organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

1,4-Di­methyl­piperazin-1-ium 3-hy­dr­oxy-2-naphtho­ate

aDepartment of Pure and Applied Chemistry, WestCHEM, University of Strathclyde, 295 Cathedral Street, Glasgow G1 1XL, Scotland
*Correspondence e-mail: a.r.kennedy@strath.ac.uk

(Received 31 January 2012; accepted 7 February 2012; online 17 February 2012)

The reaction of 1,4-dimethyl­piperazine and 3-hy­droxy-2-naphthoic acid gives the title 1:1 salt, C6H15N2+·C11H7O3, with a singly protonated piperazinium cation. In the crystal, a single N—H⋯O hydrogen bond links the cations and anions into discrete pairs and the aromatic anions stack along the crystallographic a-axis direction. This results in layers of cations and anions alternating along the crystallographic c-axis direction. An intra­molecular O—H⋯O hydrogen bond is also present.

Related literature

For general descriptions of the salt selection process in the pharmacy industry, see: Stahl & Wermuth (2002[Stahl, P. H. & Wermuth, C. G. (2002). Handbook of Pharmaceutical Salts. Properties, Selection and Uses. Zurich: Wiley-VCH.]); Gould (1986[Gould, P. L. (1986). Int. J. Pharm. 33, 201-217.]); Serajuddin (2007[Serajuddin, A. T. M. (2007). Adv. Drug Deliv. Rev. 59, 603-616.]). For structures of monoprotonated 1,4-dimethyl­piperazinium, see: Clemente et al. (1999[Clemente, D. A., Marzotto, A., Valle, G. & Visonà, C. J. (1999). Polyhedron, 18, 2749-2757.]); Marzotto et al. (2001[Marzotto, A., Clemente, D. A., Benetollo, F. & Valle, G. (2001). Polyhedron, 20, 171-177.]). For systematic structural studies of structure–property relationships of salts in a pharmaceutical context, see: Arlin et al. (2011[Arlin, J.-B., Florence, A. J., Johnston, A., Kennedy, A. R., Miller, G. J. & Patterson, K. (2011). Cryst. Growth Des. 11, 1318-1327.]); Kennedy et al. (2011[Kennedy, A. R., Morrison, C. A., Briggs, N. E. B. & Arbuckle, W. (2011). Cryst. Growth Des. 11, 1821-1834.]). For the Cambridge Structural Database, see: Allen (2002[Allen, F. H. (2002). Acta Cryst. B58, 380-388.]). For a related aryl carboxyl­ate structure, see: Burchell et al. (2001[Burchell, C. J., Glidewell, C., Lough, A. J. & Ferguson, G. (2001). Acta Cryst. B57, 201-212.]).

[Scheme 1]

Experimental

Crystal data
  • C6H15N2+·C11H7O3

  • Mr = 302.37

  • Monoclinic, P 21

  • a = 5.8772 (16) Å

  • b = 10.892 (2) Å

  • c = 12.562 (2) Å

  • β = 100.29 (2)°

  • V = 791.2 (3) Å3

  • Z = 2

  • Mo Kα radiation

  • μ = 0.09 mm−1

  • T = 293 K

  • 0.20 × 0.15 × 0.08 mm

Data collection
  • Oxford Diffraction Xcaliber S diffractometer

  • 7855 measured reflections

  • 2996 independent reflections

  • 1608 reflections with I > 2σ(I)

  • Rint = 0.119

Refinement
  • R[F2 > 2σ(F2)] = 0.046

  • wR(F2) = 0.121

  • S = 0.83

  • 2996 reflections

  • 203 parameters

  • 1 restraint

  • H-atom parameters constrained

  • Δρmax = 0.14 e Å−3

  • Δρmin = −0.16 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
O3—H3⋯O2 0.82 1.81 2.541 (3) 148
N2—H2⋯O1i 0.91 1.71 2.613 (3) 174
Symmetry code: (i) [-x+1, y-{\script{1\over 2}}, -z+1].

Data collection: CrysAlis PRO (Oxford Diffraction, 2010[Oxford Diffraction (2010). CrysAlis PRO. Oxford Diffraction Ltd, Yarnton, Oxfordshire, England.]); cell refinement: CrysAlis PRO; data reduction: CrysAlis PRO; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: ORTEP-3 (Farrugia, 1997[Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.]) and X-SEED (Barbour, 2001[Barbour, L. J. (2001). J. Supramol. Chem. 1, 189-191.]); software used to prepare material for publication: SHELXL97.

Supporting information


Comment top

The influence of solid-state structure on salt selection in the pharmacy industry is of ongoing interest and importance (Stahl & Wermuth, 2002; Gould, 1986; Serajuddin, 2007). As a contribution towards this we have recently investigated series of salt structures based on both protonated tertiary amines and anions derived from aryl carboxylic acids (Arlin et al., 2011; Kennedy et al., 2011). Combining these two themes we present here the structure of 1,4-dimethylpiperazinium 3-hydroxy-2-naphthoate (I).

Reaction of equimolar amounts of 1,4-dimethylpiperazine and 3-hydroxy-2-naphthoic acid in an aqueous environment gave a 1:1 salt with the base monoprotonated to give 1,4-dimethylpiperazinium, see Fig. 1. A search of the Cambridge Structural Database (Allen, 2002) found only three other examples of structures containing the monoprotonated base. All were RMCl3 structures (M = Co, Cu, Zn) with the non-protonated amine forming a bond to the metal centre (Clemente et al., 1999; Marzotto et al., 2001). In contrast there were 54 hits for the di-protonated cation, [C6N2H16]2+, with organic anions. This later group includes all the carboxylate based anions, including the only other aryl-carboxylate reported (Burchell et al., 2001). The molecular geometries of both ions in (I) are unexceptional. The near equal C—O lengths of the carboxylate group confirm its deprotonated nature. The piperazine ring exists in a chair conformation with equatorial methyl groups. Note that the C—N bond lengths of the protonated N2 atom are systematically longer than those involving the neutral atom N1.

Both potential hydrogen bond donors are utilized. The hydroxy group makes an internal hydrogen bond with one O atom of the carboxylate group whilst the the second O atom accepts an intermolecular hydrogen bond from NH of the cation, Table 1. This relatively limited hydrogen bonding results only in discrete cation-anion pairs being formed with no extended hydrogen bonding network. The aromatic anions stack along the crystallographic a direction in an offset manner such that the closest contact is between C2 of the carboxylate substituted ring and C11 of the non-substituted ring (C2···C11' = 3.576 (4) Å, ' = x + 1, y, z). The polar orientation of neighbouring anion stacks is reversed along the crystallographic c direction and this results in alternating layers of anions and cations as shown in Fig. 2.

Related literature top

For salt selection in the pharmacy industry, see: Stahl & Wermuth (2002); Gould (1986); Serajuddin (2007). For structures of monoprotonated 1,4-dimethylpiperazinium, see: Clemente et al. (1999); Marzotto et al. (2001). For systematic structural studies of structure–property relationships of salts in a pharmaceutical context, see: Arlin et al. (2011); Kennedy et al. (2011). For the Cambridge Structural Database, see: Allen (2002). For a related aryl carboxylate structure, see: Burchell et al. (2001).

Experimental top

Addition of an equimolar amount of 1,4-dimethylpiperazine to an aqueous slurry of 3-hydroxy-2-naphthoic acid with stirring and heating to 323 K gave a clear solution. After cooling to room temperature, colourless crystals of (I) were deposited after 3 days.

Refinement top

All the H-atoms were placed in geometric positions and refined in riding modes. N—H and O—H distances were set to 0.91 and 0.83 Å respectively, with the best fit orientation of the OH group to observed electron density being found by allowing rotation about the C—O bond. C—H distances of 0.93, 0.96 and 0.97 Å were adopted for CH, CH2 and CH3 groups respectively. Uiso = 1.2Ueq of riden atom, except for CH3 and OH where Uiso = 1.5Ueq of riden atom.

Computing details top

Data collection: CrysAlis PRO (Oxford Diffraction, 2010); cell refinement: CrysAlis PRO (Oxford Diffraction, 2010); data reduction: CrysAlis PRO (Oxford Diffraction, 2010); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 (Farrugia, 1997) and X-SEED (Barbour, 2001).

Figures top
[Figure 1] Fig. 1. Contents of the asymmetric unit of (I). Displacement ellipsoids are drawn at the 40% probability level.
[Figure 2] Fig. 2. Packing of (I) viewed along the a direction. Note the stacked anions down the a direction and the layers of cations and anions that alternate along the c direction.
1,4-Dimethylpiperazinium 3-hydroxy-2-naphthoate top
Crystal data top
C6H15N2+·C11H7O3F(000) = 324
Mr = 302.37Dx = 1.269 Mg m3
Monoclinic, P21Mo Kα radiation, λ = 0.71073 Å
Hall symbol: P 2ybCell parameters from 1466 reflections
a = 5.8772 (16) Åθ = 2.5–31.3°
b = 10.892 (2) ŵ = 0.09 mm1
c = 12.562 (2) ÅT = 293 K
β = 100.29 (2)°Fragment, colourless
V = 791.2 (3) Å30.20 × 0.15 × 0.08 mm
Z = 2
Data collection top
Oxford Diffraction Xcaliber S
diffractometer
1608 reflections with I > 2σ(I)
Radiation source: fine-focus sealed tubeRint = 0.119
Graphite monochromatorθmax = 26.0°, θmin = 2.5°
Detector resolution: 16.0268 pixels mm-1h = 77
ω scansk = 1313
7855 measured reflectionsl = 1515
2996 independent reflections
Refinement top
Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.046H-atom parameters constrained
wR(F2) = 0.121 w = 1/[σ2(Fo2) + (0.0613P)2]
where P = (Fo2 + 2Fc2)/3
S = 0.83(Δ/σ)max < 0.001
2996 reflectionsΔρmax = 0.14 e Å3
203 parametersΔρmin = 0.16 e Å3
1 restraintExtinction correction: SHELXL97 (Sheldrick, 2008), Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
Primary atom site location: structure-invariant direct methodsExtinction coefficient: 0.046 (5)
Crystal data top
C6H15N2+·C11H7O3V = 791.2 (3) Å3
Mr = 302.37Z = 2
Monoclinic, P21Mo Kα radiation
a = 5.8772 (16) ŵ = 0.09 mm1
b = 10.892 (2) ÅT = 293 K
c = 12.562 (2) Å0.20 × 0.15 × 0.08 mm
β = 100.29 (2)°
Data collection top
Oxford Diffraction Xcaliber S
diffractometer
1608 reflections with I > 2σ(I)
7855 measured reflectionsRint = 0.119
2996 independent reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0461 restraint
wR(F2) = 0.121H-atom parameters constrained
S = 0.83Δρmax = 0.14 e Å3
2996 reflectionsΔρmin = 0.16 e Å3
203 parameters
Special details top

Geometry. All s.u.'s (except the s.u. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell s.u.'s are taken into account individually in the estimation of s.u.'s in distances, angles and torsion angles; correlations between s.u.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell s.u.'s is used for estimating s.u.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > 2σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
O10.4807 (4)0.4173 (2)0.83756 (18)0.0698 (7)
O20.7191 (4)0.2587 (2)0.86723 (18)0.0693 (7)
O30.6220 (4)0.0581 (2)0.7662 (2)0.0713 (7)
H30.69090.10500.81200.107*
N10.0615 (5)0.2188 (2)0.18076 (18)0.0540 (7)
N20.2028 (4)0.0436 (2)0.03575 (18)0.0485 (6)
H20.30790.00040.08340.058*
C10.5324 (6)0.3081 (3)0.8212 (2)0.0499 (8)
C20.3691 (5)0.2334 (2)0.7444 (2)0.0421 (7)
C30.4223 (5)0.1106 (3)0.7177 (2)0.0492 (8)
C40.2712 (6)0.0446 (3)0.6450 (2)0.0577 (8)
H40.30890.03530.62860.069*
C50.0600 (6)0.0946 (3)0.5943 (2)0.0511 (8)
C60.0011 (5)0.2159 (3)0.6212 (2)0.0481 (8)
C70.1630 (5)0.2818 (2)0.6959 (2)0.0460 (7)
H70.12750.36180.71280.055*
C80.1018 (7)0.0297 (3)0.5177 (3)0.0691 (10)
H80.06940.05040.49950.083*
C90.3021 (7)0.0825 (4)0.4708 (3)0.0819 (12)
H90.40350.03870.41920.098*
C100.3613 (7)0.2015 (4)0.4978 (3)0.0815 (12)
H100.50140.23590.46530.098*
C110.2116 (6)0.2662 (3)0.5721 (3)0.0642 (9)
H110.25090.34500.59070.077*
C120.2864 (6)0.2257 (3)0.1499 (3)0.0621 (9)
H12A0.39740.18030.20170.074*
H12B0.33620.31070.15140.074*
C130.2821 (6)0.1748 (3)0.0404 (3)0.0582 (9)
H13A0.43570.17930.02240.070*
H13B0.17840.22300.01230.070*
C140.0210 (5)0.0334 (3)0.0721 (2)0.0559 (8)
H14A0.06350.05240.07510.067*
H14B0.13960.07450.02080.067*
C150.0076 (6)0.0901 (3)0.1817 (2)0.0572 (9)
H15A0.15730.08430.20360.069*
H15B0.10340.04540.23390.069*
C160.0568 (7)0.2757 (3)0.2852 (3)0.0778 (11)
H16A0.15690.23130.34080.117*
H16B0.09830.27420.29950.117*
H16C0.10860.35920.28410.117*
C170.1976 (6)0.0108 (3)0.0721 (2)0.0694 (10)
H17A0.14720.09460.07170.104*
H17B0.34980.00790.08980.104*
H17C0.09260.03470.12490.104*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
O10.0622 (15)0.0473 (14)0.0920 (16)0.0018 (12)0.0080 (11)0.0174 (12)
O20.0633 (17)0.0680 (15)0.0704 (14)0.0035 (13)0.0053 (12)0.0016 (12)
O30.0711 (16)0.0539 (14)0.0857 (16)0.0150 (13)0.0058 (12)0.0047 (12)
N10.0617 (18)0.0417 (15)0.0584 (15)0.0002 (14)0.0099 (12)0.0000 (12)
N20.0493 (15)0.0434 (14)0.0510 (14)0.0044 (12)0.0042 (10)0.0066 (12)
C10.049 (2)0.047 (2)0.0516 (18)0.0045 (16)0.0016 (15)0.0030 (15)
C20.0478 (18)0.0365 (15)0.0419 (15)0.0003 (14)0.0074 (13)0.0016 (13)
C30.055 (2)0.0392 (17)0.0534 (17)0.0029 (15)0.0085 (15)0.0040 (15)
C40.079 (2)0.0358 (16)0.062 (2)0.0007 (18)0.0225 (17)0.0012 (15)
C50.066 (2)0.0445 (19)0.0440 (16)0.0126 (16)0.0121 (15)0.0028 (14)
C60.0483 (19)0.0502 (19)0.0452 (15)0.0061 (15)0.0069 (14)0.0008 (15)
C70.057 (2)0.0347 (15)0.0462 (15)0.0011 (15)0.0089 (14)0.0039 (12)
C80.086 (3)0.062 (2)0.059 (2)0.021 (2)0.0122 (19)0.0126 (18)
C90.078 (3)0.101 (3)0.061 (2)0.034 (3)0.0001 (19)0.008 (2)
C100.068 (3)0.105 (3)0.065 (2)0.015 (2)0.0048 (19)0.013 (2)
C110.061 (2)0.065 (2)0.0631 (19)0.0012 (19)0.0015 (16)0.0026 (17)
C120.065 (2)0.0412 (18)0.078 (2)0.0092 (17)0.0058 (17)0.0020 (17)
C130.063 (2)0.0390 (17)0.074 (2)0.0047 (16)0.0165 (16)0.0120 (15)
C140.0497 (19)0.0503 (18)0.067 (2)0.0031 (15)0.0078 (15)0.0032 (16)
C150.064 (2)0.050 (2)0.0585 (19)0.0035 (16)0.0110 (16)0.0051 (15)
C160.098 (3)0.067 (2)0.067 (2)0.004 (2)0.0124 (19)0.0089 (18)
C170.082 (3)0.068 (2)0.058 (2)0.013 (2)0.0097 (17)0.0025 (18)
Geometric parameters (Å, º) top
O1—C11.253 (4)C8—H80.9300
O2—C11.265 (4)C9—C101.399 (6)
O3—C31.349 (4)C9—H90.9300
O3—H30.8200C10—C111.360 (5)
N1—C121.445 (4)C10—H100.9300
N1—C161.455 (4)C11—H110.9300
N1—C151.460 (4)C12—C131.479 (5)
N2—C141.472 (4)C12—H12A0.9700
N2—C171.474 (4)C12—H12B0.9700
N2—C131.501 (4)C13—H13A0.9700
N2—H20.9100C13—H13B0.9700
C1—C21.479 (4)C14—C151.497 (4)
C2—C71.361 (4)C14—H14A0.9700
C2—C31.427 (4)C14—H14B0.9700
C3—C41.360 (4)C15—H15A0.9700
C4—C51.400 (4)C15—H15B0.9700
C4—H40.9300C16—H16A0.9600
C5—C81.416 (4)C16—H16B0.9600
C5—C61.421 (4)C16—H16C0.9600
C6—C111.403 (4)C17—H17A0.9600
C6—C71.408 (4)C17—H17B0.9600
C7—H70.9300C17—H17C0.9600
C8—C91.348 (5)
C3—O3—H3109.5C10—C11—C6121.1 (4)
C12—N1—C16112.7 (3)C10—C11—H11119.5
C12—N1—C15108.7 (2)C6—C11—H11119.5
C16—N1—C15110.6 (3)N1—C12—C13111.5 (3)
C14—N2—C17112.5 (2)N1—C12—H12A109.3
C14—N2—C13110.4 (2)C13—C12—H12A109.3
C17—N2—C13111.9 (2)N1—C12—H12B109.3
C14—N2—H2107.2C13—C12—H12B109.3
C17—N2—H2107.2H12A—C12—H12B108.0
C13—N2—H2107.2C12—C13—N2110.3 (3)
O1—C1—O2123.0 (3)C12—C13—H13A109.6
O1—C1—C2118.8 (3)N2—C13—H13A109.6
O2—C1—C2118.2 (3)C12—C13—H13B109.6
C7—C2—C3118.2 (3)N2—C13—H13B109.6
C7—C2—C1120.1 (3)H13A—C13—H13B108.1
C3—C2—C1121.7 (3)N2—C14—C15110.6 (2)
O3—C3—C4119.4 (3)N2—C14—H14A109.5
O3—C3—C2120.1 (3)C15—C14—H14A109.5
C4—C3—C2120.6 (3)N2—C14—H14B109.5
C3—C4—C5121.3 (3)C15—C14—H14B109.5
C3—C4—H4119.4H14A—C14—H14B108.1
C5—C4—H4119.4N1—C15—C14111.0 (2)
C4—C5—C8123.2 (3)N1—C15—H15A109.4
C4—C5—C6119.2 (3)C14—C15—H15A109.4
C8—C5—C6117.6 (3)N1—C15—H15B109.4
C11—C6—C7122.5 (3)C14—C15—H15B109.4
C11—C6—C5119.6 (3)H15A—C15—H15B108.0
C7—C6—C5117.9 (3)N1—C16—H16A109.5
C2—C7—C6122.8 (3)N1—C16—H16B109.5
C2—C7—H7118.6H16A—C16—H16B109.5
C6—C7—H7118.6N1—C16—H16C109.5
C9—C8—C5120.8 (4)H16A—C16—H16C109.5
C9—C8—H8119.6H16B—C16—H16C109.5
C5—C8—H8119.6N2—C17—H17A109.5
C8—C9—C10121.7 (3)N2—C17—H17B109.5
C8—C9—H9119.2H17A—C17—H17B109.5
C10—C9—H9119.2N2—C17—H17C109.5
C11—C10—C9119.2 (4)H17A—C17—H17C109.5
C11—C10—H10120.4H17B—C17—H17C109.5
C9—C10—H10120.4
O1—C1—C2—C72.5 (5)C5—C6—C7—C21.4 (4)
O2—C1—C2—C7177.8 (3)C4—C5—C8—C9179.6 (3)
O1—C1—C2—C3176.7 (3)C6—C5—C8—C91.2 (5)
O2—C1—C2—C33.0 (4)C5—C8—C9—C101.8 (6)
C7—C2—C3—O3178.2 (3)C8—C9—C10—C110.9 (6)
C1—C2—C3—O32.6 (4)C9—C10—C11—C60.5 (6)
C7—C2—C3—C40.6 (4)C7—C6—C11—C10178.0 (3)
C1—C2—C3—C4178.6 (3)C5—C6—C11—C101.0 (5)
O3—C3—C4—C5178.8 (3)C16—N1—C12—C13176.1 (3)
C2—C3—C4—C50.1 (4)C15—N1—C12—C1360.9 (3)
C3—C4—C5—C8179.6 (3)N1—C12—C13—N258.3 (4)
C3—C4—C5—C61.2 (4)C14—N2—C13—C1254.3 (3)
C4—C5—C6—C11179.0 (3)C17—N2—C13—C12179.6 (3)
C8—C5—C6—C110.2 (4)C17—N2—C14—C15179.8 (3)
C4—C5—C6—C71.9 (4)C13—N2—C14—C1554.0 (3)
C8—C5—C6—C7178.9 (3)C12—N1—C15—C1460.2 (3)
C3—C2—C7—C60.1 (4)C16—N1—C15—C14175.6 (3)
C1—C2—C7—C6179.3 (3)N2—C14—C15—N157.8 (3)
C11—C6—C7—C2179.6 (3)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O3—H3···O20.821.812.541 (3)148
N2—H2···O1i0.911.712.613 (3)174
Symmetry code: (i) x+1, y1/2, z+1.

Experimental details

Crystal data
Chemical formulaC6H15N2+·C11H7O3
Mr302.37
Crystal system, space groupMonoclinic, P21
Temperature (K)293
a, b, c (Å)5.8772 (16), 10.892 (2), 12.562 (2)
β (°) 100.29 (2)
V3)791.2 (3)
Z2
Radiation typeMo Kα
µ (mm1)0.09
Crystal size (mm)0.20 × 0.15 × 0.08
Data collection
DiffractometerOxford Diffraction Xcaliber S
diffractometer
Absorption correction
No. of measured, independent and
observed [I > 2σ(I)] reflections
7855, 2996, 1608
Rint0.119
(sin θ/λ)max1)0.616
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.046, 0.121, 0.83
No. of reflections2996
No. of parameters203
No. of restraints1
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.14, 0.16
Absolute structure parameter0.2 (18)

Computer programs: CrysAlis PRO (Oxford Diffraction, 2010), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), ORTEP-3 (Farrugia, 1997) and X-SEED (Barbour, 2001).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O3—H3···O20.821.812.541 (3)147.8
N2—H2···O1i0.911.712.613 (3)174.4
Symmetry code: (i) x+1, y1/2, z+1.
 

References

First citationAllen, F. H. (2002). Acta Cryst. B58, 380–388.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationArlin, J.-B., Florence, A. J., Johnston, A., Kennedy, A. R., Miller, G. J. & Patterson, K. (2011). Cryst. Growth Des. 11, 1318–1327.  Web of Science CSD CrossRef CAS Google Scholar
First citationBarbour, L. J. (2001). J. Supramol. Chem. 1, 189–191.  CrossRef CAS Google Scholar
First citationBurchell, C. J., Glidewell, C., Lough, A. J. & Ferguson, G. (2001). Acta Cryst. B57, 201–212.  Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
First citationClemente, D. A., Marzotto, A., Valle, G. & Visonà, C. J. (1999). Polyhedron, 18, 2749–2757.  Web of Science CSD CrossRef CAS Google Scholar
First citationFarrugia, L. J. (1997). J. Appl. Cryst. 30, 565.  CrossRef IUCr Journals Google Scholar
First citationGould, P. L. (1986). Int. J. Pharm. 33, 201–217.  CrossRef CAS Web of Science Google Scholar
First citationKennedy, A. R., Morrison, C. A., Briggs, N. E. B. & Arbuckle, W. (2011). Cryst. Growth Des. 11, 1821–1834.  Web of Science CSD CrossRef CAS Google Scholar
First citationMarzotto, A., Clemente, D. A., Benetollo, F. & Valle, G. (2001). Polyhedron, 20, 171–177.  Web of Science CSD CrossRef CAS Google Scholar
First citationOxford Diffraction (2010). CrysAlis PRO. Oxford Diffraction Ltd, Yarnton, Oxfordshire, England.  Google Scholar
First citationSerajuddin, A. T. M. (2007). Adv. Drug Deliv. Rev. 59, 603–616.  Web of Science CrossRef PubMed CAS Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationStahl, P. H. & Wermuth, C. G. (2002). Handbook of Pharmaceutical Salts. Properties, Selection and Uses. Zurich: Wiley-VCH.  Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds