9)C18—C191.387 (10)
C3—C41.400 (9)C18—H180.9300
C3—H30.9300C19—C201.370 (9)
C4—C51.379 (10)C20—H200.9300
C4—H40.9300C21—H210.9300
C5—C61.369 (10)C22—H22A0.9600
C5—H50.9300C22—H22B0.9600
C6—H60.9300C22—H22C0.9600
O3—Ni1—N294.8 (2)C9—C10—H10120.2
O3—Ni1—N1179.5 (2)C11—C10—H10120.2
N2—Ni1—N185.4 (2)C12—C11—C10121.7 (6)
O3—Ni1—O185.07 (18)C12—C11—Br1120.0 (5)
N2—Ni1—O1179.8 (2)C10—C11—Br1118.3 (5)
N1—Ni1—O194.7 (2)C11—C12—C7119.2 (5)
C8—O1—Ni1127.5 (4)C11—C12—H12120.4
C9—O2—C14117.2 (5)C7—C12—H12120.4
C16—O3—Ni1126.3 (4)N1—C13—C7126.6 (5)
C17—O4—C22116.5 (5)N1—C13—H13116.7
C13—N1—C1120.7 (5)C7—C13—H13116.7
C13—N1—Ni1125.6 (4)O2—C14—H14A109.5
C1—N1—Ni1113.7 (4)O2—C14—H14B109.5
C21—N2—C2120.1 (5)H14A—C14—H14B109.5
C21—N2—Ni1126.3 (4)O2—C14—H14C109.5
C2—N2—Ni1113.6 (4)H14A—C14—H14C109.5
C2—C1—C6119.3 (6)H14B—C14—H14C109.5
C2—C1—N1113.9 (5)C16—C15—C21121.7 (5)
C6—C1—N1126.8 (6)C16—C15—C20122.2 (5)
C3—C2—C1121.2 (5)C21—C15—C20115.9 (6)
C3—C2—N2125.4 (6)O3—C16—C15125.7 (5)
C1—C2—N2113.4 (5)O3—C16—C17117.7 (5)
C2—C3—C4119.2 (6)C15—C16—C17116.6 (5)
C2—C3—H3120.4O4—C17—C18124.8 (5)
C4—C3—H3120.4O4—C17—C16114.3 (5)
C5—C4—C3119.5 (7)C18—C17—C16120.9 (6)
C5—C4—H4120.3C17—C18—C19119.4 (6)
C3—C4—H4120.3C17—C18—H18120.3
C6—C5—C4121.3 (6)C19—C18—H18120.3
C6—C5—H5119.4C20—C19—C18122.9 (6)
C4—C5—H5119.4C20—C19—Br2118.2 (5)
C5—C6—C1119.5 (6)C18—C19—Br2119.0 (5)
C5—C6—H6120.2C19—C20—C15118.0 (6)
C1—C6—H6120.2C19—C20—H20121.0
C8—C7—C13120.8 (5)C15—C20—H20121.0
C8—C7—C12121.3 (6)N2—C21—C15124.7 (6)
C13—C7—C12117.9 (5)N2—C21—H21117.7
O1—C8—C7124.7 (5)C15—C21—H21117.7
O1—C8—C9119.6 (5)O4—C22—H22A109.5
C7—C8—C9115.7 (6)O4—C22—H22B109.5
C10—C9—O2123.7 (6)H22A—C22—H22B109.5
C10—C9—C8122.4 (6)O4—C22—H22C109.5
O2—C9—C8113.8 (6)H22A—C22—H22C109.5
C9—C10—C11119.5 (6)H22B—C22—H22C109.5

Experimental details

Crystal data
Chemical formula[Ni(C22H16Br2N2O4)]
Mr590.90
Crystal system, space groupMonoclinic, P21/n
Temperature (K)293
a, b, c (Å)15.288 (7), 8.213 (3), 16.473 (7)
β (°) 90.171 (8)
V3)2068.3 (15)
Z4
Radiation typeMo Kα
µ (mm1)4.84
Crystal size (mm)0.17 × 0.15 × 0.12
Data collection
DiffractometerBruker APEXII
diffractometer
Absorption correctionMulti-scan
(SADABS; Sheldrick, 1996)
Tmin, Tmax0.494, 0.595
No. of measured, independent and
observed [I > 2σ(I)] reflections
9492, 3613, 2628
Rint0.088
(sin θ/λ)max1)0.595
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.065, 0.170, 1.02
No. of reflections3613
No. of parameters282
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)1.61, 1.16

Computer programs: APEX2 (Bruker, 2004), SAINT (Bruker, 2001), SAINT (Bruker, 2001, SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), SHELXTL (Sheldrick, 2008).

 

References

First citationBhattacharya, S., Mondal, S., Sasmal, S., Sparkes, H. A., Howard, J. A. K., Nayka, M. & Mohanta, S. (2011). CrystEngComm, 13, 1029–1036.  Web of Science CSD CrossRef CAS Google Scholar
First citationBruker (2001). SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationBruker (2004). APEX2. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationFelices, L. S., Escudero-Adan, E. C., Benet-Buchholz, J. & Kleij, A. W. (2009). Inorg. Chem. 48, 846–853.  PubMed Google Scholar
First citationGhosh, R., Rahaman, S. H., Lin, C. N., Lu, T. H. & Ghosh, B. K. (2006). Polyhedron, 25, 3104–3112.  Web of Science CSD CrossRef CAS Google Scholar
First citationKargar, H., Kia, R., Jamshidvand, A. & Fun, H.-K. (2009). Acta Cryst. E65, m498–m499.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationNayak, M., Koner, R., Lin, H. H., Flörke, U., Wei, H. H. & Mohanta, S. (2006). Inorg. Chem. 45, 10764–10773.  Web of Science CSD CrossRef PubMed CAS Google Scholar
First citationSheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationWang, H., Li, S. L., Liu, D. X., Cui, X. G. & Li, X. Y. (1994). Acta Chim. Sin. 52, 676–684.  CAS Google Scholar
First citationYu, M.-M., Xu, H., Shi, Q.-Z., Wei, Y.-N. & Li, Z.-X. (2009). Acta Cryst. E65, m225.  Web of Science CSD CrossRef IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds