organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

(3,6-Di­methyl-1,2,4,5-tetra­zine-1,4-di­yl)bis­­[(morpholin-4-yl)methanone]

aCollege of Biology and Environmental Engineering, Zhejiang Shuren University, Hangzhou 310015, People's Republic of China, and bCollege of Pharmaceutical Science, Zhejiang University of Technology, Hangzhou 310014, People's Republic of China
*Correspondence e-mail: rgw@zjut.edu.cn

(Received 28 January 2012; accepted 4 February 2012; online 10 February 2012)

In the title mol­ecule, C14H22N6O4, the amide-substituted N atoms of the tetra­zine ring deviate from the approximate plane of the four other atoms in the ring by 0.160 (2) and 0.243 (2) Å, forming a slight boat conformation. The morpholine rings are in chair conformations.

Related literature

For chemical reactions of 1,2,4,5-tetra­zine derivatives, see: Domingo et al. (2009[Domingo, L. R., Picher, M. T. & Saez, J. A. (2009). J. Org. Chem. 74, 2726-2735.]); Lorincz et al. (2010[Lorincz, K., Kotschy, A., Tammiku-Taul, J., Sikk, L. & Burk, P. (2010). J. Org. Chem. 75, 6196-6200.]). For their bio­logical activities, see: Devaraj et al. (2009[Devaraj, N. K., Upadhyay, R., Haun, J. B., Hilderbrand, S. A. & Weissleder, R. (2009). Angew. Chem. Int. Ed. 48, 7013-7016.]); Eremeev et al. (1978[Eremeev, A. V., Tikhomirv, D. A., Tyusheva, V. A. & Liepins, F. (1978). Khim. Geterotsikl. Soedin. 6, 753-757.], 1980[Eremeev, A. V., Tikhomirova, D. A. & Zidermane, A. (1980). USSR Patent No. 686336.]); Han et al. (2010[Han, H. S., Devaraj, N. K., Lee, J., Hilderbrand, S. A., Weissleder, R. & Bawendi, M. G. (2010). J. Am. Chem. Soc. 132, 7838-7839.]); Neunhoeffer (1984[Neunhoeffer, H. (1984). Comprehensive Heterocyclic Chemistry, Vol. 3, edited by A. R. Katritzky, 1st ed., pp. 531-572. Frankfurt: Pergamon.]); Sauer (1996[Sauer, J. (1996). Comprehensive Heterocyclic Chemistry, Vol. 6, edited by A. J. Boulton, 2nd ed., pp. 901-955. Oxford: Elsevier.]). For anti-tumor activity of 1,2,4,5-tetra­zine derivatives, see: Hu et al. (2002[Hu, W. X., Sun, Y. Q., Yuan, Q. & Yang, Z. Y. (2002). Chem. J. Chin. Univ. 23, 1877-1881.], 2004[Hu, W. X., Rao, G. W. & Sun, Y. Q. (2004). Bioorg. Med. Chem. Lett. 14, 1177-1181.]); Rao & Hu, (2005[Rao, G. W. & Hu, W. X. (2005). Bioorg. Med. Chem. Lett. 15, 3174-3176.], 2006[Rao, G. W. & Hu, W. X. (2006). Bioorg. Med. Chem. Lett. 16, 3702-3705.]). For details of the synthesis, see: Hu et al. (2004[Hu, W. X., Rao, G. W. & Sun, Y. Q. (2004). Bioorg. Med. Chem. Lett. 14, 1177-1181.]); Skorianetz & Kováts (1970[Skorianetz, W. & Kováts, E. Sz. (1970). Helv. Chim. Acta, 53, 251-262.], 1971[Skorianetz, W. & Kováts, E. Sz. (1971). Helv. Chim. Acta, 54, 1922-1939.]); Sun et al. (2003[Sun, Y. Q., Hu, W. X. & Yuan, Q. (2003). Synth. Commun. 33, 2769-2775.]). For standard bond lengths, see: Allen et al. (1987[Allen, F. H., Kennard, O., Watson, D. G., Brammer, L. & Orpen, A. G. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1-19.]).

[Scheme 1]

Experimental

Crystal data
  • C14H22N6O4

  • Mr = 338.38

  • Monoclinic, P 21 /n

  • a = 15.285 (3) Å

  • b = 6.5977 (14) Å

  • c = 16.729 (4) Å

  • β = 106.576 (3)°

  • V = 1617.0 (6) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.10 mm−1

  • T = 298 K

  • 0.55 × 0.42 × 0.28 mm

Data collection
  • Bruker SMART CCD diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 1997[Bruker (1997). SMART, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]) Tmin = 0.944, Tmax = 0.971

  • 9248 measured reflections

  • 3714 independent reflections

  • 2908 reflections with I > 2σ(I)

  • Rint = 0.020

Refinement
  • R[F2 > 2σ(F2)] = 0.049

  • wR(F2) = 0.142

  • S = 1.03

  • 3714 reflections

  • 220 parameters

  • H-atom parameters constrained

  • Δρmax = 0.27 e Å−3

  • Δρmin = −0.27 e Å−3

Data collection: SMART (Bruker, 1997[Bruker (1997). SMART, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 1997[Bruker (1997). SMART, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: ORTEP-3 for Windows (Farrugia, 1997[Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.]); software used to prepare material for publication: WinGX (Farrugia, 1999[Farrugia, L. J. (1999). J. Appl. Cryst. 32, 837-838.]).

Supporting information


Comment top

Tetrazine derivatives have high activity in chemical reactions (Domingo et al., 2009; Lorincz et al., 2010), and have been widely used in pesticides and medicines (Devaraj et al., 2009; Eremeev et al., 1978, 1980; Han et al., 2010; Neunhoeffer, 1984; Sauer, 1996). In a continuation of our studies of antitumor activities in 1,2,4,5-tetrazine derivatives (Hu et al., 2002, 2004; Rao & Hu, 2005, 2006), we have obtained a yellow crystalline compound, (I). The structure was confirmed by single-crystal X-ray diffraction.

The molecular structure of (I) is illustrated in Fig. 1. The N2C3 [1.2730 (17) Å] and N5C6 [1.2748 (18) Å] bonds lengths are typical for double bonds, as are the C3—N4 [1.3821 (17) Å], N4—N5 [1.4235 (17) Å], C6—N1 [1.3728 (17) Å] and N1—N2 [1.4207 (16) Å] bond lengths (Allen et al., 1987). The tetrazine ring is a 1,4-dihydro structure with the N-substituted groups at the 1,4-positions.

In (I), atoms N2, C3, N5 and C6 are approximately planar, with the largest deviation from this plane being 0.0137 (6) Å. Atoms N1 and N4 deviate from this plane by 0.1604 (21) and 0.2429 (20) Å, respectively. The dihedral angle between the N2/C3/N5/C6 plane and the N1/N2/C6 plane is 13.37 (24)°, and between the N2/C3/N5/C6 plane and the N4/N5/C3 plane is 19.79 (21)°. The tetrazine ring has a slight boat conformation. Atoms C7, C8, C9 and C10 are approximately planar, with the largest deviation from this plane being 0.0114 (9) Å. Atoms O3 and N3 deviate from this plane by 0.6616 (23) and -0.5938 (21) Å, respectively. Atoms C11, C12, C13 and C14 are approximately planar, with the largest deviation from this plane being 0.0137 (9) Å. Atoms O4 and N6 deviate from this plane by 0.6576 (20) and -0.5953 (21) Å, respectively. The two morpholine rings exhibit chair conformations.

Related literature top

For chemical reactions of 1,2,4,5-tetrazine derivatives, see: Domingo et al. (2009); Lorincz et al. (2010). For their biological activities, see: Devaraj et al. (2009); Eremeev et al. (1978, 1980); Han et al. (2010); Neunhoeffer (1984); Sauer (1996). For anti-tumor activity of 1,2,4,5-tetrazine derivatives, see: Hu et al. (2002, 2004); Rao & Hu, (2005, 2006). For details of the synthesis, see: Hu et al. (2004); Skorianetz & Kováts (1970, 1971); Sun et al. (2003). For standard bond lengths, see: Allen et al. (1987).

Experimental top

The title compound was the product of the reaction of bis(trichloromethyl) carbonate, morpholine, and 3,6-dimethyl-1,6-dihydro-1,2,4,5-tetrazine according to the procedure (Hu et al., 2004; Sun et al., 2003; Skorianetz & Kováts, 1970, 1971). A solution of the title compound in acetone was concentrated gradually at room temperature to afford yellow blocks.

Refinement top

H atoms were included in calculated positions and refined using a riding model. H atoms were given isotropic displacement parameters equal to 1.2 (or 1.5 for methyl H atoms) times the equivalent isotropic displacement parameters of their parent atoms, and C—H distances were set to 0.96Å for methyl H atoms and 0.97 Å for methylene H atoms.

Computing details top

Data collection: SMART (Bruker, 1997); cell refinement: SAINT (Bruker, 1997); data reduction: SAINT (Bruker, 1997); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 for Windows (Farrugia, 1997); software used to prepare material for publication: WinGX (Farrugia, 1999).

Figures top
[Figure 1] Fig. 1. The molecular structure of (I), shown with 30% probability displacement ellipsoids.
[Figure 2] Fig. 2. The crystal packing of (I). Hydrogen bonds are shown as dashed lines. H atoms not involved in hydrogen bonding were omitted for clarity.
(3,6-Dimethyl-1,2,4,5-tetrazine-1,4-diyl)bis[(morpholin-4-yl)methanone] top
Crystal data top
C14H22N6O4F(000) = 720
Mr = 338.38Dx = 1.390 Mg m3
Monoclinic, P21/nMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ynCell parameters from 6920 reflections
a = 15.285 (3) Åθ = 2.9–28.2°
b = 6.5977 (14) ŵ = 0.10 mm1
c = 16.729 (4) ÅT = 298 K
β = 106.576 (3)°Block, yellow
V = 1617.0 (6) Å30.55 × 0.42 × 0.28 mm
Z = 4
Data collection top
Bruker SMART CCD
diffractometer
3714 independent reflections
Radiation source: fine-focus sealed tube2908 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.020
ϕ and ω scansθmax = 28.3°, θmin = 2.1°
Absorption correction: multi-scan
(SADABS; Bruker, 1997)
h = 1520
Tmin = 0.944, Tmax = 0.971k = 88
9248 measured reflectionsl = 1821
Refinement top
Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.049H-atom parameters constrained
wR(F2) = 0.142 w = 1/[σ2(Fo2) + (0.0823P)2 + 0.2523P]
where P = (Fo2 + 2Fc2)/3
S = 1.03(Δ/σ)max < 0.001
3714 reflectionsΔρmax = 0.27 e Å3
220 parametersΔρmin = 0.27 e Å3
0 restraintsExtinction correction: SHELXL97 (Sheldrick, 2008), Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
Primary atom site location: structure-invariant direct methodsExtinction coefficient: 0.036 (3)
Crystal data top
C14H22N6O4V = 1617.0 (6) Å3
Mr = 338.38Z = 4
Monoclinic, P21/nMo Kα radiation
a = 15.285 (3) ŵ = 0.10 mm1
b = 6.5977 (14) ÅT = 298 K
c = 16.729 (4) Å0.55 × 0.42 × 0.28 mm
β = 106.576 (3)°
Data collection top
Bruker SMART CCD
diffractometer
3714 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 1997)
2908 reflections with I > 2σ(I)
Tmin = 0.944, Tmax = 0.971Rint = 0.020
9248 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0490 restraints
wR(F2) = 0.142H-atom parameters constrained
S = 1.03Δρmax = 0.27 e Å3
3714 reflectionsΔρmin = 0.27 e Å3
220 parameters
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > 2sigma(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
N20.68618 (8)0.70860 (18)0.11259 (7)0.0374 (3)
N40.59388 (8)0.60296 (19)0.19430 (7)0.0409 (3)
N50.55633 (9)0.43942 (18)0.13981 (8)0.0450 (3)
N10.66936 (9)0.51243 (19)0.07644 (8)0.0456 (3)
O40.49306 (9)0.2853 (2)0.41742 (7)0.0586 (3)
O30.74085 (9)0.7091 (2)0.18200 (7)0.0620 (4)
N60.53166 (9)0.5633 (2)0.30490 (8)0.0444 (3)
C60.59824 (9)0.3973 (2)0.08605 (8)0.0359 (3)
N30.75197 (8)0.57709 (19)0.01932 (7)0.0416 (3)
O10.75909 (9)0.27148 (18)0.04345 (9)0.0643 (4)
C30.64652 (9)0.7449 (2)0.16842 (8)0.0333 (3)
O20.48046 (10)0.8161 (2)0.21322 (9)0.0764 (5)
C40.72971 (10)0.4435 (2)0.03193 (8)0.0397 (3)
C50.52962 (10)0.6716 (2)0.23773 (9)0.0415 (3)
C110.59485 (10)0.3983 (2)0.33971 (10)0.0461 (4)
H11A0.64050.44420.38950.055*
H11B0.62580.35490.29940.055*
C120.54193 (11)0.2249 (3)0.36082 (10)0.0492 (4)
H12A0.49940.17380.31010.059*
H12B0.58360.11610.38540.059*
C70.82145 (11)0.5206 (3)0.06011 (10)0.0490 (4)
H7A0.84560.38740.04130.059*
H7B0.87140.61700.04550.059*
C100.70416 (11)0.7647 (2)0.05175 (9)0.0461 (4)
H10A0.74530.87880.03500.055*
H10B0.65330.78390.02870.055*
C140.47410 (12)0.6227 (3)0.35760 (11)0.0531 (4)
H14A0.42790.71790.32780.064*
H14B0.51110.68890.40760.064*
C10.66582 (12)0.9416 (3)0.21394 (11)0.0535 (4)
H1A0.68750.91640.27280.080*
H1B0.61091.02080.20200.080*
H1C0.71151.01430.19630.080*
C130.42906 (12)0.4385 (3)0.38095 (11)0.0548 (4)
H13A0.39580.47740.42000.066*
H13B0.38540.38470.33150.066*
C20.56523 (12)0.2236 (3)0.02845 (12)0.0594 (5)
H2A0.55710.26670.02800.089*
H2B0.50810.17610.03450.089*
H2C0.60930.11590.04180.089*
C90.66960 (12)0.7561 (3)0.14556 (10)0.0588 (5)
H9A0.62220.65400.16180.071*
H9B0.64290.88580.16660.071*
C80.77950 (13)0.5188 (3)0.15316 (10)0.0581 (5)
H8A0.82590.48540.18030.070*
H8B0.73260.41530.16780.070*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
N20.0443 (6)0.0343 (6)0.0378 (6)0.0095 (5)0.0183 (5)0.0074 (5)
N40.0480 (7)0.0397 (7)0.0428 (6)0.0052 (5)0.0255 (5)0.0037 (5)
N50.0469 (7)0.0330 (6)0.0625 (8)0.0085 (5)0.0278 (6)0.0075 (5)
N10.0601 (8)0.0379 (7)0.0506 (7)0.0152 (6)0.0346 (6)0.0145 (5)
O40.0659 (7)0.0694 (8)0.0489 (6)0.0032 (6)0.0302 (6)0.0145 (6)
O30.0741 (8)0.0787 (9)0.0390 (6)0.0023 (7)0.0255 (6)0.0062 (6)
N60.0515 (7)0.0449 (7)0.0471 (7)0.0098 (6)0.0306 (6)0.0054 (5)
C60.0375 (7)0.0288 (7)0.0417 (7)0.0002 (5)0.0119 (6)0.0014 (5)
N30.0471 (7)0.0461 (7)0.0390 (6)0.0091 (5)0.0239 (5)0.0036 (5)
O10.0768 (8)0.0459 (7)0.0819 (9)0.0174 (6)0.0417 (7)0.0147 (6)
C30.0353 (6)0.0348 (7)0.0297 (6)0.0013 (5)0.0089 (5)0.0013 (5)
O20.0777 (9)0.0787 (9)0.0906 (10)0.0378 (8)0.0525 (8)0.0386 (8)
C40.0438 (7)0.0405 (8)0.0376 (7)0.0007 (6)0.0163 (6)0.0037 (6)
C50.0431 (7)0.0416 (8)0.0456 (8)0.0033 (6)0.0221 (6)0.0017 (6)
C110.0434 (8)0.0514 (9)0.0468 (8)0.0064 (7)0.0182 (6)0.0062 (7)
C120.0541 (9)0.0496 (9)0.0457 (8)0.0062 (7)0.0173 (7)0.0079 (7)
C70.0487 (8)0.0588 (10)0.0483 (8)0.0086 (7)0.0278 (7)0.0008 (7)
C100.0564 (9)0.0445 (8)0.0424 (8)0.0095 (7)0.0223 (7)0.0053 (6)
C140.0653 (10)0.0531 (10)0.0544 (9)0.0064 (8)0.0386 (8)0.0022 (7)
C10.0623 (10)0.0481 (9)0.0552 (9)0.0113 (8)0.0248 (8)0.0196 (7)
C130.0541 (9)0.0674 (11)0.0531 (9)0.0012 (8)0.0316 (8)0.0028 (8)
C20.0529 (9)0.0473 (9)0.0776 (12)0.0106 (7)0.0179 (9)0.0261 (8)
C90.0598 (10)0.0707 (12)0.0452 (9)0.0083 (9)0.0138 (8)0.0096 (8)
C80.0704 (11)0.0663 (11)0.0470 (9)0.0035 (9)0.0318 (8)0.0119 (8)
Geometric parameters (Å, º) top
N2—C31.2730 (17)C11—H11B0.9700
N2—N11.4207 (16)C12—H12A0.9700
N4—C31.3821 (17)C12—H12B0.9700
N4—N51.4235 (17)C7—C81.505 (2)
N4—C51.4509 (17)C7—H7A0.9700
N5—C61.2748 (18)C7—H7B0.9700
N1—C61.3728 (17)C10—C91.507 (2)
N1—C41.4155 (17)C10—H10A0.9700
O4—C131.418 (2)C10—H10B0.9700
O4—C121.4201 (19)C14—C131.502 (2)
O3—C81.413 (2)C14—H14A0.9700
O3—C91.426 (2)C14—H14B0.9700
N6—C51.3245 (19)C1—H1A0.9600
N6—C111.4620 (19)C1—H1B0.9600
N6—C141.4653 (17)C1—H1C0.9600
C6—C21.490 (2)C13—H13A0.9700
N3—C41.3392 (18)C13—H13B0.9700
N3—C101.4609 (19)C2—H2A0.9600
N3—C71.4650 (17)C2—H2B0.9600
O1—C41.2158 (18)C2—H2C0.9600
C3—C11.4911 (19)C9—H9A0.9700
O2—C51.2104 (19)C9—H9B0.9700
C11—C121.500 (2)C8—H8A0.9700
C11—H11A0.9700C8—H8B0.9700
C3—N2—N1114.67 (11)C8—C7—H7B109.8
C3—N4—N5118.51 (11)H7A—C7—H7B108.2
C3—N4—C5118.88 (12)N3—C10—C9110.14 (13)
N5—N4—C5110.52 (11)N3—C10—H10A109.6
C6—N5—N4115.15 (11)C9—C10—H10A109.6
C6—N1—C4122.73 (12)N3—C10—H10B109.6
C6—N1—N2120.49 (11)C9—C10—H10B109.6
C4—N1—N2116.78 (11)H10A—C10—H10B108.1
C13—O4—C12110.04 (12)N6—C14—C13109.79 (13)
C8—O3—C9110.07 (13)N6—C14—H14A109.7
C5—N6—C11126.36 (12)C13—C14—H14A109.7
C5—N6—C14119.56 (13)N6—C14—H14B109.7
C11—N6—C14113.66 (12)C13—C14—H14B109.7
N5—C6—N1122.43 (12)H14A—C14—H14B108.2
N5—C6—C2118.58 (13)C3—C1—H1A109.5
N1—C6—C2118.90 (13)C3—C1—H1B109.5
C4—N3—C10127.14 (12)H1A—C1—H1B109.5
C4—N3—C7118.76 (13)C3—C1—H1C109.5
C10—N3—C7113.26 (12)H1A—C1—H1C109.5
N2—C3—N4122.96 (12)H1B—C1—H1C109.5
N2—C3—C1118.17 (12)O4—C13—C14112.17 (14)
N4—C3—C1118.54 (12)O4—C13—H13A109.2
O1—C4—N3124.47 (13)C14—C13—H13A109.2
O1—C4—N1118.89 (13)O4—C13—H13B109.2
N3—C4—N1116.62 (13)C14—C13—H13B109.2
O2—C5—N6125.04 (13)H13A—C13—H13B107.9
O2—C5—N4121.32 (13)C6—C2—H2A109.5
N6—C5—N4113.63 (12)C6—C2—H2B109.5
N6—C11—C12108.81 (12)H2A—C2—H2B109.5
N6—C11—H11A109.9C6—C2—H2C109.5
C12—C11—H11A109.9H2A—C2—H2C109.5
N6—C11—H11B109.9H2B—C2—H2C109.5
C12—C11—H11B109.9O3—C9—C10111.70 (14)
H11A—C11—H11B108.3O3—C9—H9A109.3
O4—C12—C11111.39 (14)C10—C9—H9A109.3
O4—C12—H12A109.4O3—C9—H9B109.3
C11—C12—H12A109.4C10—C9—H9B109.3
O4—C12—H12B109.4H9A—C9—H9B107.9
C11—C12—H12B109.4O3—C8—C7111.07 (14)
H12A—C12—H12B108.0O3—C8—H8A109.4
N3—C7—C8109.40 (13)C7—C8—H8A109.4
N3—C7—H7A109.8O3—C8—H8B109.4
C8—C7—H7A109.8C7—C8—H8B109.4
N3—C7—H7B109.8H8A—C8—H8B108.0
C3—N4—N5—C623.26 (19)C11—N6—C5—O2174.99 (17)
C5—N4—N5—C6165.46 (12)C14—N6—C5—O22.9 (3)
C3—N2—N1—C616.02 (19)C11—N6—C5—N44.4 (2)
C3—N2—N1—C4163.17 (13)C14—N6—C5—N4176.51 (13)
N4—N5—C6—N15.6 (2)C3—N4—C5—O244.9 (2)
N4—N5—C6—C2177.96 (14)N5—N4—C5—O297.15 (18)
C4—N1—C6—N5164.79 (14)C3—N4—C5—N6134.55 (14)
N2—N1—C6—N514.4 (2)N5—N4—C5—N683.42 (15)
C4—N1—C6—C218.8 (2)C5—N6—C11—C12134.69 (16)
N2—N1—C6—C2162.09 (14)C14—N6—C11—C1252.82 (18)
N1—N2—C3—N42.27 (19)C13—O4—C12—C1161.50 (17)
N1—N2—C3—C1175.66 (13)N6—C11—C12—O457.44 (17)
N5—N4—C3—N222.2 (2)C4—N3—C7—C8117.84 (16)
C5—N4—C3—N2161.22 (13)C10—N3—C7—C852.37 (18)
N5—N4—C3—C1164.45 (13)C4—N3—C10—C9118.42 (16)
C5—N4—C3—C125.42 (19)C7—N3—C10—C950.80 (18)
C10—N3—C4—O1163.86 (16)C5—N6—C14—C13135.96 (16)
C7—N3—C4—O14.8 (2)C11—N6—C14—C1350.99 (19)
C10—N3—C4—N117.6 (2)C12—O4—C13—C1459.39 (18)
C7—N3—C4—N1173.67 (13)N6—C14—C13—O453.49 (19)
C6—N1—C4—O144.3 (2)C8—O3—C9—C1059.94 (19)
N2—N1—C4—O1134.89 (16)N3—C10—C9—O353.83 (19)
C6—N1—C4—N3137.12 (15)C9—O3—C8—C761.71 (18)
N2—N1—C4—N343.71 (18)N3—C7—C8—O357.37 (19)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C14—H14A···O20.972.372.758 (2)103
C1—H1B···O20.962.462.949 (2)111
C2—H2C···O10.962.502.919 (2)106
C7—H7A···O10.972.332.748 (2)105
C10—H10B···N10.972.472.881 (2)105
C10—H10B···N20.972.332.8640 (19)114
C11—H11B···N40.972.352.7787 (19)106

Experimental details

Crystal data
Chemical formulaC14H22N6O4
Mr338.38
Crystal system, space groupMonoclinic, P21/n
Temperature (K)298
a, b, c (Å)15.285 (3), 6.5977 (14), 16.729 (4)
β (°) 106.576 (3)
V3)1617.0 (6)
Z4
Radiation typeMo Kα
µ (mm1)0.10
Crystal size (mm)0.55 × 0.42 × 0.28
Data collection
DiffractometerBruker SMART CCD
diffractometer
Absorption correctionMulti-scan
(SADABS; Bruker, 1997)
Tmin, Tmax0.944, 0.971
No. of measured, independent and
observed [I > 2σ(I)] reflections
9248, 3714, 2908
Rint0.020
(sin θ/λ)max1)0.668
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.049, 0.142, 1.03
No. of reflections3714
No. of parameters220
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.27, 0.27

Computer programs: SMART (Bruker, 1997), SAINT (Bruker, 1997), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), ORTEP-3 for Windows (Farrugia, 1997), WinGX (Farrugia, 1999).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C14—H14A···O20.972.372.758 (2)103.2
C1—H1B···O20.962.462.949 (2)111.4
C2—H2C···O10.962.502.919 (2)106.2
C7—H7A···O10.972.332.748 (2)105.4
C10—H10B···N10.972.472.881 (2)105.1
C10—H10B···N20.972.332.8640 (19)114.2
C11—H11B···N40.972.352.7787 (19)106.0
 

Acknowledgements

The authors are very grateful to the National Natural Science Foundation of China (grant No. 20802069) and the Natural Science Foundation of Zhejiang Province (grant No. Y2090985) for financial support.

References

First citationAllen, F. H., Kennard, O., Watson, D. G., Brammer, L. & Orpen, A. G. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1–19.  CrossRef Google Scholar
First citationBruker (1997). SMART, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationDevaraj, N. K., Upadhyay, R., Haun, J. B., Hilderbrand, S. A. & Weissleder, R. (2009). Angew. Chem. Int. Ed. 48, 7013–7016.  Web of Science CrossRef CAS Google Scholar
First citationDomingo, L. R., Picher, M. T. & Saez, J. A. (2009). J. Org. Chem. 74, 2726–2735.  Web of Science CrossRef PubMed CAS Google Scholar
First citationEremeev, A. V., Tikhomirova, D. A. & Zidermane, A. (1980). USSR Patent No. 686336.  Google Scholar
First citationEremeev, A. V., Tikhomirv, D. A., Tyusheva, V. A. & Liepins, F. (1978). Khim. Geterotsikl. Soedin. 6, 753–757.  Google Scholar
First citationFarrugia, L. J. (1997). J. Appl. Cryst. 30, 565.  CrossRef IUCr Journals Google Scholar
First citationFarrugia, L. J. (1999). J. Appl. Cryst. 32, 837–838.  CrossRef CAS IUCr Journals Google Scholar
First citationHan, H. S., Devaraj, N. K., Lee, J., Hilderbrand, S. A., Weissleder, R. & Bawendi, M. G. (2010). J. Am. Chem. Soc. 132, 7838–7839.  Web of Science CrossRef CAS PubMed Google Scholar
First citationHu, W. X., Rao, G. W. & Sun, Y. Q. (2004). Bioorg. Med. Chem. Lett. 14, 1177–1181.  Web of Science CSD CrossRef PubMed CAS Google Scholar
First citationHu, W. X., Sun, Y. Q., Yuan, Q. & Yang, Z. Y. (2002). Chem. J. Chin. Univ. 23, 1877–1881.  CAS Google Scholar
First citationLorincz, K., Kotschy, A., Tammiku-Taul, J., Sikk, L. & Burk, P. (2010). J. Org. Chem. 75, 6196–6200.  Web of Science CAS PubMed Google Scholar
First citationNeunhoeffer, H. (1984). Comprehensive Heterocyclic Chemistry, Vol. 3, edited by A. R. Katritzky, 1st ed., pp. 531–572. Frankfurt: Pergamon.  Google Scholar
First citationRao, G. W. & Hu, W. X. (2005). Bioorg. Med. Chem. Lett. 15, 3174–3176.  Web of Science CSD CrossRef PubMed CAS Google Scholar
First citationRao, G. W. & Hu, W. X. (2006). Bioorg. Med. Chem. Lett. 16, 3702–3705.  Web of Science CSD CrossRef PubMed CAS Google Scholar
First citationSauer, J. (1996). Comprehensive Heterocyclic Chemistry, Vol. 6, edited by A. J. Boulton, 2nd ed., pp. 901–955. Oxford: Elsevier.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSkorianetz, W. & Kováts, E. Sz. (1970). Helv. Chim. Acta, 53, 251–262.  CrossRef CAS Web of Science Google Scholar
First citationSkorianetz, W. & Kováts, E. Sz. (1971). Helv. Chim. Acta, 54, 1922–1939.  CrossRef CAS Web of Science Google Scholar
First citationSun, Y. Q., Hu, W. X. & Yuan, Q. (2003). Synth. Commun. 33, 2769–2775.  Web of Science CrossRef CAS Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds