metal-organic compounds
{4,4′-Dibromo-6,6′-dimethoxy-2,2′-[1,2-phenylenebis(nitrilomethanylylidene)]-κ4O1,N,N′,O1′}nickel(II)
aDepartment of Biology, Dezhou University, Dezhou 253023, People's Republic of China
*Correspondence e-mail: sylswx@163.com
In the title complex, [Ni(C22H16Br2N2O4)], the NiII ion is coordinated by two N atoms and two O atoms of a tetradentate Schiff base ligand, forming a slightly distorted square-planar coordination environment. The dihedral angle between the two bromo-substituted benzene rings is 10.1 (3)°.
Related literature
For Schiff base ligands in coordination chemistry, see: Ghosh et al. (2006); Nayak et al. (2006). For related structures, see: Wang et al. (1994); Bhattacharya et al. (2011); Yu et al. (2009); Kargar et al. (2009); Felices et al. (2009).
Experimental
Crystal data
|
Data collection: APEX2 (Bruker, 2004); cell SAINT (Bruker, 2001); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL.
Supporting information
10.1107/S1600536812004321/lh5411sup1.cif
contains datablocks I, global. DOI:Structure factors: contains datablock I. DOI: 10.1107/S1600536812004321/lh5411Isup2.hkl
The Schiff-base ligand can be readily synthesized by condensation 1,2-diaminobenzene and 5-bromo-2-hydroxy-3-methoxybenzaldehyde with the ratio 1:2 in ethanol. The preparation of the title complex was carried out by the reaction of Ni(ClO4)2.6H2O and the schiff-base ligand (1:1, molar ratio) in methanol. After the stirring process was continued for about half an hour at room temperature, the mixture was filtered and the filtrate was allowed to slowly evaporate in air for several days to produce crystals suitable for X-ray diffraction with a yield about 56%.
H atoms were placed in calculated positions with C—H distances of 0.93 and 0.96 Å, and were allowed for as riding atoms with Uiso(H) = 1.2Ueq(C) or 1.5Ueq(Cmethyl).
Data collection: APEX2 (Bruker, 2004); cell
SAINT (Bruker, 2001); data reduction: SAINT (Bruker, 2001; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).Fig. 1. The molecular structure. Displacement ellipsoids are drawn at the 30% probability level. |
[Ni(C22H16Br2N2O4)] | F(000) = 1168 |
Mr = 590.90 | Dx = 1.898 Mg m−3 |
Monoclinic, P21/n | Mo Kα radiation, λ = 0.71073 Å |
Hall symbol: -P 2yn | Cell parameters from 2246 reflections |
a = 15.288 (7) Å | θ = 2.5–25.7° |
b = 8.213 (3) Å | µ = 4.84 mm−1 |
c = 16.473 (7) Å | T = 293 K |
β = 90.171 (8)° | Block, red-brown |
V = 2068.3 (15) Å3 | 0.17 × 0.15 × 0.12 mm |
Z = 4 |
Bruker APEXII diffractometer | 3613 independent reflections |
Radiation source: fine-focus sealed tube | 2628 reflections with I > 2σ(I) |
Graphite monochromator | Rint = 0.088 |
ϕ and ω scans | θmax = 25.0°, θmin = 1.8° |
Absorption correction: multi-scan (SADABS; Sheldrick, 1996) | h = −15→18 |
Tmin = 0.494, Tmax = 0.595 | k = −9→9 |
9492 measured reflections | l = −19→17 |
Refinement on F2 | Primary atom site location: structure-invariant direct methods |
Least-squares matrix: full | Secondary atom site location: difference Fourier map |
R[F2 > 2σ(F2)] = 0.065 | Hydrogen site location: inferred from neighbouring sites |
wR(F2) = 0.170 | H-atom parameters constrained |
S = 1.02 | w = 1/[σ2(Fo2) + (0.1048P)2] where P = (Fo2 + 2Fc2)/3 |
3613 reflections | (Δ/σ)max = 0.001 |
282 parameters | Δρmax = 1.61 e Å−3 |
0 restraints | Δρmin = −1.16 e Å−3 |
[Ni(C22H16Br2N2O4)] | V = 2068.3 (15) Å3 |
Mr = 590.90 | Z = 4 |
Monoclinic, P21/n | Mo Kα radiation |
a = 15.288 (7) Å | µ = 4.84 mm−1 |
b = 8.213 (3) Å | T = 293 K |
c = 16.473 (7) Å | 0.17 × 0.15 × 0.12 mm |
β = 90.171 (8)° |
Bruker APEXII diffractometer | 3613 independent reflections |
Absorption correction: multi-scan (SADABS; Sheldrick, 1996) | 2628 reflections with I > 2σ(I) |
Tmin = 0.494, Tmax = 0.595 | Rint = 0.088 |
9492 measured reflections |
R[F2 > 2σ(F2)] = 0.065 | 0 restraints |
wR(F2) = 0.170 | H-atom parameters constrained |
S = 1.02 | Δρmax = 1.61 e Å−3 |
3613 reflections | Δρmin = −1.16 e Å−3 |
282 parameters |
Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes. |
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger. |
x | y | z | Uiso*/Ueq | ||
Ni1 | 0.03371 (5) | 0.81849 (9) | 0.06315 (4) | 0.0308 (3) | |
Br1 | 0.20569 (5) | 0.28032 (9) | −0.25514 (4) | 0.0469 (3) | |
Br2 | 0.01289 (5) | 1.43548 (10) | 0.38330 (5) | 0.0626 (3) | |
O1 | 0.1366 (3) | 0.7166 (5) | 0.0303 (3) | 0.0393 (11) | |
O2 | 0.2972 (3) | 0.6233 (6) | 0.0006 (3) | 0.0521 (13) | |
O3 | 0.1011 (3) | 0.9012 (5) | 0.1472 (2) | 0.0376 (10) | |
O4 | 0.2250 (3) | 1.0180 (5) | 0.2414 (3) | 0.0446 (12) | |
N1 | −0.0338 (3) | 0.7335 (6) | −0.0210 (3) | 0.0325 (12) | |
N2 | −0.0688 (3) | 0.9208 (6) | 0.0960 (3) | 0.0326 (12) | |
C1 | −0.1227 (4) | 0.7828 (7) | −0.0186 (4) | 0.0368 (15) | |
C2 | −0.1425 (4) | 0.8846 (7) | 0.0455 (4) | 0.0337 (14) | |
C3 | −0.2253 (4) | 0.9459 (8) | 0.0556 (4) | 0.0434 (17) | |
H3 | −0.2377 | 1.0151 | 0.0988 | 0.052* | |
C4 | −0.2910 (5) | 0.9029 (10) | 0.0002 (4) | 0.0535 (19) | |
H4 | −0.3474 | 0.9436 | 0.0061 | 0.064* | |
C5 | −0.2714 (5) | 0.7999 (9) | −0.0633 (4) | 0.0500 (18) | |
H5 | −0.3151 | 0.7710 | −0.0999 | 0.060* | |
C6 | −0.1887 (4) | 0.7393 (8) | −0.0735 (4) | 0.0404 (15) | |
H6 | −0.1765 | 0.6698 | −0.1165 | 0.048* | |
C7 | 0.0816 (4) | 0.5844 (7) | −0.0892 (3) | 0.0327 (14) | |
C8 | 0.1486 (4) | 0.6307 (7) | −0.0341 (4) | 0.0334 (14) | |
C9 | 0.2345 (4) | 0.5739 (8) | −0.0532 (4) | 0.0394 (16) | |
C10 | 0.2505 (4) | 0.4733 (8) | −0.1171 (4) | 0.0373 (15) | |
H10 | 0.3069 | 0.4355 | −0.1268 | 0.045* | |
C11 | 0.1814 (5) | 0.4272 (7) | −0.1684 (4) | 0.0388 (16) | |
C12 | 0.0991 (4) | 0.4797 (7) | −0.1560 (4) | 0.0368 (15) | |
H12 | 0.0541 | 0.4480 | −0.1907 | 0.044* | |
C13 | −0.0056 (4) | 0.6388 (7) | −0.0782 (4) | 0.0358 (15) | |
H13 | −0.0468 | 0.6029 | −0.1158 | 0.043* | |
C14 | 0.3853 (5) | 0.5783 (12) | −0.0163 (6) | 0.079 (3) | |
H14A | 0.3907 | 0.4619 | −0.0148 | 0.118* | |
H14B | 0.4235 | 0.6256 | 0.0236 | 0.118* | |
H14C | 0.4012 | 0.6171 | −0.0692 | 0.118* | |
C15 | −0.0078 (4) | 1.0701 (7) | 0.2093 (4) | 0.0317 (14) | |
C16 | 0.0768 (4) | 1.0105 (7) | 0.1998 (4) | 0.0332 (14) | |
C17 | 0.1444 (4) | 1.0825 (7) | 0.2515 (4) | 0.0363 (15) | |
C18 | 0.1245 (5) | 1.2049 (8) | 0.3053 (4) | 0.0429 (17) | |
H18 | 0.1681 | 1.2509 | 0.3374 | 0.051* | |
C19 | 0.0388 (5) | 1.2591 (8) | 0.3112 (4) | 0.0413 (16) | |
C20 | −0.0283 (4) | 1.1942 (7) | 0.2665 (4) | 0.0371 (15) | |
H20 | −0.0855 | 1.2302 | 0.2732 | 0.045* | |
C21 | −0.0772 (4) | 1.0202 (7) | 0.1578 (4) | 0.0329 (14) | |
H21 | −0.1328 | 1.0609 | 0.1686 | 0.039* | |
C22 | 0.2969 (4) | 1.1049 (9) | 0.2789 (4) | 0.0475 (18) | |
H22A | 0.2974 | 1.2154 | 0.2598 | 0.071* | |
H22B | 0.3511 | 1.0530 | 0.2649 | 0.071* | |
H22C | 0.2899 | 1.1040 | 0.3367 | 0.071* |
U11 | U22 | U33 | U12 | U13 | U23 | |
Ni1 | 0.0287 (5) | 0.0273 (5) | 0.0365 (5) | −0.0011 (3) | −0.0063 (3) | −0.0006 (3) |
Br1 | 0.0521 (5) | 0.0431 (5) | 0.0457 (4) | −0.0035 (3) | 0.0063 (3) | −0.0091 (3) |
Br2 | 0.0549 (5) | 0.0639 (6) | 0.0688 (6) | 0.0049 (4) | −0.0057 (4) | −0.0335 (4) |
O1 | 0.034 (3) | 0.038 (3) | 0.045 (3) | −0.0006 (19) | −0.0068 (19) | −0.008 (2) |
O2 | 0.034 (3) | 0.063 (3) | 0.059 (3) | 0.001 (2) | −0.008 (2) | −0.021 (3) |
O3 | 0.031 (2) | 0.035 (2) | 0.046 (3) | 0.0019 (19) | −0.0116 (18) | −0.005 (2) |
O4 | 0.036 (3) | 0.038 (3) | 0.060 (3) | 0.001 (2) | −0.016 (2) | −0.012 (2) |
N1 | 0.030 (3) | 0.032 (3) | 0.035 (3) | −0.006 (2) | −0.004 (2) | 0.003 (2) |
N2 | 0.030 (3) | 0.029 (3) | 0.039 (3) | −0.003 (2) | −0.006 (2) | 0.005 (2) |
C1 | 0.044 (4) | 0.027 (3) | 0.039 (4) | −0.003 (3) | −0.006 (3) | 0.005 (3) |
C2 | 0.030 (3) | 0.028 (3) | 0.043 (4) | −0.001 (3) | −0.009 (3) | 0.005 (3) |
C3 | 0.035 (4) | 0.048 (4) | 0.047 (4) | 0.007 (3) | −0.007 (3) | −0.003 (3) |
C4 | 0.030 (4) | 0.074 (5) | 0.056 (5) | 0.005 (4) | −0.007 (3) | −0.004 (4) |
C5 | 0.045 (4) | 0.055 (5) | 0.050 (4) | −0.004 (3) | −0.017 (3) | 0.003 (3) |
C6 | 0.036 (4) | 0.046 (4) | 0.039 (4) | −0.003 (3) | −0.011 (3) | −0.001 (3) |
C7 | 0.036 (4) | 0.028 (3) | 0.035 (3) | −0.002 (3) | −0.006 (3) | 0.005 (3) |
C8 | 0.032 (3) | 0.031 (3) | 0.037 (3) | 0.000 (3) | −0.005 (3) | 0.002 (3) |
C9 | 0.033 (4) | 0.035 (4) | 0.049 (4) | −0.007 (3) | −0.001 (3) | 0.002 (3) |
C10 | 0.032 (4) | 0.036 (4) | 0.044 (4) | 0.003 (3) | 0.006 (3) | 0.001 (3) |
C11 | 0.055 (5) | 0.027 (3) | 0.034 (4) | −0.001 (3) | 0.002 (3) | 0.000 (3) |
C12 | 0.044 (4) | 0.030 (3) | 0.037 (4) | −0.007 (3) | −0.010 (3) | 0.002 (3) |
C13 | 0.044 (4) | 0.025 (3) | 0.038 (4) | −0.008 (3) | −0.012 (3) | 0.002 (3) |
C14 | 0.032 (4) | 0.117 (8) | 0.087 (6) | 0.003 (5) | −0.011 (4) | −0.041 (6) |
C15 | 0.036 (4) | 0.025 (3) | 0.034 (3) | −0.004 (3) | −0.003 (3) | 0.001 (2) |
C16 | 0.039 (4) | 0.024 (3) | 0.036 (3) | −0.003 (3) | −0.010 (3) | 0.001 (3) |
C17 | 0.030 (4) | 0.029 (3) | 0.050 (4) | 0.002 (3) | −0.005 (3) | 0.001 (3) |
C18 | 0.043 (4) | 0.040 (4) | 0.045 (4) | −0.003 (3) | −0.012 (3) | −0.009 (3) |
C19 | 0.047 (4) | 0.039 (4) | 0.038 (4) | 0.002 (3) | −0.004 (3) | −0.009 (3) |
C20 | 0.041 (4) | 0.031 (4) | 0.040 (4) | 0.003 (3) | −0.001 (3) | −0.002 (3) |
C21 | 0.029 (3) | 0.030 (3) | 0.040 (4) | −0.001 (3) | 0.001 (3) | 0.003 (3) |
C22 | 0.036 (4) | 0.045 (4) | 0.061 (4) | −0.005 (3) | −0.018 (3) | −0.007 (3) |
Ni1—O3 | 1.852 (4) | C7—C8 | 1.418 (8) |
Ni1—N2 | 1.859 (5) | C7—C13 | 1.418 (9) |
Ni1—N1 | 1.861 (5) | C7—C12 | 1.423 (8) |
Ni1—O1 | 1.863 (4) | C8—C9 | 1.429 (9) |
Br1—C11 | 1.908 (6) | C9—C10 | 1.362 (9) |
Br2—C19 | 1.915 (6) | C10—C11 | 1.402 (9) |
O1—C8 | 1.288 (7) | C10—H10 | 0.9300 |
O2—C9 | 1.365 (7) | C11—C12 | 1.347 (9) |
O2—C14 | 1.426 (9) | C12—H12 | 0.9300 |
O3—C16 | 1.302 (7) | C13—H13 | 0.9300 |
O4—C17 | 1.351 (7) | C14—H14A | 0.9600 |
O4—C22 | 1.448 (7) | C14—H14B | 0.9600 |
N1—C13 | 1.297 (8) | C14—H14C | 0.9600 |
N1—C1 | 1.419 (8) | C15—C16 | 1.392 (9) |
N2—C21 | 1.312 (7) | C15—C21 | 1.417 (8) |
N2—C2 | 1.430 (7) | C15—C20 | 1.423 (8) |
C1—C2 | 1.381 (9) | C16—C17 | 1.462 (8) |
C1—C6 | 1.398 (8) | C17—C18 | 1.375 (9) |
C2—C3 | 1.374 (9) | C18—C19 | 1.387 (10) |
C3—C4 | 1.400 (9) | C18—H18 | 0.9300 |
C3—H3 | 0.9300 | C19—C20 | 1.370 (9) |
C4—C5 | 1.379 (10) | C20—H20 | 0.9300 |
C4—H4 | 0.9300 | C21—H21 | 0.9300 |
C5—C6 | 1.369 (10) | C22—H22A | 0.9600 |
C5—H5 | 0.9300 | C22—H22B | 0.9600 |
C6—H6 | 0.9300 | C22—H22C | 0.9600 |
O3—Ni1—N2 | 94.8 (2) | C9—C10—H10 | 120.2 |
O3—Ni1—N1 | 179.5 (2) | C11—C10—H10 | 120.2 |
N2—Ni1—N1 | 85.4 (2) | C12—C11—C10 | 121.7 (6) |
O3—Ni1—O1 | 85.07 (18) | C12—C11—Br1 | 120.0 (5) |
N2—Ni1—O1 | 179.8 (2) | C10—C11—Br1 | 118.3 (5) |
N1—Ni1—O1 | 94.7 (2) | C11—C12—C7 | 119.2 (5) |
C8—O1—Ni1 | 127.5 (4) | C11—C12—H12 | 120.4 |
C9—O2—C14 | 117.2 (5) | C7—C12—H12 | 120.4 |
C16—O3—Ni1 | 126.3 (4) | N1—C13—C7 | 126.6 (5) |
C17—O4—C22 | 116.5 (5) | N1—C13—H13 | 116.7 |
C13—N1—C1 | 120.7 (5) | C7—C13—H13 | 116.7 |
C13—N1—Ni1 | 125.6 (4) | O2—C14—H14A | 109.5 |
C1—N1—Ni1 | 113.7 (4) | O2—C14—H14B | 109.5 |
C21—N2—C2 | 120.1 (5) | H14A—C14—H14B | 109.5 |
C21—N2—Ni1 | 126.3 (4) | O2—C14—H14C | 109.5 |
C2—N2—Ni1 | 113.6 (4) | H14A—C14—H14C | 109.5 |
C2—C1—C6 | 119.3 (6) | H14B—C14—H14C | 109.5 |
C2—C1—N1 | 113.9 (5) | C16—C15—C21 | 121.7 (5) |
C6—C1—N1 | 126.8 (6) | C16—C15—C20 | 122.2 (5) |
C3—C2—C1 | 121.2 (5) | C21—C15—C20 | 115.9 (6) |
C3—C2—N2 | 125.4 (6) | O3—C16—C15 | 125.7 (5) |
C1—C2—N2 | 113.4 (5) | O3—C16—C17 | 117.7 (5) |
C2—C3—C4 | 119.2 (6) | C15—C16—C17 | 116.6 (5) |
C2—C3—H3 | 120.4 | O4—C17—C18 | 124.8 (5) |
C4—C3—H3 | 120.4 | O4—C17—C16 | 114.3 (5) |
C5—C4—C3 | 119.5 (7) | C18—C17—C16 | 120.9 (6) |
C5—C4—H4 | 120.3 | C17—C18—C19 | 119.4 (6) |
C3—C4—H4 | 120.3 | C17—C18—H18 | 120.3 |
C6—C5—C4 | 121.3 (6) | C19—C18—H18 | 120.3 |
C6—C5—H5 | 119.4 | C20—C19—C18 | 122.9 (6) |
C4—C5—H5 | 119.4 | C20—C19—Br2 | 118.2 (5) |
C5—C6—C1 | 119.5 (6) | C18—C19—Br2 | 119.0 (5) |
C5—C6—H6 | 120.2 | C19—C20—C15 | 118.0 (6) |
C1—C6—H6 | 120.2 | C19—C20—H20 | 121.0 |
C8—C7—C13 | 120.8 (5) | C15—C20—H20 | 121.0 |
C8—C7—C12 | 121.3 (6) | N2—C21—C15 | 124.7 (6) |
C13—C7—C12 | 117.9 (5) | N2—C21—H21 | 117.7 |
O1—C8—C7 | 124.7 (5) | C15—C21—H21 | 117.7 |
O1—C8—C9 | 119.6 (5) | O4—C22—H22A | 109.5 |
C7—C8—C9 | 115.7 (6) | O4—C22—H22B | 109.5 |
C10—C9—O2 | 123.7 (6) | H22A—C22—H22B | 109.5 |
C10—C9—C8 | 122.4 (6) | O4—C22—H22C | 109.5 |
O2—C9—C8 | 113.8 (6) | H22A—C22—H22C | 109.5 |
C9—C10—C11 | 119.5 (6) | H22B—C22—H22C | 109.5 |
Experimental details
Crystal data | |
Chemical formula | [Ni(C22H16Br2N2O4)] |
Mr | 590.90 |
Crystal system, space group | Monoclinic, P21/n |
Temperature (K) | 293 |
a, b, c (Å) | 15.288 (7), 8.213 (3), 16.473 (7) |
β (°) | 90.171 (8) |
V (Å3) | 2068.3 (15) |
Z | 4 |
Radiation type | Mo Kα |
µ (mm−1) | 4.84 |
Crystal size (mm) | 0.17 × 0.15 × 0.12 |
Data collection | |
Diffractometer | Bruker APEXII diffractometer |
Absorption correction | Multi-scan (SADABS; Sheldrick, 1996) |
Tmin, Tmax | 0.494, 0.595 |
No. of measured, independent and observed [I > 2σ(I)] reflections | 9492, 3613, 2628 |
Rint | 0.088 |
(sin θ/λ)max (Å−1) | 0.595 |
Refinement | |
R[F2 > 2σ(F2)], wR(F2), S | 0.065, 0.170, 1.02 |
No. of reflections | 3613 |
No. of parameters | 282 |
H-atom treatment | H-atom parameters constrained |
Δρmax, Δρmin (e Å−3) | 1.61, −1.16 |
Computer programs: APEX2 (Bruker, 2004), SAINT (Bruker, 2001), SAINT (Bruker, 2001, SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), SHELXTL (Sheldrick, 2008).
References
Bhattacharya, S., Mondal, S., Sasmal, S., Sparkes, H. A., Howard, J. A. K., Nayka, M. & Mohanta, S. (2011). CrystEngComm, 13, 1029–1036. Web of Science CSD CrossRef CAS Google Scholar
Bruker (2001). SAINT. Bruker AXS Inc., Madison, Wisconsin, USA. Google Scholar
Bruker (2004). APEX2. Bruker AXS Inc., Madison, Wisconsin, USA. Google Scholar
Felices, L. S., Escudero-Adan, E. C., Benet-Buchholz, J. & Kleij, A. W. (2009). Inorg. Chem. 48, 846–853. PubMed Google Scholar
Ghosh, R., Rahaman, S. H., Lin, C. N., Lu, T. H. & Ghosh, B. K. (2006). Polyhedron, 25, 3104–3112. Web of Science CSD CrossRef CAS Google Scholar
Kargar, H., Kia, R., Jamshidvand, A. & Fun, H.-K. (2009). Acta Cryst. E65, m498–m499. Web of Science CSD CrossRef IUCr Journals Google Scholar
Nayak, M., Koner, R., Lin, H. H., Flörke, U., Wei, H. H. & Mohanta, S. (2006). Inorg. Chem. 45, 10764–10773. Web of Science CSD CrossRef PubMed CAS Google Scholar
Sheldrick, G. M. (1996). SADABS. University of Göttingen, Germany. Google Scholar
Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. Web of Science CrossRef CAS IUCr Journals Google Scholar
Wang, H., Li, S. L., Liu, D. X., Cui, X. G. & Li, X. Y. (1994). Acta Chim. Sin. 52, 676–684. CAS Google Scholar
Yu, M.-M., Xu, H., Shi, Q.-Z., Wei, Y.-N. & Li, Z.-X. (2009). Acta Cryst. E65, m225. Web of Science CSD CrossRef IUCr Journals Google Scholar
This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.
Schiff-bases ligands, especially for those which are chelating, play an important role in the development of coordination chemistry as they readily form stable complexes with most transition metals (Ghosh et al., 2006; Nayak et al., 2006). Here, we present the structure of a new Ni(II) complex based on the tetradentate chelating Schiff-base ligand 1,2-diaminobenzene-N,N'-bis (5-bromo-3-methoxysalicylideneimine).
The molecular structure of the title complex is shown in Figure 1. The coordination of the NiII ion is slightly distorted square-planar, formed by two N atoms and two O atoms of the Schiff-base ligand. The mean deviation from the plane formed by the two N atoms, two O atoms and the NiII ion is 0.0426 Å. The Ni—N and Ni—O bond lengths are consistent with the corresponding distances in other nickel(II) complexes containing similar chelating tetradentate schiff-base ligands (Wang et al., 1994; Bhattacharya et al., 2011; Yu et al., 2009; Kargar et al., 2009; Felices et al., 2009).