metal-organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 68| Part 3| March 2012| Pages m319-m320

Bis[N-(2-hy­dr­oxy­eth­yl)-N-methyl­di­thio­carbamato-κS][2,4,6-tris­­(pyridin-2-yl)-1,3,5-triazine-κ3N1,N2,N6]zinc dioxane sesquisolvate

aDepartment of Chemistry, The University of Texas at San Antonio, One UTSA Circle, San Antonio, Texas 78249-0698, USA, bChemical Abstracts Service, 2540 Olentangy River Road, Columbus, Ohio 43202, USA, and cDepartment of Chemistry, University of Malaya, 50603 Kuala Lumpur, Malaysia
*Correspondence e-mail: edward.tiekink@gmail.com

(Received 8 February 2012; accepted 14 February 2012; online 24 February 2012)

The asymmetric unit of the title compound, [Zn(C4H8NOS2)2(C18H12N6)]·1.5C4H8O2, comprises a Zn-containing mol­ecule and one and a half dioxane mol­ecules as one of the solvent mol­ecules is located about a crystallographic inversion centre. The approximately square-pyramidal N3S2 donor set is defined by two monodentate dithio­carbamate ligands and two pyridine and one triazine N atom from the tridentate triazine ligand. Mol­ecules are connected into a supra­molecular array via O—H⋯S and O—H⋯N hydrogen bonds. These stack along the b axis and the solvent mol­ecules reside in the channels thus formed.

Related literature

For background on structural studies on hydroxyl-substituted dithio­carbamate ligands, see: Benson et al. (2007[Benson, R. E., Ellis, C. A., Lewis, C. E. & Tiekink, E. R. T. (2007). CrystEngComm, 9, 930-940.]); Poplaukhin & Tiekink (2010[Poplaukhin, P. & Tiekink, E. R. T. (2010). CrystEngComm, 12, 1302—1306.]). For the coordination modes of triazine mol­ecules, see: Therrin (2011[Therrin, B. (2011). J. Organomet. Chem. 696, 637-651.]). For additional structural analysis, see: Addison et al. (1984[Addison, A. W., Rao, T. N., Reedijk, J., van Rijn, J. & Verschoor, G. C. (1984). J. Chem. Soc. Dalton Trans. pp. 1349-1356.]); Spek (2009[Spek, A. L. (2009). Acta Cryst. D65, 148-155.]).

[Scheme 1]

Experimental

Crystal data
  • [Zn(C4H8NOS2)2(C18H12N6)]·1.5C4H8O2

  • Mr = 810.33

  • Triclinic, [P \overline 1]

  • a = 11.863 (10) Å

  • b = 13.019 (11) Å

  • c = 13.199 (11) Å

  • α = 107.214 (12)°

  • β = 105.780 (15)°

  • γ = 100.892 (11)°

  • V = 1792 (3) Å3

  • Z = 2

  • Mo Kα radiation

  • μ = 0.97 mm−1

  • T = 98 K

  • 0.40 × 0.30 × 0.05 mm

Data collection
  • Rigaku AFC12/SATURN724 diffractometer

  • Absorption correction: multi-scan (ABSCOR; Higashi, 1995[Higashi, T. (1995). ABSCOR. Rigaku Corporation, Tokyo, Japan.]) Tmin = 0.539, Tmax = 1

  • 11537 measured reflections

  • 6940 independent reflections

  • 5803 reflections with I > 2σ(I)

  • Rint = 0.067

Refinement
  • R[F2 > 2σ(F2)] = 0.085

  • wR(F2) = 0.222

  • S = 1.12

  • 6940 reflections

  • 459 parameters

  • 2 restraints

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 1.54 e Å−3

  • Δρmin = −1.08 e Å−3

Table 1
Selected bond lengths (Å)

Zn—S1 2.335 (2)
Zn—S3 2.368 (2)
Zn—N3 2.082 (5)
Zn—N6 2.211 (5)
Zn—N7 2.249 (5)

Table 2
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
O1—H1O⋯N4i 0.84 (7) 2.34 (8) 3.038 (8) 141 (7)
O1—H1O⋯N8i 0.84 (7) 2.27 (6) 2.995 (8) 146 (7)
O2—H2O⋯S2ii 0.84 (9) 2.65 (8) 3.387 (6) 149 (8)
Symmetry codes: (i) x-1, y, z; (ii) x, y, z-1.

Data collection: CrystalClear (Molecular Structure Corporation & Rigaku, 2005[Molecular Structure Corporation & Rigaku (2005). CrystalClear. MSC, The Woodlands, Texas, USA, and Rigaku Corporation, Tokyo, Japan.]); cell refinement: CrystalClear; data reduction: CrystalClear; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: ORTEP-3 (Farrugia, 1997[Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.]) and DIAMOND (Brandenburg, 2006[Brandenburg, K. (2006). DIAMOND. Crystal Impact GbR, Bonn, Germany.]); software used to prepare material for publication: publCIF (Westrip, 2010[Westrip, S. P. (2010). J. Appl. Cryst. 43, 920-925.]).

Supporting information


Comment top

The title compound, (I), was prepared in the context of previous crystal engineering studies of zinc dithiocarbamates (Benson et al., 2007; Poplaukhin & Tiekink, 2010).

The asymmetric unit of (I) comprises a Zn-containing molecule and one and half dioxane molecules as one dioxane molecule is located about a centre on inversion. The ZnII atom, Fig. 1, is coordinated by two monodentate dithiocarbamate ligands and three N donors from the 2,4,6-tris(pyridin-2-yl)-1,3,5-triazine molecule. The monodentate mode of coordination of the dithiocarbamate ligands is confirmed by the disparity in the C—S bond lengths, Table 1, with the shorter lengths associated with the formally thione CS bonds. The Zn···S2 and Zn···S4 separations are 3.210 (3) and 3.590 (3) Å, respectively. The observed tridentate mode of coordination of the triazine molecule is often observed in its metal complexes (Therrin, 2011).

The resultant N3S2 donor set defines a square pyramid. This assignment is based on the value calculated for τ of 0.07 for the Zn atom, which compares to the τ values of 0.0 and 1.0 for ideal square pyramidal and trigonal bipyramidal geometries, respectively (Spek, 2009; Addison et al., 1984).

The presence of O—H···S and O—H···N hydrogen bonding leads to supramolecular layers in the ac plane, Fig. 2 and Table 2. The dioxane molecules occupy channels in the crystal structure as highlighted in Fig. 3.

Related literature top

For background on structural studies on hydroxyl-substituted dithiocarbamate ligands, see: Benson et al. (2007); Poplaukhin & Tiekink (2010). For the coordination modes of triazine molecules, see: Therrin (2011). For additional structural analysis, see: Addison et al. (1984); Spek (2009).

Experimental top

The title compound was prepared by dissolving zinc(II) bis[N-(2-hydroxyethyl)-N-methyldithiocarbamato-κS]zinc(II) (Benson et al., 2007; 0.5 mmol, 184 mg) and 2,4,6-tris(pyridin-2-yl)-1,3,5-triazine (0.5 mmol, 160 mg) into a methanol/ethanol solution. The solution made an abrupt colour change from yellow to red. Suitable X-ray quality crystals were grown by liquid diffusion of dioxane into the methanol/ethanol solution.

Refinement top

C-bound H-atoms were placed in calculated positions (C—H 0.95–0.99 Å) and were included in the refinement in the riding model approximation with Uiso(H) set to 1.2–1.5Ueq(C). The O-bound H-atoms were located in a difference Fourier map and refined with an O—H restraint of 0.84±0.01 Å, and with Uiso(H) = 1.5Ueq(O). The maximum and minimum residual electron density peaks of 1.54 and 1.08 e Å-3, respectively, were located 0.92 Å and 0.96 Å from the Zn atom.

Computing details top

Data collection: CrystalClear (Molecular Structure Corporation & Rigaku, 2005); cell refinement: CrystalClear (Molecular Structure Corporation & Rigaku, 2005); data reduction: CrystalClear (Molecular Structure Corporation & Rigaku, 2005); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 (Farrugia, 1997) and DIAMOND (Brandenburg, 2006); software used to prepare material for publication: publCIF (Westrip, 2010).

Figures top
[Figure 1] Fig. 1. Molecular structure of (I) showing atom-labelling scheme and displacement ellipsoids at the 50% probability level. The O5-dioxane molecule is centrosymmetric and the unlabelled atoms are related by 1 - x, y, 1 - z.
[Figure 2] Fig. 2. Supramolecular layer in the ac plane in (I). The arrays are mediated by O–H···S and O—H···N hydrogen bonds which are shown as orange and blue dashed lines, respectively.
[Figure 3] Fig. 3. Unit-cell contents in (I) viewed in projection down the a axis. The dioxane molecules are presented in space filling mode.
Bis[N-(2-hydroxyethyl)-N-methyldithiocarbamato-κS][2,4,6- tris(pyridin-2-yl)-1,3,5-triazine-κ3N1,N2,N6]zinc dioxane sesquisolvate top
Crystal data top
[Zn(C4H8NOS2)2(C18H12N6)]·1.5C4H8O2Z = 2
Mr = 810.33F(000) = 844
Triclinic, P1Dx = 1.502 Mg m3
Hall symbol: -P 1Mo Kα radiation, λ = 0.71069 Å
a = 11.863 (10) ÅCell parameters from 7249 reflections
b = 13.019 (11) Åθ = 2.1–40.5°
c = 13.199 (11) ŵ = 0.97 mm1
α = 107.214 (12)°T = 98 K
β = 105.780 (15)°Prism, red
γ = 100.892 (11)°0.40 × 0.30 × 0.05 mm
V = 1792 (3) Å3
Data collection top
Rigaku AFC12/SATURN724
diffractometer
6940 independent reflections
Radiation source: fine-focus sealed tube5803 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.067
ω scansθmax = 26.0°, θmin = 2.1°
Absorption correction: multi-scan
(ABSCOR; Higashi, 1995)
h = 1314
Tmin = 0.539, Tmax = 1k = 1615
11537 measured reflectionsl = 1616
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.085Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.222H atoms treated by a mixture of independent and constrained refinement
S = 1.12 w = 1/[σ2(Fo2) + (0.1081P)2 + 2.961P]
where P = (Fo2 + 2Fc2)/3
6940 reflections(Δ/σ)max < 0.001
459 parametersΔρmax = 1.54 e Å3
2 restraintsΔρmin = 1.08 e Å3
Crystal data top
[Zn(C4H8NOS2)2(C18H12N6)]·1.5C4H8O2γ = 100.892 (11)°
Mr = 810.33V = 1792 (3) Å3
Triclinic, P1Z = 2
a = 11.863 (10) ÅMo Kα radiation
b = 13.019 (11) ŵ = 0.97 mm1
c = 13.199 (11) ÅT = 98 K
α = 107.214 (12)°0.40 × 0.30 × 0.05 mm
β = 105.780 (15)°
Data collection top
Rigaku AFC12/SATURN724
diffractometer
6940 independent reflections
Absorption correction: multi-scan
(ABSCOR; Higashi, 1995)
5803 reflections with I > 2σ(I)
Tmin = 0.539, Tmax = 1Rint = 0.067
11537 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0852 restraints
wR(F2) = 0.222H atoms treated by a mixture of independent and constrained refinement
S = 1.12Δρmax = 1.54 e Å3
6940 reflectionsΔρmin = 1.08 e Å3
459 parameters
Special details top

Geometry. All s.u.'s (except the s.u. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell s.u.'s are taken into account individually in the estimation of s.u.'s in distances, angles and torsion angles; correlations between s.u.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell s.u.'s is used for estimating s.u.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > 2σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Zn0.32652 (5)0.25219 (5)0.17902 (5)0.0214 (2)
S10.11993 (12)0.16780 (12)0.14083 (11)0.0249 (3)
S20.25672 (12)0.18343 (12)0.37341 (12)0.0258 (3)
S30.30899 (11)0.26302 (11)0.00035 (11)0.0235 (3)
S40.58474 (12)0.35416 (12)0.10628 (11)0.0255 (3)
O10.1375 (4)0.1443 (4)0.3793 (4)0.0365 (10)
H1O0.154 (7)0.203 (4)0.409 (6)0.055*
O20.2186 (4)0.2066 (5)0.3764 (4)0.0436 (11)
H2O0.243 (8)0.229 (7)0.422 (6)0.065*
N10.0198 (4)0.0710 (4)0.2576 (4)0.0227 (9)
N20.4548 (4)0.3517 (4)0.0923 (4)0.0235 (9)
N30.4988 (4)0.3147 (4)0.3053 (4)0.0217 (9)
N40.6911 (4)0.2907 (4)0.3819 (4)0.0232 (9)
N50.6605 (4)0.4724 (4)0.4388 (4)0.0223 (9)
N60.4064 (4)0.1104 (4)0.1621 (4)0.0222 (9)
N70.3506 (4)0.4350 (4)0.2704 (4)0.0206 (9)
N80.9181 (4)0.3772 (4)0.5458 (4)0.0273 (10)
C10.1241 (5)0.1345 (4)0.2602 (4)0.0227 (11)
C20.0933 (5)0.0332 (5)0.1600 (5)0.0298 (12)
H2A0.07740.00200.09070.045*
H2B0.12250.09780.15550.045*
H2C0.15570.02160.16830.045*
C30.0098 (5)0.0464 (4)0.3564 (5)0.0243 (11)
H3A0.08840.03760.39750.029*
H3B0.05440.02600.33050.029*
C40.0215 (5)0.1375 (5)0.4374 (5)0.0286 (12)
H4A0.02370.11860.50430.034*
H4B0.04140.21070.46360.034*
C50.4525 (5)0.3262 (4)0.0006 (5)0.0242 (11)
C60.5716 (5)0.4002 (5)0.1017 (5)0.0278 (12)
H6A0.62250.46320.03110.042*
H6B0.55640.42710.16460.042*
H6C0.61410.34270.11550.042*
C70.3460 (5)0.3288 (5)0.1898 (5)0.0259 (11)
H7A0.35540.39240.21640.031*
H7B0.27370.32410.16580.031*
C80.3233 (5)0.2221 (5)0.2863 (5)0.0319 (13)
H8A0.39490.22600.31140.038*
H8B0.31190.15760.26120.038*
C90.5757 (5)0.2521 (4)0.3114 (4)0.0214 (10)
C100.7283 (5)0.4012 (4)0.4461 (4)0.0226 (11)
C110.5469 (5)0.4246 (4)0.3676 (4)0.0203 (10)
C120.5231 (5)0.1356 (4)0.2277 (4)0.0207 (10)
C130.3513 (5)0.0074 (4)0.0824 (4)0.0240 (11)
H130.26750.01100.03760.029*
C140.4121 (5)0.0733 (5)0.0630 (5)0.0306 (12)
H140.37130.14550.00520.037*
C150.5332 (5)0.0466 (5)0.1295 (5)0.0299 (12)
H150.57730.10010.11680.036*
C160.5909 (5)0.0594 (5)0.2156 (5)0.0266 (11)
H160.67340.07870.26410.032*
C170.4612 (5)0.4928 (4)0.3488 (4)0.0208 (10)
C180.2691 (5)0.4911 (5)0.2475 (5)0.0244 (11)
H180.19080.45120.19070.029*
C190.2962 (5)0.6065 (5)0.3048 (5)0.0263 (11)
H190.23700.64440.28710.032*
C200.4107 (5)0.6656 (5)0.3879 (5)0.0274 (12)
H200.43010.74390.42930.033*
C210.4961 (5)0.6073 (5)0.4091 (5)0.0257 (11)
H210.57610.64520.46350.031*
C220.8523 (5)0.4487 (5)0.5334 (5)0.0252 (11)
C231.0287 (5)0.4190 (5)0.6270 (5)0.0311 (13)
H231.07700.36950.63520.037*
C241.0766 (5)0.5305 (5)0.6997 (5)0.0313 (13)
H241.15470.55610.75770.038*
C251.0089 (5)0.6035 (6)0.6864 (6)0.0361 (14)
H251.04030.68070.73440.043*
C260.8950 (5)0.5636 (5)0.6028 (5)0.0277 (12)
H260.84640.61240.59210.033*
O30.0197 (4)0.6269 (4)0.0009 (4)0.0421 (11)
O40.1276 (4)0.7852 (4)0.2186 (4)0.0417 (11)
C270.1087 (7)0.6711 (7)0.0298 (7)0.055 (2)
H27A0.12820.67500.03750.066*
H27B0.15040.62060.05780.066*
C280.1554 (8)0.7883 (7)0.1218 (7)0.058 (2)
H28A0.24520.81750.14270.070*
H28B0.11700.83980.09250.070*
C290.0024 (6)0.7421 (6)0.1860 (6)0.0411 (15)
H29A0.04240.79300.15710.049*
H29B0.02350.73910.25280.049*
C300.0481 (6)0.6276 (6)0.0968 (6)0.0377 (14)
H30A0.01110.57620.12750.045*
H30B0.13810.59940.07550.045*
O50.5355 (5)0.0717 (4)0.4454 (4)0.0447 (11)
C310.6229 (6)0.0446 (6)0.5217 (6)0.0406 (15)
H31A0.69980.10750.55880.049*
H31B0.64140.02310.47980.049*
C320.4249 (6)0.0228 (6)0.3903 (6)0.0392 (15)
H32A0.44320.09040.34800.047*
H32B0.36240.00580.33600.047*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Zn0.0220 (3)0.0205 (3)0.0169 (3)0.0061 (2)0.0055 (2)0.0016 (2)
S10.0243 (6)0.0279 (7)0.0193 (7)0.0064 (5)0.0074 (5)0.0052 (5)
S20.0231 (6)0.0283 (7)0.0184 (7)0.0056 (5)0.0034 (5)0.0026 (5)
S30.0229 (6)0.0249 (6)0.0196 (7)0.0050 (5)0.0074 (5)0.0048 (5)
S40.0253 (6)0.0282 (7)0.0194 (7)0.0069 (5)0.0069 (5)0.0051 (6)
O10.031 (2)0.042 (2)0.027 (2)0.0203 (19)0.0060 (18)0.0025 (19)
O20.036 (2)0.065 (3)0.025 (2)0.015 (2)0.0059 (19)0.013 (2)
N10.023 (2)0.022 (2)0.019 (2)0.0065 (17)0.0078 (18)0.0016 (18)
N20.028 (2)0.026 (2)0.015 (2)0.0092 (19)0.0071 (18)0.0063 (19)
N30.024 (2)0.018 (2)0.020 (2)0.0056 (17)0.0103 (18)0.0004 (18)
N40.026 (2)0.025 (2)0.017 (2)0.0108 (18)0.0096 (18)0.0023 (19)
N50.023 (2)0.021 (2)0.022 (2)0.0050 (18)0.0103 (18)0.0042 (18)
N60.028 (2)0.025 (2)0.015 (2)0.0104 (18)0.0086 (18)0.0084 (18)
N70.024 (2)0.021 (2)0.017 (2)0.0063 (17)0.0095 (17)0.0036 (18)
N80.027 (2)0.034 (3)0.018 (2)0.010 (2)0.0082 (19)0.005 (2)
C10.026 (2)0.020 (2)0.019 (3)0.014 (2)0.007 (2)0.002 (2)
C20.026 (3)0.035 (3)0.019 (3)0.005 (2)0.005 (2)0.001 (2)
C30.027 (3)0.025 (3)0.024 (3)0.011 (2)0.013 (2)0.008 (2)
C40.029 (3)0.032 (3)0.020 (3)0.011 (2)0.006 (2)0.004 (2)
C50.031 (3)0.019 (2)0.020 (3)0.010 (2)0.011 (2)0.000 (2)
C60.023 (3)0.036 (3)0.025 (3)0.007 (2)0.011 (2)0.011 (3)
C70.026 (3)0.034 (3)0.020 (3)0.010 (2)0.010 (2)0.011 (2)
C80.037 (3)0.037 (3)0.022 (3)0.016 (3)0.009 (2)0.009 (3)
C90.024 (2)0.024 (3)0.012 (2)0.007 (2)0.006 (2)0.002 (2)
C100.023 (2)0.025 (3)0.017 (3)0.005 (2)0.011 (2)0.001 (2)
C110.024 (2)0.019 (2)0.016 (3)0.005 (2)0.010 (2)0.001 (2)
C120.026 (2)0.021 (2)0.013 (2)0.010 (2)0.008 (2)0.002 (2)
C130.025 (2)0.023 (3)0.017 (3)0.006 (2)0.005 (2)0.000 (2)
C140.041 (3)0.024 (3)0.027 (3)0.013 (2)0.013 (3)0.007 (2)
C150.039 (3)0.026 (3)0.027 (3)0.016 (2)0.015 (3)0.006 (2)
C160.032 (3)0.024 (3)0.020 (3)0.010 (2)0.006 (2)0.002 (2)
C170.027 (3)0.016 (2)0.020 (3)0.009 (2)0.012 (2)0.005 (2)
C180.027 (3)0.024 (3)0.022 (3)0.010 (2)0.012 (2)0.004 (2)
C190.029 (3)0.028 (3)0.028 (3)0.014 (2)0.017 (2)0.010 (2)
C200.034 (3)0.025 (3)0.026 (3)0.010 (2)0.016 (2)0.008 (2)
C210.025 (3)0.024 (3)0.022 (3)0.003 (2)0.007 (2)0.004 (2)
C220.025 (3)0.029 (3)0.022 (3)0.007 (2)0.010 (2)0.009 (2)
C230.028 (3)0.042 (3)0.026 (3)0.015 (3)0.014 (2)0.010 (3)
C240.020 (2)0.045 (3)0.017 (3)0.004 (2)0.001 (2)0.004 (3)
C250.034 (3)0.036 (3)0.031 (3)0.004 (3)0.011 (3)0.006 (3)
C260.029 (3)0.029 (3)0.020 (3)0.006 (2)0.009 (2)0.005 (2)
O30.036 (2)0.049 (3)0.027 (2)0.007 (2)0.0007 (19)0.007 (2)
O40.041 (2)0.047 (3)0.032 (3)0.011 (2)0.009 (2)0.012 (2)
C270.050 (4)0.069 (5)0.041 (4)0.001 (4)0.022 (4)0.016 (4)
C280.056 (5)0.064 (5)0.042 (4)0.005 (4)0.017 (4)0.017 (4)
C290.038 (3)0.041 (4)0.047 (4)0.019 (3)0.018 (3)0.013 (3)
C300.036 (3)0.038 (3)0.043 (4)0.017 (3)0.015 (3)0.013 (3)
O50.059 (3)0.037 (2)0.032 (3)0.011 (2)0.012 (2)0.009 (2)
C310.037 (3)0.038 (3)0.042 (4)0.014 (3)0.010 (3)0.010 (3)
C320.045 (4)0.035 (3)0.026 (3)0.016 (3)0.002 (3)0.004 (3)
Geometric parameters (Å, º) top
Zn—S12.335 (2)C10—C221.478 (7)
Zn—S32.368 (2)C11—C171.490 (7)
Zn—N32.082 (5)C12—C161.390 (7)
Zn—N62.211 (5)C13—C141.385 (8)
Zn—N72.249 (5)C13—H130.9500
S1—C11.744 (6)C14—C151.378 (8)
S2—C11.701 (5)C14—H140.9500
S3—C51.746 (6)C15—C161.399 (8)
S4—C51.692 (6)C15—H150.9500
O1—C41.415 (7)C16—H160.9500
O1—H1O0.840 (10)C17—C211.382 (7)
O2—C81.399 (7)C18—C191.394 (8)
O2—H2O0.840 (10)C18—H180.9500
N1—C11.338 (7)C19—C201.391 (8)
N1—C21.461 (7)C19—H190.9500
N1—C31.461 (7)C20—C211.394 (8)
N2—C51.352 (7)C20—H200.9500
N2—C71.461 (7)C21—H210.9500
N2—C61.464 (7)C22—C261.407 (8)
N3—C111.337 (7)C23—C241.386 (9)
N3—C91.335 (7)C23—H230.9500
N4—C91.327 (7)C24—C251.374 (9)
N4—C101.348 (7)C24—H240.9500
N5—C111.317 (7)C25—C261.378 (8)
N5—C101.345 (7)C25—H250.9500
N6—C121.335 (7)C26—H260.9500
N6—C131.339 (7)O3—C271.417 (8)
N7—C171.336 (7)O3—C301.417 (8)
N7—C181.341 (7)O4—C281.413 (9)
N8—C231.336 (7)O4—C291.431 (8)
N8—C221.342 (7)C27—C281.525 (11)
C2—H2A0.9800C27—H27A0.9900
C2—H2B0.9800C27—H27B0.9900
C2—H2C0.9800C28—H28A0.9900
C3—C41.523 (7)C28—H28B0.9900
C3—H3A0.9900C29—C301.487 (9)
C3—H3B0.9900C29—H29A0.9900
C4—H4A0.9900C29—H29B0.9900
C4—H4B0.9900C30—H30A0.9900
C6—H6A0.9800C30—H30B0.9900
C6—H6B0.9800O5—C311.413 (8)
C6—H6C0.9800O5—C321.451 (8)
C7—C81.500 (8)C31—C32i1.498 (10)
C7—H7A0.9900C31—H31A0.9900
C7—H7B0.9900C31—H31B0.9900
C8—H8A0.9900C32—C31i1.498 (10)
C8—H8B0.9900C32—H32A0.9900
C9—C121.479 (7)C32—H32B0.9900
N3—Zn—N673.74 (17)N6—C12—C9114.7 (4)
N3—Zn—N773.82 (16)C16—C12—C9122.7 (5)
N6—Zn—N7147.55 (17)N6—C13—C14122.3 (5)
N3—Zn—S1143.15 (13)N6—C13—H13118.8
N6—Zn—S1103.52 (13)C14—C13—H13118.8
N7—Zn—S1102.90 (12)C15—C14—C13118.5 (5)
N3—Zn—S3118.69 (13)C15—C14—H14120.7
N6—Zn—S397.83 (12)C13—C14—H14120.7
N7—Zn—S396.73 (12)C14—C15—C16119.8 (5)
S1—Zn—S398.16 (5)C14—C15—H15120.1
C1—S1—Zn102.41 (18)C16—C15—H15120.1
C5—S3—Zn110.22 (19)C12—C16—C15117.6 (5)
C4—O1—H1O116 (6)C12—C16—H16121.2
C8—O2—H2O106 (6)C15—C16—H16121.2
C1—N1—C2121.4 (5)N7—C17—C21123.8 (5)
C1—N1—C3121.7 (4)N7—C17—C11114.9 (4)
C2—N1—C3116.5 (4)C21—C17—C11121.3 (5)
C5—N2—C7124.2 (4)N7—C18—C19121.7 (5)
C5—N2—C6120.4 (4)N7—C18—H18119.1
C7—N2—C6115.3 (4)C19—C18—H18119.1
C11—N3—C9116.3 (4)C20—C19—C18119.5 (5)
C11—N3—Zn121.2 (4)C20—C19—H19120.2
C9—N3—Zn121.1 (3)C18—C19—H19120.2
C9—N4—C10114.9 (4)C19—C20—C21118.4 (5)
C11—N5—C10114.6 (4)C19—C20—H20120.8
C12—N6—C13119.1 (5)C21—C20—H20120.8
C12—N6—Zn116.0 (3)C17—C21—C20118.2 (5)
C13—N6—Zn124.4 (4)C17—C21—H21120.9
C17—N7—C18118.3 (4)C20—C21—H21120.9
C17—N7—Zn115.2 (3)N8—C22—C26122.5 (5)
C18—N7—Zn126.3 (4)N8—C22—C10117.2 (5)
C23—N8—C22117.5 (5)C26—C22—C10120.3 (5)
N1—C1—S2123.0 (4)N8—C23—C24123.5 (6)
N1—C1—S1117.0 (4)N8—C23—H23118.2
S2—C1—S1119.9 (3)C24—C23—H23118.2
N1—C2—H2A109.5C25—C24—C23118.7 (5)
N1—C2—H2B109.5C25—C24—H24120.6
H2A—C2—H2B109.5C23—C24—H24120.6
N1—C2—H2C109.5C24—C25—C26119.3 (6)
H2A—C2—H2C109.5C24—C25—H25120.4
H2B—C2—H2C109.5C26—C25—H25120.4
N1—C3—C4113.1 (4)C25—C26—C22118.4 (6)
N1—C3—H3A109.0C25—C26—H26120.8
C4—C3—H3A109.0C22—C26—H26120.8
N1—C3—H3B109.0C27—O3—C30109.4 (5)
C4—C3—H3B109.0C28—O4—C29108.4 (5)
H3A—C3—H3B107.8O3—C27—C28110.7 (7)
O1—C4—C3108.2 (4)O3—C27—H27A109.5
O1—C4—H4A110.1C28—C27—H27A109.5
C3—C4—H4A110.1O3—C27—H27B109.5
O1—C4—H4B110.1C28—C27—H27B109.5
C3—C4—H4B110.1H27A—C27—H27B108.1
H4A—C4—H4B108.4O4—C28—C27110.6 (6)
N2—C5—S4120.1 (4)O4—C28—H28A109.5
N2—C5—S3116.9 (4)C27—C28—H28A109.5
S4—C5—S3123.0 (3)O4—C28—H28B109.5
N2—C6—H6A109.5C27—C28—H28B109.5
N2—C6—H6B109.5H28A—C28—H28B108.1
H6A—C6—H6B109.5O4—C29—C30110.5 (5)
N2—C6—H6C109.5O4—C29—H29A109.5
H6A—C6—H6C109.5C30—C29—H29A109.5
H6B—C6—H6C109.5O4—C29—H29B109.5
N2—C7—C8113.2 (5)C30—C29—H29B109.5
N2—C7—H7A108.9H29A—C29—H29B108.1
C8—C7—H7A108.9O3—C30—C29112.0 (6)
N2—C7—H7B108.9O3—C30—H30A109.2
C8—C7—H7B108.9C29—C30—H30A109.2
H7A—C7—H7B107.7O3—C30—H30B109.2
O2—C8—C7109.8 (5)C29—C30—H30B109.2
O2—C8—H8A109.7H30A—C30—H30B107.9
C7—C8—H8A109.7C31—O5—C32108.4 (5)
O2—C8—H8B109.7O5—C31—C32i110.3 (5)
C7—C8—H8B109.7O5—C31—H31A109.6
H8A—C8—H8B108.2C32i—C31—H31A109.6
N4—C9—N3123.9 (5)O5—C31—H31B109.6
N4—C9—C12122.0 (5)C32i—C31—H31B109.6
N3—C9—C12113.9 (4)H31A—C31—H31B108.1
N5—C10—N4125.1 (5)O5—C32—C31i109.1 (5)
N5—C10—C22116.6 (5)O5—C32—H32A109.9
N4—C10—C22118.2 (5)C31i—C32—H32A109.9
N5—C11—N3124.8 (5)O5—C32—H32B109.9
N5—C11—C17120.9 (4)C31i—C32—H32B109.9
N3—C11—C17114.3 (4)H32A—C32—H32B108.3
N6—C12—C16122.6 (5)
N3—Zn—S1—C110.2 (3)C9—N4—C10—N53.5 (8)
N6—Zn—S1—C170.6 (2)C9—N4—C10—C22175.0 (4)
N7—Zn—S1—C190.3 (2)C10—N5—C11—N30.2 (7)
S3—Zn—S1—C1170.79 (17)C10—N5—C11—C17179.0 (4)
N3—Zn—S3—C50.1 (2)C9—N3—C11—N54.9 (8)
N6—Zn—S3—C575.8 (2)Zn—N3—C11—N5171.2 (4)
N7—Zn—S3—C575.1 (2)C9—N3—C11—C17173.9 (4)
S1—Zn—S3—C5179.26 (19)Zn—N3—C11—C177.6 (6)
N6—Zn—N3—C11171.7 (4)C13—N6—C12—C160.9 (8)
N7—Zn—N3—C117.3 (4)Zn—N6—C12—C16170.8 (4)
S1—Zn—N3—C1197.3 (4)C13—N6—C12—C9178.9 (5)
S3—Zn—N3—C1181.6 (4)Zn—N6—C12—C97.1 (6)
N6—Zn—N3—C96.1 (4)N4—C9—C12—N6179.2 (5)
N7—Zn—N3—C9172.9 (4)N3—C9—C12—N62.2 (7)
S1—Zn—N3—C997.1 (4)N4—C9—C12—C161.2 (8)
S3—Zn—N3—C984.0 (4)N3—C9—C12—C16175.8 (5)
N3—Zn—N6—C127.1 (4)C12—N6—C13—C142.0 (8)
N7—Zn—N6—C125.3 (5)Zn—N6—C13—C14169.0 (4)
S1—Zn—N6—C12149.0 (3)N6—C13—C14—C150.9 (9)
S3—Zn—N6—C12110.6 (4)C13—C14—C15—C161.2 (9)
N3—Zn—N6—C13178.4 (4)N6—C12—C16—C151.2 (8)
N7—Zn—N6—C13176.6 (4)C9—C12—C16—C15176.7 (5)
S1—Zn—N6—C1339.7 (4)C14—C15—C16—C122.2 (8)
S3—Zn—N6—C1360.7 (4)C18—N7—C17—C210.9 (8)
N3—Zn—N7—C175.7 (3)Zn—N7—C17—C21176.0 (4)
N6—Zn—N7—C173.9 (5)C18—N7—C17—C11178.9 (4)
S1—Zn—N7—C17147.7 (3)Zn—N7—C17—C113.8 (5)
S3—Zn—N7—C17112.3 (3)N5—C11—C17—N7176.9 (5)
N3—Zn—N7—C18179.7 (4)N3—C11—C17—N72.0 (7)
N6—Zn—N7—C18178.5 (4)N5—C11—C17—C212.9 (8)
S1—Zn—N7—C1837.6 (4)N3—C11—C17—C21178.2 (5)
S3—Zn—N7—C1862.4 (4)C17—N7—C18—C191.4 (8)
C2—N1—C1—S2178.2 (4)Zn—N7—C18—C19175.8 (4)
C3—N1—C1—S25.0 (7)N7—C18—C19—C200.1 (8)
C2—N1—C1—S11.2 (6)C18—C19—C20—C211.7 (8)
C3—N1—C1—S1174.4 (4)N7—C17—C21—C200.8 (8)
Zn—S1—C1—N1171.5 (3)C11—C17—C21—C20179.4 (5)
Zn—S1—C1—S29.0 (3)C19—C20—C21—C172.1 (8)
C1—N1—C3—C485.4 (6)C23—N8—C22—C260.6 (8)
C2—N1—C3—C488.1 (6)C23—N8—C22—C10178.0 (5)
N1—C3—C4—O162.1 (6)N5—C10—C22—N8176.3 (5)
C7—N2—C5—S4178.7 (4)N4—C10—C22—N82.4 (7)
C6—N2—C5—S42.1 (7)N5—C10—C22—C261.1 (7)
C7—N2—C5—S30.7 (7)N4—C10—C22—C26179.8 (5)
C6—N2—C5—S3177.3 (4)C22—N8—C23—C241.6 (8)
Zn—S3—C5—N2171.4 (3)N8—C23—C24—C251.8 (9)
Zn—S3—C5—S49.2 (4)C23—C24—C25—C261.1 (9)
C5—N2—C7—C897.2 (6)C24—C25—C26—C220.2 (9)
C6—N2—C7—C879.5 (6)N8—C22—C26—C250.0 (8)
N2—C7—C8—O2179.5 (5)C10—C22—C26—C25177.2 (5)
C10—N4—C9—N32.3 (7)C30—O3—C27—C2855.7 (8)
C10—N4—C9—C12174.4 (5)C29—O4—C28—C2758.8 (8)
C11—N3—C9—N46.3 (8)O3—C27—C28—O458.6 (9)
Zn—N3—C9—N4172.5 (4)C28—O4—C29—C3059.0 (8)
C11—N3—C9—C12170.7 (4)C27—O3—C30—C2956.7 (7)
Zn—N3—C9—C124.4 (6)O4—C29—C30—O358.9 (7)
C11—N5—C10—N44.7 (7)C32—O5—C31—C32i60.6 (7)
C11—N5—C10—C22173.9 (4)C31—O5—C32—C31i59.8 (7)
Symmetry code: (i) x+1, y, z+1.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O1—H1O···N4ii0.84 (7)2.34 (8)3.038 (8)141 (7)
O1—H1O···N8ii0.84 (7)2.27 (6)2.995 (8)146 (7)
O2—H2O···S2iii0.84 (9)2.65 (8)3.387 (6)149 (8)
Symmetry codes: (ii) x1, y, z; (iii) x, y, z1.

Experimental details

Crystal data
Chemical formula[Zn(C4H8NOS2)2(C18H12N6)]·1.5C4H8O2
Mr810.33
Crystal system, space groupTriclinic, P1
Temperature (K)98
a, b, c (Å)11.863 (10), 13.019 (11), 13.199 (11)
α, β, γ (°)107.214 (12), 105.780 (15), 100.892 (11)
V3)1792 (3)
Z2
Radiation typeMo Kα
µ (mm1)0.97
Crystal size (mm)0.40 × 0.30 × 0.05
Data collection
DiffractometerRigaku AFC12/SATURN724
diffractometer
Absorption correctionMulti-scan
(ABSCOR; Higashi, 1995)
Tmin, Tmax0.539, 1
No. of measured, independent and
observed [I > 2σ(I)] reflections
11537, 6940, 5803
Rint0.067
(sin θ/λ)max1)0.617
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.085, 0.222, 1.12
No. of reflections6940
No. of parameters459
No. of restraints2
H-atom treatmentH atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å3)1.54, 1.08

Computer programs: CrystalClear (Molecular Structure Corporation & Rigaku, 2005), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), ORTEP-3 (Farrugia, 1997) and DIAMOND (Brandenburg, 2006), publCIF (Westrip, 2010).

Selected bond lengths (Å) top
Zn—S12.335 (2)S1—C11.744 (6)
Zn—S32.368 (2)S2—C11.701 (5)
Zn—N32.082 (5)S3—C51.746 (6)
Zn—N62.211 (5)S4—C51.692 (6)
Zn—N72.249 (5)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O1—H1O···N4i0.84 (7)2.34 (8)3.038 (8)141 (7)
O1—H1O···N8i0.84 (7)2.27 (6)2.995 (8)146 (7)
O2—H2O···S2ii0.84 (9)2.65 (8)3.387 (6)149 (8)
Symmetry codes: (i) x1, y, z; (ii) x, y, z1.
 

Acknowledgements

We gratefully thank the Ministry of Higher Education (Malaysia) for funding structural studies through the High-Impact Research scheme (UM.C/HIR/MOHE/SC/12).

References

First citationAddison, A. W., Rao, T. N., Reedijk, J., van Rijn, J. & Verschoor, G. C. (1984). J. Chem. Soc. Dalton Trans. pp. 1349–1356.  CSD CrossRef Web of Science Google Scholar
First citationBenson, R. E., Ellis, C. A., Lewis, C. E. & Tiekink, E. R. T. (2007). CrystEngComm, 9, 930–940.  Web of Science CSD CrossRef CAS Google Scholar
First citationBrandenburg, K. (2006). DIAMOND. Crystal Impact GbR, Bonn, Germany.  Google Scholar
First citationFarrugia, L. J. (1997). J. Appl. Cryst. 30, 565.  CrossRef IUCr Journals Google Scholar
First citationHigashi, T. (1995). ABSCOR. Rigaku Corporation, Tokyo, Japan.  Google Scholar
First citationMolecular Structure Corporation & Rigaku (2005). CrystalClear. MSC, The Woodlands, Texas, USA, and Rigaku Corporation, Tokyo, Japan.  Google Scholar
First citationPoplaukhin, P. & Tiekink, E. R. T. (2010). CrystEngComm, 12, 1302—1306.  Web of Science CSD CrossRef Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSpek, A. L. (2009). Acta Cryst. D65, 148–155.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationTherrin, B. (2011). J. Organomet. Chem. 696, 637–651.  Google Scholar
First citationWestrip, S. P. (2010). J. Appl. Cryst. 43, 920–925.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 68| Part 3| March 2012| Pages m319-m320
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds