organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 68| Part 3| March 2012| Pages o691-o692

1-(6-Chloro-1,3-benzo­thia­zol-2-yl)hydrazine

aX-ray Crystallography Unit, School of Physics, Universiti Sains Malaysia, 11800 USM, Penang, Malaysia, bDepartment of Chemistry, P. A. College of Engineering, Mangalore 574 153, India, and cDepartment of Chemistry, Mangalore University, Mangalagangotri 574 199, Mangalore India
*Correspondence e-mail: hkfun@usm.my

(Received 3 February 2012; accepted 7 February 2012; online 17 February 2012)

The asymmetric unit of the title compound, C7H6ClN3S, consists of two crystallographically independent mol­ecules (A and B). The dihedral angle between the benzothia­zole ring system and the hydrazine group is 8.71 (6)° in mol­ecule A and 7.16 (6)° in mol­ecule B. The N—N—C—N and N—N—C—S torsion angles involving the hydrazine group are 170.89 (9) and −9.96 (13)°, respectively, in mol­ecule A and 172.50 (9) and −7.43 (13)°, respectively, in mol­ecule B. In the crystal, neighbouring mol­ecules are connected via pairs of N—H⋯N hydrogen bonds, generating R22(8) ring motifs, and are connected further by N—H⋯N hydrogen bonds into sheets lying parallel to the ab plane. The crystal studied was an inversion twin, the refined ratio of the twin components being 0.50 (3):0.50 (3).

Related literature

For the biological activity of benzothia­zole derivatives, see: Bowyer et al. (2007[Bowyer, P. W., Gunaratne, R. S., Grainge, M., Withers-Martinez, C., Wickramsinghe, S. R., Tate, E. W., Leatherbarrow, R. J., Brown, K. A., Holder, A. A. & Smith, D. F. (2007). Biochem. J. 408, 173-180.]); Gurupadayya et al. (2008[Gurupadayya, B. M., Gopal, M., Padmashali, B. & Manohara, Y. N. (2008). Indian J. Pharm. Sci. 70, 572-577.]); Kini et al. (2007[Kini, S., Swain, S. P. & Gandhi, A. M. (2007). Indian J. Pharm. Sci. 69, 46-50.]); Mittal et al. (2007[Mittal, S., Samottra, M. K., Kaur, J. & Gita, S. (2007). Phosphorus Sulfur Silicon Relat. Elem. 9, 2105-2113.]); Munirajasekhar et al. (2011[Munirajasekhar, D., Himaja, M. & Sunil, V. M. (2011). Int. Res. J. Pharm. 2, 114-117.]); Rana et al. (2008[Rana, A., Siddiqui, N. & Khan, S. (2008). Eur. J. Med. Chem. 43, 1114-1122.]); Pozas et al. (2005[Pozas, R., Carballo, J., Castro, C. & Rubio, J. (2005). Bioorg. Med. Chem. Lett. 15, 1417-1421.]); Yaseen et al. (2006[Yaseen, A., Haitham, A. S., Houssain, A. S. & Najim, A. (2006). Z. Naturforsch. Teil B, 62, 523-528.]). For hydrogen-bond motifs, see: Bernstein et al. (1995[Bernstein, J., Davis, R. E., Shimoni, L. & Chang, N.-L. (1995). Angew. Chem. Int. Ed. Engl. 34, 1555-1573.]). For related structures, see: Fun et al. (2011a[Fun, H.-K., Arshad, S., Himaja, M., Munirajasekhar, D. & Sarojini, B. K. (2011a). Acta Cryst. E67, o2412.],b[Fun, H.-K., Asik, S. I. J., Himaja, M., Munirajasekhar, D. & Sarojini, B. K. (2011b). Acta Cryst. E67, o2810.],c[Fun, H.-K., Hemamalini, M., Umesha, K., Sarojini, B. K. & Narayana, B. (2011c). Acta Cryst. E67, o3265-o3266.],d[Fun, H.-K., Ooi, C. W., Munirajasekhar, D., Himaja, M. & Sarojini, B. K. (2011d). Acta Cryst. E67, o3458-o3459.]). For bond-length data, see: Allen et al. (1987[Allen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1-19.]). For the stability of the temperature controller used for data collection, see: Cosier & Glazer (1986[Cosier, J. & Glazer, A. M. (1986). J. Appl. Cryst. 19, 105-107.]).

[Scheme 1]

Experimental

Crystal data
  • C7H6ClN3S

  • Mr = 199.66

  • Orthorhombic, P c a 21

  • a = 13.0225 (13) Å

  • b = 5.7767 (6) Å

  • c = 21.708 (2) Å

  • V = 1633.0 (3) Å3

  • Z = 8

  • Mo Kα radiation

  • μ = 0.66 mm−1

  • T = 100 K

  • 0.46 × 0.33 × 0.22 mm

Data collection
  • Bruker APEX DUO CCD area-detector diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 2009[Bruker (2009). SADABS, APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]) Tmin = 0.752, Tmax = 0.867

  • 12527 measured reflections

  • 5771 independent reflections

  • 5686 reflections with I > 2σ(I)

  • Rint = 0.015

Refinement
  • R[F2 > 2σ(F2)] = 0.019

  • wR(F2) = 0.052

  • S = 1.04

  • 5771 reflections

  • 242 parameters

  • 1 restraint

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.39 e Å−3

  • Δρmin = −0.21 e Å−3

  • Absolute structure: Flack (1983[Flack, H. D. (1983). Acta Cryst. A39, 876-881.]), with 2734 Friedel pairs

  • Flack parameter: 0.50 (3)

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
N2A—H1N2⋯N1Bi 0.89 (2) 2.03 (2) 2.9084 (12) 170.5 (18)
N2B—H2N2⋯N1Aii 0.897 (17) 2.059 (18) 2.9539 (13) 175.3 (16)
N3A—H1N3⋯N3Biii 0.831 (18) 2.53 (2) 3.1776 (13) 135.6 (16)
N3B—H3N3⋯N3A 0.863 (16) 2.435 (17) 3.1383 (13) 139.1 (14)
Symmetry codes: (i) [x+{\script{1\over 2}}, -y+2, z]; (ii) [x-{\script{1\over 2}}, -y+2, z]; (iii) x, y+1, z.

Data collection: APEX2 (Bruker, 2009[Bruker (2009). SADABS, APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2009[Bruker (2009). SADABS, APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXTL; molecular graphics: SHELXTL; software used to prepare material for publication: SHELXTL and PLATON (Spek, 2009[Spek, A. L. (2009). Acta Cryst. D65, 148-155.]).

Supporting information


Comment top

Benzothiazoles are very important bicyclic ring compounds which are of great interest because of their biological activities. The substituted benzothiazole derivatives have emerged as significant components in various diversified therapeutic applications. The literature review reveals that benzothiazoles and their derivatives show considerable activity, including potent inhibition of human immunodeficiency virus type 1 (HIV-1) replication by HIV-1 protease inhibition (Yaseen et al., 2006), antitumor (Kini et al., 2007), anthelmintic (Munirajasekhar et al., 2011) analgesic and anti-inflammatory (Gurupadayya et al., 2008), antimalarial (Bowyer et al., 2007), antifungal (Mittal et al., 2007), anticandidous activities (Rocío Pozas et al., 2005) and various CNS activities (Rana et al., 2008). The related structures have been reported by Fun et al. (2011a,b,c,d). The present work describes the synthesis and crystal structure of the title compound, 1-(6-chloro-1,3-benzothiazol-2-yl)hydrazine, which was prepared from the reaction of 2-amino-6-chlorobenzothiazole treated with hydrazine.

The asymmetric unit of the title compound consists of two crystallographically independent molecules (A and B) as shown in Fig. 1. The dihedral angle between the benzothiazole (S1/N1/C1–C7) ring system and the hydrazine (N2A/N3A) group is 8.71 (6)° in molecule A whereas it is equal to 7.16 (6)° in molecule B. The hydrazine group is twisted slightly with N3—N2—C7—N1 and N3—N2—C7—S1 torsion angles of 170.89 (9)°: -9.96 (13)° in molecule A and 172.50 (9)°: -7.43 (13)° in molecule B. The bond lengths (Allen et al., 1987) and angles are within normal ranges and are comparable to the related structure (Fun et al., 2011a,b,c,d).

In the crystal structure (Fig. 2), the neighbouring molecules are connected via pairs of intermolecular N2A—H1N2···N1Bi and N2B—H2N2···N1Aii (Table 1) hydrogen bonds, generating R22 (8) ring motifs (Bernstein et al., 1995). Furthermore, the molecules are linked into sheets lying parallel to the ab plane via intermolecular N3B—H3N3···N3A and N3A—H1N3···N3Biii hydrogen bonds.

Related literature top

For the biological activity of benzothiazole derivatives, see: Bowyer et al. (2007); Gurupadayya et al. (2008); Kini et al. (2007); Mittal et al. (2007); Munirajasekhar et al. (2011); Rana et al. (2008); Rocío Pozas et al. (2005); Yaseen et al. (2006). For hydrogen-bond motifs, see: Bernstein et al. (1995). For related structures, see: Fun et al. (2011a,b,c,d). For bond-length data, see: Allen et al. (1987). For the stability of the temperature controller used for data collection, see: Cosier & Glazer (1986).

Experimental top

2-Amino-6-chlorobenzothiazole (5.52 g, 0.03 mol) and hydrazine hydrate (85%) (0.12 mol) in 50 ml of ethylene glycol were refluxed by stirring for 4 h at 333 K. A white solid was precipitated at the end of the reflux period. The mixture was cooled and the product was filtered and then washed with water several times. Then the product was air-dried and recrystallized by using ethanol. The single crystals were grown by slow evaporation from solvent ethanol and dichloromethane (1:1 v/v) (m.p. 470–472 K).

Refinement top

H1N2, H2N2, H1N3, H2N3, H3N3 and H4N3 were located in a difference Fourier map and were refined freely [N—H = 0.831 (18)–0.968 (19) Å]. The remaining H atoms were positioned geometrically and refined using a riding model with Uiso(H) = 1.2Ueq(C) [C—H = 0.95 Å]. The crystal studied was an inversion twin, the refined ratio of the twin components being 0.50 (3):0.50 (3). In the final refinement, the outliers (5 3 2), (6 0 12), (4 0 4) and (14 0 4) were omitted.

Computing details top

Data collection: APEX2 (Bruker, 2009); cell refinement: SAINT (Bruker, 2009); data reduction: SAINT (Bruker, 2009); program(s) used to solve structure: SHELXTL (Sheldrick, 2008); program(s) used to refine structure: SHELXTL (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008) and PLATON (Spek, 2009).

Figures top
[Figure 1] Fig. 1. The molecular structure of the title compound, showing 50% probability displacement ellipsoids and the atom-numbering scheme.
[Figure 2] Fig. 2. The crystal packing of the title compound, viewed along the b axis. H atoms not involved in the intermolecular interactions (dashed lines) have been omitted for clarity.
1-(6-Chloro-1,3-benzothiazol-2-yl)hydrazine top
Crystal data top
C7H6ClN3SF(000) = 816
Mr = 199.66Dx = 1.624 Mg m3
Orthorhombic, Pca21Mo Kα radiation, λ = 0.71073 Å
Hall symbol: P 2c -2acCell parameters from 9942 reflections
a = 13.0225 (13) Åθ = 3.1–32.6°
b = 5.7767 (6) ŵ = 0.66 mm1
c = 21.708 (2) ÅT = 100 K
V = 1633.0 (3) Å3Block, colourless
Z = 80.46 × 0.33 × 0.22 mm
Data collection top
Bruker APEX DUO CCD area-detector
diffractometer
5771 independent reflections
Radiation source: fine-focus sealed tube5686 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.015
ϕ and ω scansθmax = 32.6°, θmin = 3.1°
Absorption correction: multi-scan
(SADABS; Bruker, 2009)
h = 1819
Tmin = 0.752, Tmax = 0.867k = 88
12527 measured reflectionsl = 3232
Refinement top
Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.019H atoms treated by a mixture of independent and constrained refinement
wR(F2) = 0.052 w = 1/[σ2(Fo2) + (0.030P)2 + 0.2349P]
where P = (Fo2 + 2Fc2)/3
S = 1.04(Δ/σ)max = 0.001
5771 reflectionsΔρmax = 0.39 e Å3
242 parametersΔρmin = 0.21 e Å3
1 restraintAbsolute structure: Flack (1983), with 2734 Friedel pairs
Primary atom site location: structure-invariant direct methodsAbsolute structure parameter: 0.50 (3)
Crystal data top
C7H6ClN3SV = 1633.0 (3) Å3
Mr = 199.66Z = 8
Orthorhombic, Pca21Mo Kα radiation
a = 13.0225 (13) ŵ = 0.66 mm1
b = 5.7767 (6) ÅT = 100 K
c = 21.708 (2) Å0.46 × 0.33 × 0.22 mm
Data collection top
Bruker APEX DUO CCD area-detector
diffractometer
5771 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 2009)
5686 reflections with I > 2σ(I)
Tmin = 0.752, Tmax = 0.867Rint = 0.015
12527 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.019H atoms treated by a mixture of independent and constrained refinement
wR(F2) = 0.052Δρmax = 0.39 e Å3
S = 1.04Δρmin = 0.21 e Å3
5771 reflectionsAbsolute structure: Flack (1983), with 2734 Friedel pairs
242 parametersAbsolute structure parameter: 0.50 (3)
1 restraint
Special details top

Experimental. The crystal was placed in the cold stream of an Oxford Cryosystems Cobra open-flow nitrogen cryostat (Cosier & Glazer, 1986) operating at 100.0 (1) K

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R-factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Cl1A0.87218 (2)0.41653 (5)0.717085 (12)0.02134 (5)
S1A0.552566 (17)0.69138 (4)0.565134 (11)0.01203 (5)
N1A0.66692 (7)1.05970 (15)0.54585 (4)0.01308 (15)
N2A0.51172 (7)1.05780 (16)0.49160 (4)0.01507 (16)
N3A0.42819 (7)0.91902 (16)0.47219 (4)0.01386 (15)
C1A0.71962 (7)0.91958 (17)0.58718 (4)0.01122 (15)
C2A0.81645 (8)0.96993 (18)0.61154 (5)0.01342 (17)
H2AA0.85051.10990.60090.016*
C3A0.86228 (8)0.81302 (19)0.65137 (5)0.01533 (18)
H3AA0.92800.84540.66830.018*
C4A0.81171 (8)0.60698 (18)0.66667 (5)0.01434 (17)
C5A0.71540 (8)0.55065 (17)0.64323 (5)0.01318 (16)
H5AA0.68190.41030.65400.016*
C6A0.67048 (7)0.71010 (16)0.60320 (5)0.01111 (15)
C7A0.57964 (8)0.96117 (17)0.53072 (5)0.01172 (16)
Cl1B0.11478 (2)0.03607 (5)0.236826 (13)0.02216 (6)
S1B0.204579 (17)0.20760 (4)0.392197 (11)0.01240 (5)
N1B0.09520 (7)0.58201 (14)0.41251 (4)0.01264 (14)
N2B0.24932 (7)0.56551 (15)0.46758 (4)0.01454 (15)
N3B0.33266 (7)0.42272 (15)0.48545 (4)0.01366 (15)
C1B0.04080 (7)0.44800 (16)0.37042 (4)0.01125 (15)
C2B0.05487 (8)0.50641 (18)0.34582 (5)0.01351 (17)
H2BA0.08690.64850.35660.016*
C3B0.10279 (8)0.3538 (2)0.30526 (5)0.01507 (17)
H3BA0.16830.39020.28860.018*
C4B0.05411 (8)0.14744 (19)0.28917 (5)0.01476 (17)
C5B0.04124 (8)0.08359 (18)0.31282 (5)0.01425 (16)
H5BA0.07310.05820.30160.017*
C6B0.08771 (7)0.23707 (17)0.35371 (4)0.01162 (15)
C7B0.18114 (8)0.47712 (17)0.42752 (5)0.01170 (16)
H3N30.3862 (12)0.510 (3)0.4823 (8)0.020 (4)*
H1N20.5300 (15)1.169 (4)0.4657 (9)0.032 (5)*
H2N20.2275 (13)0.679 (3)0.4927 (8)0.021 (4)*
H1N30.3749 (13)0.997 (4)0.4765 (9)0.026 (5)*
H2N30.4325 (13)0.893 (3)0.4319 (8)0.019 (4)*
H4N30.3195 (15)0.373 (3)0.5273 (8)0.032 (5)*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Cl1A0.02667 (12)0.01723 (10)0.02012 (11)0.00445 (9)0.01095 (10)0.00160 (9)
S1A0.01053 (9)0.01123 (9)0.01432 (9)0.00103 (7)0.00095 (8)0.00210 (8)
N1A0.0121 (4)0.0126 (3)0.0145 (4)0.0016 (3)0.0014 (3)0.0022 (3)
N2A0.0122 (4)0.0141 (4)0.0189 (4)0.0023 (3)0.0038 (3)0.0051 (3)
N3A0.0108 (3)0.0150 (4)0.0158 (4)0.0001 (3)0.0018 (3)0.0004 (3)
C1A0.0106 (4)0.0124 (4)0.0107 (4)0.0002 (3)0.0000 (3)0.0002 (3)
C2A0.0116 (4)0.0150 (4)0.0137 (4)0.0014 (3)0.0007 (3)0.0004 (3)
C3A0.0140 (4)0.0175 (5)0.0144 (4)0.0004 (3)0.0034 (3)0.0016 (3)
C4A0.0162 (4)0.0145 (4)0.0123 (4)0.0033 (3)0.0036 (3)0.0001 (3)
C5A0.0156 (4)0.0115 (4)0.0124 (4)0.0017 (3)0.0018 (3)0.0009 (3)
C6A0.0106 (4)0.0112 (4)0.0116 (4)0.0002 (3)0.0004 (3)0.0003 (3)
C7A0.0113 (4)0.0117 (4)0.0122 (4)0.0007 (3)0.0001 (3)0.0013 (3)
Cl1B0.02443 (12)0.02047 (12)0.02156 (12)0.00247 (9)0.01001 (10)0.00638 (9)
S1B0.01040 (9)0.01177 (9)0.01504 (10)0.00135 (7)0.00118 (8)0.00246 (8)
N1B0.0123 (3)0.0124 (3)0.0132 (3)0.0009 (3)0.0013 (3)0.0035 (3)
N2B0.0113 (3)0.0148 (4)0.0175 (4)0.0021 (3)0.0040 (3)0.0052 (3)
N3B0.0109 (3)0.0148 (4)0.0154 (4)0.0004 (3)0.0020 (3)0.0011 (3)
C1B0.0109 (4)0.0120 (4)0.0109 (4)0.0001 (3)0.0007 (3)0.0012 (3)
C2B0.0119 (4)0.0150 (4)0.0137 (4)0.0016 (3)0.0004 (3)0.0017 (3)
C3B0.0124 (4)0.0184 (4)0.0143 (4)0.0001 (3)0.0024 (3)0.0005 (3)
C4B0.0161 (4)0.0154 (4)0.0129 (4)0.0033 (3)0.0027 (3)0.0025 (3)
C5B0.0152 (4)0.0134 (4)0.0141 (4)0.0005 (3)0.0011 (3)0.0029 (3)
C6B0.0113 (4)0.0116 (4)0.0119 (4)0.0003 (3)0.0002 (3)0.0008 (3)
C7B0.0114 (4)0.0112 (4)0.0126 (4)0.0013 (3)0.0003 (3)0.0016 (3)
Geometric parameters (Å, º) top
Cl1A—C4A1.7402 (10)Cl1B—C4B1.7434 (10)
S1A—C6A1.7471 (10)S1B—C6B1.7445 (10)
S1A—C7A1.7639 (10)S1B—C7B1.7621 (10)
N1A—C7A1.3129 (13)N1B—C7B1.3137 (13)
N1A—C1A1.3896 (13)N1B—C1B1.3913 (13)
N2A—C7A1.3473 (13)N2B—C7B1.3437 (13)
N2A—N3A1.4154 (13)N2B—N3B1.4173 (13)
N2A—H1N20.89 (2)N2B—H2N20.897 (17)
N3A—H1N30.831 (18)N3B—H3N30.862 (17)
N3A—H2N30.890 (17)N3B—H4N30.968 (19)
C1A—C2A1.3979 (14)C1B—C2B1.3968 (14)
C1A—C6A1.4124 (14)C1B—C6B1.4106 (13)
C2A—C3A1.3877 (15)C2B—C3B1.3935 (14)
C2A—H2AA0.9500C2B—H2BA0.9500
C3A—C4A1.4002 (15)C3B—C4B1.3946 (15)
C3A—H3AA0.9500C3B—H3BA0.9500
C4A—C5A1.3921 (15)C4B—C5B1.3934 (15)
C5A—C6A1.3948 (14)C5B—C6B1.3929 (14)
C5A—H5AA0.9500C5B—H5BA0.9500
C6A—S1A—C7A88.28 (5)C6B—S1B—C7B88.34 (5)
C7A—N1A—C1A109.67 (9)C7B—N1B—C1B109.88 (8)
C7A—N2A—N3A117.22 (8)C7B—N2B—N3B117.51 (8)
C7A—N2A—H1N2121.6 (13)C7B—N2B—H2N2117.4 (11)
N3A—N2A—H1N2115.4 (13)N3B—N2B—H2N2120.0 (11)
N2A—N3A—H1N3107.6 (13)N2B—N3B—H3N3105.0 (12)
N2A—N3A—H2N3109.9 (11)N2B—N3B—H4N3107.2 (12)
H1N3—N3A—H2N3104.8 (17)H3N3—N3B—H4N3113.0 (17)
N1A—C1A—C2A124.65 (9)N1B—C1B—C2B124.81 (9)
N1A—C1A—C6A115.73 (9)N1B—C1B—C6B115.41 (9)
C2A—C1A—C6A119.59 (9)C2B—C1B—C6B119.78 (9)
C3A—C2A—C1A119.20 (9)C3B—C2B—C1B119.23 (9)
C3A—C2A—H2AA120.4C3B—C2B—H2BA120.4
C1A—C2A—H2AA120.4C1B—C2B—H2BA120.4
C2A—C3A—C4A120.04 (9)C2B—C3B—C4B119.69 (9)
C2A—C3A—H3AA120.0C2B—C3B—H3BA120.2
C4A—C3A—H3AA120.0C4B—C3B—H3BA120.2
C5A—C4A—C3A122.39 (9)C5B—C4B—C3B122.63 (9)
C5A—C4A—Cl1A119.33 (8)C5B—C4B—Cl1B118.88 (8)
C3A—C4A—Cl1A118.28 (8)C3B—C4B—Cl1B118.49 (8)
C4A—C5A—C6A116.82 (9)C6B—C5B—C4B116.96 (9)
C4A—C5A—H5AA121.6C6B—C5B—H5BA121.5
C6A—C5A—H5AA121.6C4B—C5B—H5BA121.5
C5A—C6A—C1A121.95 (9)C5B—C6B—C1B121.71 (9)
C5A—C6A—S1A128.49 (8)C5B—C6B—S1B128.47 (8)
C1A—C6A—S1A109.56 (7)C1B—C6B—S1B109.81 (7)
N1A—C7A—N2A123.12 (9)N1B—C7B—N2B123.24 (9)
N1A—C7A—S1A116.75 (8)N1B—C7B—S1B116.56 (8)
N2A—C7A—S1A120.12 (7)N2B—C7B—S1B120.20 (7)
C7A—N1A—C1A—C2A178.40 (10)C7B—N1B—C1B—C2B178.69 (10)
C7A—N1A—C1A—C6A0.22 (12)C7B—N1B—C1B—C6B0.05 (12)
N1A—C1A—C2A—C3A178.45 (9)N1B—C1B—C2B—C3B178.22 (9)
C6A—C1A—C2A—C3A0.33 (15)C6B—C1B—C2B—C3B0.37 (15)
C1A—C2A—C3A—C4A0.10 (16)C1B—C2B—C3B—C4B0.92 (15)
C2A—C3A—C4A—C5A0.06 (16)C2B—C3B—C4B—C5B0.97 (16)
C2A—C3A—C4A—Cl1A179.72 (8)C2B—C3B—C4B—Cl1B178.42 (8)
C3A—C4A—C5A—C6A0.02 (15)C3B—C4B—C5B—C6B0.41 (16)
Cl1A—C4A—C5A—C6A179.80 (8)Cl1B—C4B—C5B—C6B178.97 (8)
C4A—C5A—C6A—C1A0.26 (15)C4B—C5B—C6B—C1B0.17 (15)
C4A—C5A—C6A—S1A178.95 (8)C4B—C5B—C6B—S1B178.78 (8)
N1A—C1A—C6A—C5A178.70 (9)N1B—C1B—C6B—C5B178.90 (9)
C2A—C1A—C6A—C5A0.42 (15)C2B—C1B—C6B—C5B0.18 (15)
N1A—C1A—C6A—S1A0.64 (11)N1B—C1B—C6B—S1B0.22 (11)
C2A—C1A—C6A—S1A178.92 (8)C2B—C1B—C6B—S1B178.94 (8)
C7A—S1A—C6A—C5A178.65 (10)C7B—S1B—C6B—C5B178.81 (10)
C7A—S1A—C6A—C1A0.64 (8)C7B—S1B—C6B—C1B0.24 (8)
C1A—N1A—C7A—N2A179.49 (9)C1B—N1B—C7B—N2B179.78 (9)
C1A—N1A—C7A—S1A0.32 (11)C1B—N1B—C7B—S1B0.15 (11)
N3A—N2A—C7A—N1A170.89 (9)N3B—N2B—C7B—N1B172.50 (10)
N3A—N2A—C7A—S1A9.96 (13)N3B—N2B—C7B—S1B7.43 (13)
C6A—S1A—C7A—N1A0.58 (8)C6B—S1B—C7B—N1B0.23 (9)
C6A—S1A—C7A—N2A179.78 (9)C6B—S1B—C7B—N2B179.70 (9)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N2A—H1N2···N1Bi0.89 (2)2.03 (2)2.9084 (12)170.5 (18)
N2B—H2N2···N1Aii0.897 (17)2.059 (18)2.9539 (13)175.3 (16)
N3A—H1N3···N3Biii0.831 (18)2.53 (2)3.1776 (13)135.6 (16)
N3B—H3N3···N3A0.863 (16)2.435 (17)3.1383 (13)139.1 (14)
Symmetry codes: (i) x+1/2, y+2, z; (ii) x1/2, y+2, z; (iii) x, y+1, z.

Experimental details

Crystal data
Chemical formulaC7H6ClN3S
Mr199.66
Crystal system, space groupOrthorhombic, Pca21
Temperature (K)100
a, b, c (Å)13.0225 (13), 5.7767 (6), 21.708 (2)
V3)1633.0 (3)
Z8
Radiation typeMo Kα
µ (mm1)0.66
Crystal size (mm)0.46 × 0.33 × 0.22
Data collection
DiffractometerBruker APEX DUO CCD area-detector
diffractometer
Absorption correctionMulti-scan
(SADABS; Bruker, 2009)
Tmin, Tmax0.752, 0.867
No. of measured, independent and
observed [I > 2σ(I)] reflections
12527, 5771, 5686
Rint0.015
(sin θ/λ)max1)0.758
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.019, 0.052, 1.04
No. of reflections5771
No. of parameters242
No. of restraints1
H-atom treatmentH atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å3)0.39, 0.21
Absolute structureFlack (1983), with 2734 Friedel pairs
Absolute structure parameter0.50 (3)

Computer programs: APEX2 (Bruker, 2009), SAINT (Bruker, 2009), SHELXTL (Sheldrick, 2008) and PLATON (Spek, 2009).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N2A—H1N2···N1Bi0.89 (2)2.03 (2)2.9084 (12)170.5 (18)
N2B—H2N2···N1Aii0.897 (17)2.059 (18)2.9539 (13)175.3 (16)
N3A—H1N3···N3Biii0.831 (18)2.53 (2)3.1776 (13)135.6 (16)
N3B—H3N3···N3A0.863 (16)2.435 (17)3.1383 (13)139.1 (14)
Symmetry codes: (i) x+1/2, y+2, z; (ii) x1/2, y+2, z; (iii) x, y+1, z.
 

Footnotes

Thomson Reuters ResearcherID: A-3561-2009.

Acknowledgements

HKF and CWO thank Universiti Sains Malaysia (USM) for a Research University Grant (No. 1001/PFIZIK/811160). CWO thanks the Malaysian government and USM for the award of the post of research assistant under a Research University Grant (No. 1001/PFIZIK/811151). BKS gratefully acknowledges the Department of Atomic Energy (DAE)/BRNS, Government of India, for providing financial assistance through the BRNS Project (No. 2011/34/20-BRNS/0846).

References

First citationAllen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1–19.  CrossRef Web of Science Google Scholar
First citationBernstein, J., Davis, R. E., Shimoni, L. & Chang, N.-L. (1995). Angew. Chem. Int. Ed. Engl. 34, 1555–1573.  CrossRef CAS Web of Science Google Scholar
First citationBowyer, P. W., Gunaratne, R. S., Grainge, M., Withers-Martinez, C., Wickramsinghe, S. R., Tate, E. W., Leatherbarrow, R. J., Brown, K. A., Holder, A. A. & Smith, D. F. (2007). Biochem. J. 408, 173–180.  Web of Science PubMed CAS Google Scholar
First citationBruker (2009). SADABS, APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationCosier, J. & Glazer, A. M. (1986). J. Appl. Cryst. 19, 105–107.  CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationFlack, H. D. (1983). Acta Cryst. A39, 876–881.  CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationFun, H.-K., Arshad, S., Himaja, M., Munirajasekhar, D. & Sarojini, B. K. (2011a). Acta Cryst. E67, o2412.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationFun, H.-K., Asik, S. I. J., Himaja, M., Munirajasekhar, D. & Sarojini, B. K. (2011b). Acta Cryst. E67, o2810.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationFun, H.-K., Hemamalini, M., Umesha, K., Sarojini, B. K. & Narayana, B. (2011c). Acta Cryst. E67, o3265–o3266.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationFun, H.-K., Ooi, C. W., Munirajasekhar, D., Himaja, M. & Sarojini, B. K. (2011d). Acta Cryst. E67, o3458–o3459.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationGurupadayya, B. M., Gopal, M., Padmashali, B. & Manohara, Y. N. (2008). Indian J. Pharm. Sci. 70, 572–577.  Web of Science CAS PubMed Google Scholar
First citationKini, S., Swain, S. P. & Gandhi, A. M. (2007). Indian J. Pharm. Sci. 69, 46–50.  CrossRef CAS Google Scholar
First citationMittal, S., Samottra, M. K., Kaur, J. & Gita, S. (2007). Phosphorus Sulfur Silicon Relat. Elem. 9, 2105–2113.  Web of Science CrossRef Google Scholar
First citationMunirajasekhar, D., Himaja, M. & Sunil, V. M. (2011). Int. Res. J. Pharm. 2, 114–117.  CAS Google Scholar
First citationPozas, R., Carballo, J., Castro, C. & Rubio, J. (2005). Bioorg. Med. Chem. Lett. 15, 1417–1421.  Web of Science CrossRef PubMed CAS Google Scholar
First citationRana, A., Siddiqui, N. & Khan, S. (2008). Eur. J. Med. Chem. 43, 1114–1122.  Web of Science CrossRef PubMed CAS Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSpek, A. L. (2009). Acta Cryst. D65, 148–155.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationYaseen, A., Haitham, A. S., Houssain, A. S. & Najim, A. (2006). Z. Naturforsch. Teil B, 62, 523–528.  Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 68| Part 3| March 2012| Pages o691-o692
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds