metal-organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Chlorido[2-({[2-(di­phenyl­phosphan­yl)­benzyl­­idene]amino}­meth­yl)thio­phene-κ2N,P]methyl­palladium(II)

aChemistry Department, University of the Western Cape, Modderdam Road, Private Bag X17, Bellville 7535, South Africa, and bCarl A. Olson Memorial Laboratories, Department of Chemistry, Rutgers University, Newark, NJ 07102, USA
*Correspondence e-mail: rogerlal@andromeda.rutgers.edu

(Received 7 February 2012; accepted 17 February 2012; online 29 February 2012)

In the title compound, [Pd(CH3)Cl(C24H20NPS)], the PdII ion is coordinated in a distorted square-planar environment which includes the P and N atoms of the bis-chelating ligand. The thio­phene ring is rotationally ordered, unlike in the majority of crystal structures containing this group.

Related literature

For the synthesis of imino-phosphine ligands and their transition metal-based complexes, see: Nobre & Monteiro (2009[Nobre, S. M. & Monteiro, A. L. (2009). J. Mol. Catal. A Chem. 313, 65-73.]); Pelagatti et al. (2005[Pelagatti, P., Carcelli, M., Costa, M., Ianelli, S., Pellizi, C. & Rogolino, D. (2005). J. Mol. Catal. A Chem. 226, 107-110.]); Reddy et al. (2001[Reddy, K. K., Surekha, K., Lee, G., Peng, S., Chen, J. & Liu, S. (2001). Organometallics, 20, 1292-1299.]); Espinet & Soulantica (1999[Espinet, P. & Soulantica, K. (1999). Coord. Chem. Rev. 193-195, 499-556.]). For related structures, see: Onani et al. (2010[Onani, M. O., Motswainyana, W. M., Iwuoha, E. I., Darkwa, J. & Lalancette, R. A. (2010). Acta Cryst. E66, m688.]); Vaughan et al. (2011[Vaughan, T. F., Koedyk, D. J. & Spencer, J. L. (2011). Organometallics, 30, 5170-5180.]).

[Scheme 1]

Experimental

Crystal data
  • [Pd(CH3)Cl(C24H20NPS)]

  • Mr = 542.32

  • Monoclinic, C 2/c

  • a = 24.6534 (4) Å

  • b = 10.0118 (1) Å

  • c = 18.4507 (3) Å

  • β = 98.027 (1)°

  • V = 4509.47 (11) Å3

  • Z = 8

  • Cu Kα radiation

  • μ = 9.35 mm−1

  • T = 100 K

  • 0.26 × 0.15 × 0.08 mm

Data collection
  • Bruker SMART CCD APEXII diffractometer

  • Absorption correction: numerical (SADABS; Sheldrick, 2008a[Sheldrick, G. M. (2008a). SADABS. University of Göttingen, Germany.]) Tmin = 0.195, Tmax = 0.522

  • 22554 measured reflections

  • 4048 independent reflections

  • 3919 reflections with I > 2σ(I)

  • Rint = 0.028

Refinement
  • R[F2 > 2σ(F2)] = 0.024

  • wR(F2) = 0.062

  • S = 1.11

  • 4048 reflections

  • 272 parameters

  • H-atom parameters constrained

  • Δρmax = 0.50 e Å−3

  • Δρmin = −0.44 e Å−3

Data collection: APEX2 (Bruker, 2006[Bruker (2006). APEX2. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: APEX2; data reduction: SAINT (Bruker, 2005[Bruker (2005). SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); program(s) used to solve structure: SHELXTL (Sheldrick, 2008b[Sheldrick, G. M. (2008b). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXTL; molecular graphics: SHELXTL; software used to prepare material for publication: SHELXTL.

Supporting information


Comment top

Iminophosphine complexes are easily prepared by Schiff base condensation reactions. These complexes are widely used for C—C coupling reactions in organic synthesis (Reddy et al., 2001; Pelagatti et al., 2005). They are better utilized for aromatic carbon coupling type of reactions due to their reaction mode. Basically, the iminophosphine ligand possesses hard nitrogen and soft phosphorus donor atoms that impart the unique property of hemilability. The N—P combination brings about asymmetry in the Pd orbitals thereby affecting the reactivity of a complex. An investigation of the catalytic mechanism revealed that the hemilabile ligand present in the complex is accountable for the catalytic cycle because it allows the inflection of the steric properties around Pd, which determines the activity and selectivity parameters of the complexes containing these ligands (Espinet & Soulantica, 1999; Onani et al., 2010; Vaughan et al., 2011). The title compound is a bidentate and bulky complex that should be highly active for C—C coupling studies. Some of these types of complexes have been described as therapeutic agents (Nobre & Monteiro, 2009).

The molecular structure of the title compound (I) is shown in Fig 1. The PdII ion is coordinated in a bidentate mode to the P and N atoms of the iminophosphine ligand. The coordination is completed by chloride and methyl ligands. The bond angles; Cl1—Pd1—P1 [171.99 (2)°], Cl1—Pd1—N1 [93.96 (6)°], Cl1—Pd1—C13 [86.45 (8)°] and P1—Pd1—N1 [90.23 (6)°] describe a distorted square planar coordination geometry around the metal center.

Related literature top

For the synthesis of imino-phosphine ligands and their transition metal-based complexes, see: Nobre & Monteiro (2009); Pelagatti et al. (2005); Reddy et al. (2001); Espinet & Soulantica (1999). For related structures, see: Onani et al. (2010); Vaughan et al. (2011).

Experimental top

Pd(COD)ClMe (0.0545 g, 0.206 mmol) was added to a Schlenk tube charged with 15 ml of CH2Cl2/Et2O solution (1:2). A ligand of 2-(diphenylphosphino)benzyl-2-thiophenemethylimine (0.0762 g, 0.206 mmol) was dissolved separately in 2 ml dichloromethane and the resultant solution was added dropwise to a Schlenk tube containing the metal precursor. The reaction mixture was stirred at room temperature for 8 hrs, resulting in the formation of a white precipitate. This precipitate was filtered to obtain a white solid, which formed shiny white crystals suitable for X-ray analysis when recrystallized from a mixture of a minimum amount of CH2Cl2 and an excess of C6H14.

Refinement top

All H atoms were found in electron density difference maps. Subsequently, the methyl H atoms were placed in ideally staggered positions with C—H distances of 0.98 Å and Uiso(H) = 1.5Ueq(C). The methylene, methine, phenyl and thiophenyl H atoms were placed in geometrically idealized positions and constrained to ride on their parent C atoms with C—H distances of 0.99, 1.00, 0.95, and 0.95 Å respectively, and Uiso(H) = 1.2Ueq(C). The low fraction of data collected may affect the precision of the structure.

Computing details top

Data collection: APEX2 (Bruker, 2006); cell refinement: APEX2 (Bruker, 2006); data reduction: SAINT (Bruker, 2005); program(s) used to solve structure: SHELXTL (Sheldrick, 2008b); program(s) used to refine structure: SHELXTL (Sheldrick, 2008b); molecular graphics: SHELXTL (Sheldrick, 2008b); software used to prepare material for publication: SHELXTL (Sheldrick, 2008b).

Figures top
[Figure 1] Fig. 1. The molecular structure of (I). Displacement ellipsoids are drawn at the 40% probability level for non-H atoms.
Chlorido[2-({[2-(diphenylphosphanyl)benzylidene]amino}methyl)thiophene- κ2N,P]methylpalladium(II) top
Crystal data top
[Pd(CH3)Cl(C24H20NPS)]F(000) = 2192
Mr = 542.32Dx = 1.598 Mg m3
Monoclinic, C2/cCu Kα radiation, λ = 1.54178 Å
Hall symbol: -C 2ycCell parameters from 9937 reflections
a = 24.6534 (4) Åθ = 3.6–72.0°
b = 10.0118 (1) ŵ = 9.35 mm1
c = 18.4507 (3) ÅT = 100 K
β = 98.027 (1)°Plate, yellow
V = 4509.47 (11) Å30.26 × 0.15 × 0.08 mm
Z = 8
Data collection top
Bruker SMART CCD APEXII
diffractometer
4048 independent reflections
Radiation source: fine-focus sealed tube3919 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.028
ϕ and ω scansθmax = 71.9°, θmin = 3.6°
Absorption correction: numerical
(SADABS; Sheldrick, 2008a)
h = 2928
Tmin = 0.195, Tmax = 0.522k = 1111
22554 measured reflectionsl = 2122
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.024Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.062H-atom parameters constrained
S = 1.11 w = 1/[σ2(Fo2) + (0.0291P)2 + 12.1978P]
where P = (Fo2 + 2Fc2)/3
4048 reflections(Δ/σ)max < 0.001
272 parametersΔρmax = 0.50 e Å3
0 restraintsΔρmin = 0.44 e Å3
Crystal data top
[Pd(CH3)Cl(C24H20NPS)]V = 4509.47 (11) Å3
Mr = 542.32Z = 8
Monoclinic, C2/cCu Kα radiation
a = 24.6534 (4) ŵ = 9.35 mm1
b = 10.0118 (1) ÅT = 100 K
c = 18.4507 (3) Å0.26 × 0.15 × 0.08 mm
β = 98.027 (1)°
Data collection top
Bruker SMART CCD APEXII
diffractometer
4048 independent reflections
Absorption correction: numerical
(SADABS; Sheldrick, 2008a)
3919 reflections with I > 2σ(I)
Tmin = 0.195, Tmax = 0.522Rint = 0.028
22554 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0240 restraints
wR(F2) = 0.062H-atom parameters constrained
S = 1.11 w = 1/[σ2(Fo2) + (0.0291P)2 + 12.1978P]
where P = (Fo2 + 2Fc2)/3
4048 reflectionsΔρmax = 0.50 e Å3
272 parametersΔρmin = 0.44 e Å3
Special details top

Experimental. crystal mounted on a Cryoloop using Paratone-N

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Pd10.111634 (7)0.271512 (17)0.253204 (8)0.01132 (7)
Cl10.10246 (2)0.09406 (6)0.33614 (3)0.02005 (13)
S10.08000 (3)0.00649 (6)0.02911 (3)0.02051 (14)
P10.11772 (2)0.45419 (6)0.18890 (3)0.01083 (12)
N10.04735 (8)0.1992 (2)0.17213 (11)0.0150 (4)
C10.05000 (9)0.5072 (2)0.14458 (12)0.0125 (5)
C20.00859 (9)0.4126 (2)0.12111 (12)0.0140 (5)
C30.04027 (10)0.4576 (3)0.08017 (13)0.0178 (5)
H30.06820.39480.06370.021*
C40.04872 (10)0.5906 (3)0.06324 (13)0.0194 (5)
H40.08230.61880.03590.023*
C50.00817 (10)0.6833 (3)0.08607 (14)0.0192 (5)
H50.01380.77520.07440.023*
C60.04080 (10)0.6410 (3)0.12609 (13)0.0161 (5)
H60.06860.70480.14120.019*
C70.01250 (10)0.2671 (2)0.12986 (13)0.0153 (5)
H70.01460.21670.09990.018*
C80.04345 (10)0.0513 (2)0.16373 (14)0.0180 (5)
H8A0.00750.02720.13610.022*
H8B0.04640.00890.21260.022*
C90.08836 (10)0.0011 (2)0.12399 (13)0.0162 (5)
C100.14046 (10)0.0368 (2)0.15316 (14)0.0178 (5)
H100.15330.03920.20410.021*
C110.17293 (10)0.0723 (3)0.09775 (14)0.0197 (5)
H110.20990.10130.10830.024*
C120.14600 (11)0.0609 (3)0.02862 (15)0.0217 (5)
H120.16160.08040.01440.026*
C130.17473 (10)0.3382 (3)0.32856 (13)0.0194 (5)
H13A0.19280.26190.35500.029*
H13B0.16030.39810.36330.029*
H13C0.20120.38650.30340.029*
C140.15438 (9)0.4419 (2)0.10996 (12)0.0127 (5)
C150.16901 (10)0.5568 (3)0.07414 (13)0.0160 (5)
H150.16190.64270.09260.019*
C160.19398 (10)0.5452 (3)0.01147 (13)0.0181 (5)
H160.20480.62320.01220.022*
C170.20320 (10)0.4202 (3)0.01671 (13)0.0179 (5)
H170.21980.41270.06000.021*
C180.18818 (9)0.3060 (3)0.01822 (13)0.0156 (5)
H180.19420.22050.00150.019*
C190.16432 (9)0.3164 (2)0.08196 (13)0.0133 (5)
H190.15480.23800.10640.016*
C200.14646 (10)0.5991 (2)0.23982 (12)0.0138 (5)
C210.11485 (10)0.6668 (2)0.28528 (13)0.0156 (5)
H210.07760.64300.28530.019*
C220.13771 (11)0.7685 (2)0.33021 (14)0.0190 (5)
H220.11590.81490.36060.023*
C230.19234 (11)0.8030 (3)0.33115 (13)0.0203 (5)
H230.20780.87380.36160.024*
C240.22424 (11)0.7342 (3)0.28783 (14)0.0202 (5)
H240.26180.75670.28930.024*
C250.20175 (10)0.6324 (3)0.24205 (13)0.0169 (5)
H250.22390.58560.21230.020*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Pd10.01188 (10)0.01295 (11)0.00892 (10)0.00129 (6)0.00075 (7)0.00036 (6)
Cl10.0251 (3)0.0184 (3)0.0173 (3)0.0039 (2)0.0054 (2)0.0064 (2)
S10.0201 (3)0.0235 (3)0.0165 (3)0.0007 (2)0.0027 (2)0.0013 (2)
P10.0099 (3)0.0129 (3)0.0091 (3)0.0002 (2)0.0006 (2)0.0002 (2)
N10.0142 (10)0.0149 (10)0.0162 (10)0.0028 (8)0.0028 (8)0.0019 (8)
C10.0117 (11)0.0174 (12)0.0083 (10)0.0009 (9)0.0007 (9)0.0002 (9)
C20.0117 (11)0.0205 (13)0.0101 (11)0.0001 (9)0.0027 (9)0.0012 (9)
C30.0115 (11)0.0260 (14)0.0156 (12)0.0014 (10)0.0012 (10)0.0017 (10)
C40.0133 (12)0.0299 (14)0.0143 (12)0.0058 (10)0.0010 (10)0.0014 (10)
C50.0204 (13)0.0197 (13)0.0178 (12)0.0043 (10)0.0032 (10)0.0038 (10)
C60.0146 (12)0.0186 (13)0.0146 (11)0.0005 (9)0.0005 (10)0.0001 (10)
C70.0113 (12)0.0205 (13)0.0145 (12)0.0027 (9)0.0032 (10)0.0036 (9)
C80.0187 (12)0.0134 (12)0.0218 (13)0.0023 (10)0.0027 (10)0.0017 (10)
C90.0194 (12)0.0124 (12)0.0158 (12)0.0040 (9)0.0013 (10)0.0011 (9)
C100.0236 (13)0.0099 (12)0.0205 (12)0.0000 (10)0.0048 (11)0.0024 (10)
C110.0177 (12)0.0160 (13)0.0248 (13)0.0013 (10)0.0004 (10)0.0006 (10)
C120.0248 (13)0.0190 (13)0.0215 (13)0.0009 (11)0.0043 (11)0.0014 (10)
C130.0216 (13)0.0221 (14)0.0118 (11)0.0003 (10)0.0067 (10)0.0014 (10)
C140.0097 (10)0.0178 (12)0.0098 (11)0.0005 (9)0.0020 (9)0.0006 (9)
C150.0176 (12)0.0172 (13)0.0123 (11)0.0003 (10)0.0009 (10)0.0010 (9)
C160.0195 (12)0.0208 (13)0.0135 (12)0.0031 (10)0.0006 (10)0.0042 (10)
C170.0138 (11)0.0278 (14)0.0117 (11)0.0012 (10)0.0011 (10)0.0001 (10)
C180.0113 (11)0.0189 (12)0.0157 (12)0.0032 (9)0.0018 (9)0.0022 (10)
C190.0079 (10)0.0164 (12)0.0143 (11)0.0015 (9)0.0033 (9)0.0019 (9)
C200.0168 (12)0.0136 (12)0.0099 (11)0.0014 (9)0.0021 (9)0.0008 (9)
C210.0161 (12)0.0167 (13)0.0135 (11)0.0002 (9)0.0003 (9)0.0019 (9)
C220.0292 (14)0.0149 (12)0.0127 (12)0.0032 (10)0.0027 (11)0.0005 (9)
C230.0310 (14)0.0143 (12)0.0130 (12)0.0059 (11)0.0059 (11)0.0013 (10)
C240.0180 (13)0.0258 (14)0.0147 (12)0.0075 (10)0.0048 (10)0.0032 (10)
C250.0160 (12)0.0211 (13)0.0129 (11)0.0001 (10)0.0003 (9)0.0002 (10)
Geometric parameters (Å, º) top
Pd1—C132.048 (2)C11—C121.358 (4)
Pd1—N12.147 (2)C11—H110.9500
Pd1—P12.1965 (6)C12—H120.9500
Pd1—Cl12.3761 (6)C13—H13A0.9800
S1—C121.717 (3)C13—H13B0.9800
S1—C91.736 (2)C13—H13C0.9800
P1—C201.817 (2)C14—C191.394 (3)
P1—C141.822 (2)C14—C151.399 (3)
P1—C11.832 (2)C15—C161.389 (3)
N1—C71.273 (3)C15—H150.9500
N1—C81.490 (3)C16—C171.386 (4)
C1—C61.393 (4)C16—H160.9500
C1—C21.416 (3)C17—C181.388 (4)
C2—C31.404 (3)C17—H170.9500
C2—C71.467 (3)C18—C191.390 (3)
C3—C41.377 (4)C18—H180.9500
C3—H30.9500C19—H190.9500
C4—C51.386 (4)C20—C211.398 (3)
C4—H40.9500C20—C251.399 (3)
C5—C61.390 (3)C21—C221.382 (4)
C5—H50.9500C21—H210.9500
C6—H60.9500C22—C231.388 (4)
C7—H70.9500C22—H220.9500
C8—C91.498 (3)C23—C241.381 (4)
C8—H8A0.9900C23—H230.9500
C8—H8B0.9900C24—C251.389 (4)
C9—C101.375 (4)C24—H240.9500
C10—C111.428 (4)C25—H250.9500
C10—H100.9500
C13—Pd1—N1178.18 (9)C12—C11—C10113.7 (2)
C13—Pd1—P189.57 (8)C12—C11—H11123.2
N1—Pd1—P190.23 (6)C10—C11—H11123.2
C13—Pd1—Cl186.45 (8)C11—C12—S1111.2 (2)
N1—Pd1—Cl193.96 (6)C11—C12—H12124.4
P1—Pd1—Cl1171.99 (2)S1—C12—H12124.4
C12—S1—C992.29 (12)Pd1—C13—H13A109.5
C20—P1—C14105.43 (11)Pd1—C13—H13B109.5
C20—P1—C1105.36 (11)H13A—C13—H13B109.5
C14—P1—C1100.70 (10)Pd1—C13—H13C109.5
C20—P1—Pd1115.88 (8)H13A—C13—H13C109.5
C14—P1—Pd1117.03 (8)H13B—C13—H13C109.5
C1—P1—Pd1110.82 (8)C19—C14—C15119.8 (2)
C7—N1—C8116.0 (2)C19—C14—P1119.31 (18)
C7—N1—Pd1128.02 (17)C15—C14—P1120.75 (18)
C8—N1—Pd1115.98 (15)C16—C15—C14119.9 (2)
C6—C1—C2118.9 (2)C16—C15—H15120.1
C6—C1—P1119.66 (18)C14—C15—H15120.1
C2—C1—P1121.07 (18)C17—C16—C15120.2 (2)
C3—C2—C1118.5 (2)C17—C16—H16119.9
C3—C2—C7114.6 (2)C15—C16—H16119.9
C1—C2—C7126.7 (2)C16—C17—C18120.1 (2)
C4—C3—C2121.6 (2)C16—C17—H17120.0
C4—C3—H3119.2C18—C17—H17120.0
C2—C3—H3119.2C17—C18—C19120.2 (2)
C3—C4—C5119.9 (2)C17—C18—H18119.9
C3—C4—H4120.0C19—C18—H18119.9
C5—C4—H4120.0C18—C19—C14119.9 (2)
C4—C5—C6119.5 (2)C18—C19—H19120.1
C4—C5—H5120.2C14—C19—H19120.1
C6—C5—H5120.2C21—C20—C25119.3 (2)
C5—C6—C1121.5 (2)C21—C20—P1119.21 (18)
C5—C6—H6119.2C25—C20—P1120.93 (18)
C1—C6—H6119.2C22—C21—C20120.2 (2)
N1—C7—C2128.7 (2)C22—C21—H21119.9
N1—C7—H7115.6C20—C21—H21119.9
C2—C7—H7115.6C21—C22—C23120.3 (2)
N1—C8—C9110.1 (2)C21—C22—H22119.9
N1—C8—H8A109.6C23—C22—H22119.9
C9—C8—H8A109.6C24—C23—C22119.9 (2)
N1—C8—H8B109.6C24—C23—H23120.0
C9—C8—H8B109.6C22—C23—H23120.0
H8A—C8—H8B108.2C23—C24—C25120.4 (2)
C10—C9—C8128.0 (2)C23—C24—H24119.8
C10—C9—S1110.83 (19)C25—C24—H24119.8
C8—C9—S1121.11 (18)C24—C25—C20119.9 (2)
C9—C10—C11112.0 (2)C24—C25—H25120.1
C9—C10—H10124.0C20—C25—H25120.1
C11—C10—H10124.0
C13—Pd1—P1—C2025.48 (12)N1—C8—C9—C1088.4 (3)
N1—Pd1—P1—C20156.33 (10)N1—C8—C9—S187.7 (2)
Cl1—Pd1—P1—C2034.72 (19)C12—S1—C9—C100.2 (2)
C13—Pd1—P1—C1499.93 (11)C12—S1—C9—C8176.9 (2)
N1—Pd1—P1—C1478.26 (10)C8—C9—C10—C11176.7 (2)
Cl1—Pd1—P1—C14160.13 (16)S1—C9—C10—C110.3 (3)
C13—Pd1—P1—C1145.43 (11)C9—C10—C11—C120.3 (3)
N1—Pd1—P1—C136.37 (10)C10—C11—C12—S10.1 (3)
Cl1—Pd1—P1—C185.23 (18)C9—S1—C12—C110.1 (2)
C13—Pd1—N1—C7113 (3)C20—P1—C14—C19147.04 (18)
P1—Pd1—N1—C729.4 (2)C1—P1—C14—C19103.59 (19)
Cl1—Pd1—N1—C7143.8 (2)Pd1—P1—C14—C1916.6 (2)
C13—Pd1—N1—C866 (3)C20—P1—C14—C1537.7 (2)
P1—Pd1—N1—C8149.87 (16)C1—P1—C14—C1571.7 (2)
Cl1—Pd1—N1—C836.96 (16)Pd1—P1—C14—C15168.13 (16)
C20—P1—C1—C628.9 (2)C19—C14—C15—C160.8 (3)
C14—P1—C1—C680.5 (2)P1—C14—C15—C16176.12 (18)
Pd1—P1—C1—C6154.97 (17)C14—C15—C16—C171.6 (4)
C20—P1—C1—C2158.43 (18)C15—C16—C17—C180.9 (4)
C14—P1—C1—C292.1 (2)C16—C17—C18—C190.6 (4)
Pd1—P1—C1—C232.4 (2)C17—C18—C19—C141.4 (3)
C6—C1—C2—C30.2 (3)C15—C14—C19—C180.7 (3)
P1—C1—C2—C3172.87 (17)P1—C14—C19—C18174.69 (17)
C6—C1—C2—C7174.5 (2)C14—P1—C20—C21155.04 (18)
P1—C1—C2—C71.8 (3)C1—P1—C20—C2149.0 (2)
C1—C2—C3—C40.6 (4)Pd1—P1—C20—C2173.8 (2)
C7—C2—C3—C4175.9 (2)C14—P1—C20—C2533.8 (2)
C2—C3—C4—C50.7 (4)C1—P1—C20—C25139.78 (19)
C3—C4—C5—C60.1 (4)Pd1—P1—C20—C2597.34 (19)
C4—C5—C6—C10.7 (4)C25—C20—C21—C222.0 (4)
C2—C1—C6—C50.8 (4)P1—C20—C21—C22173.29 (18)
P1—C1—C6—C5173.59 (19)C20—C21—C22—C230.7 (4)
C8—N1—C7—C2174.8 (2)C21—C22—C23—C241.0 (4)
Pd1—N1—C7—C24.4 (4)C22—C23—C24—C251.4 (4)
C3—C2—C7—N1168.7 (2)C23—C24—C25—C200.1 (4)
C1—C2—C7—N116.5 (4)C21—C20—C25—C241.6 (4)
C7—N1—C8—C9104.4 (2)P1—C20—C25—C24172.73 (19)
Pd1—N1—C8—C974.9 (2)

Experimental details

Crystal data
Chemical formula[Pd(CH3)Cl(C24H20NPS)]
Mr542.32
Crystal system, space groupMonoclinic, C2/c
Temperature (K)100
a, b, c (Å)24.6534 (4), 10.0118 (1), 18.4507 (3)
β (°) 98.027 (1)
V3)4509.47 (11)
Z8
Radiation typeCu Kα
µ (mm1)9.35
Crystal size (mm)0.26 × 0.15 × 0.08
Data collection
DiffractometerBruker SMART CCD APEXII
diffractometer
Absorption correctionNumerical
(SADABS; Sheldrick, 2008a)
Tmin, Tmax0.195, 0.522
No. of measured, independent and
observed [I > 2σ(I)] reflections
22554, 4048, 3919
Rint0.028
(sin θ/λ)max1)0.616
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.024, 0.062, 1.11
No. of reflections4048
No. of parameters272
H-atom treatmentH-atom parameters constrained
w = 1/[σ2(Fo2) + (0.0291P)2 + 12.1978P]
where P = (Fo2 + 2Fc2)/3
Δρmax, Δρmin (e Å3)0.50, 0.44

Computer programs: APEX2 (Bruker, 2006), SAINT (Bruker, 2005), SHELXTL (Sheldrick, 2008b).

 

Acknowledgements

The authors acknowledge financial support by NSF-CRIF grant No. 0443538, an NRF Thuthuka and Mobility Travel Grant, and UWC Senate Research.

References

First citationBruker (2005). SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationBruker (2006). APEX2. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationEspinet, P. & Soulantica, K. (1999). Coord. Chem. Rev. 193–195, 499–556.  Web of Science CrossRef CAS Google Scholar
First citationNobre, S. M. & Monteiro, A. L. (2009). J. Mol. Catal. A Chem. 313, 65–73.  Web of Science CSD CrossRef CAS Google Scholar
First citationOnani, M. O., Motswainyana, W. M., Iwuoha, E. I., Darkwa, J. & Lalancette, R. A. (2010). Acta Cryst. E66, m688.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationPelagatti, P., Carcelli, M., Costa, M., Ianelli, S., Pellizi, C. & Rogolino, D. (2005). J. Mol. Catal. A Chem. 226, 107–110.  Web of Science CSD CrossRef CAS Google Scholar
First citationReddy, K. K., Surekha, K., Lee, G., Peng, S., Chen, J. & Liu, S. (2001). Organometallics, 20, 1292–1299.  Web of Science CSD CrossRef CAS Google Scholar
First citationSheldrick, G. M. (2008a). SADABS. University of Göttingen, Germany.  Google Scholar
First citationSheldrick, G. M. (2008b). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationVaughan, T. F., Koedyk, D. J. & Spencer, J. L. (2011). Organometallics, 30, 5170–5180.  Web of Science CSD CrossRef CAS Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds