metal-organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

{μ-2-[4-(Benzo­thia­zol-2-yl)benz­yl]-2-aza­propane-1,3-di­thiol­ato-1:2κ4S,S′:S,S′}bis­­[tri­carbonyl­iron(I)]

aSchool of Materials Science and Engineering, Changchun University of Science and Technology, No. 7989, Weixing Road, Changchun 130022, People's Republic of China
*Correspondence e-mail: cust_gaoshang@yahoo.cn

(Received 1 February 2012; accepted 15 February 2012; online 24 February 2012)

The title compound, [Fe2(C16H14N2S3)(CO)6], was prepared as the biomimetic model for the active site of iron-only hydrogenase. The structure is similar to the diiron subsite of the iron-only hydrogenase active site, and contains a diiron-aza­dithiol­ate moiety in which a boat six-membered ring is fused with a chair six-membered ring. The substituted benzyl group attached to the bridging N atom resides in an equatorial position. The sum of the C—N—C angles around this N atom [331.9 (12)°] indicates sp3 hybridization.

Related literature

For general background, see: Cammack (1999[Cammack, R. (1999). Nature (London), 297, 214-215.]); Evans & Pickett (2003[Evans, D. J. & Pickett, C. J. (2003). Chem. Soc. Rev. 32, 268-275.]); Peters et al. (1998[Peters, J. W., Lanzilotta, W. N., Lemon, B. J. & Seefeldt, L. C. (1998). Science, 282, 1853-1858.]); Nicolet et al. (1999[Nicolet, Y., Piras, C., Legrand, P., Hatchikian, C. E. & Fontecilla-Camps, J. C. (1999). Structure, 7, 13-23.]). For the crystal structure of the natural enzyme, see: Nicolet et al. (2000[Nicolet, Y., Lemon, B. J., Fontecilla-Camps, J. C. & Peters, J. W. (2000). Trends Biochem. Sci. 25, 138-143.]); Frey (2002[Frey, M. (2002). ChemBioChem, 3, 152-160.]). For enzyme synthetic models, see: Felton et al. (2009[Felton, G. A. N., Mebi, C. A., Petro, B. J., Vannucci, A. K., Evans, D. H., Glass, R. S. & Lichtenberger, D. L. (2009). J. Organomet. Chem. 694, 2681-2699.]); Tard & Pickett (2009[Tard, C. & Pickett, C. J. (2009). Chem. Rev. 109, 2245-2274.]).

[Scheme 1]

Experimental

Crystal data
  • [Fe2(C16H14N2S3)(CO)6]

  • Mr = 610.23

  • Orthorhombic, P 21 21 21

  • a = 6.651 (3) Å

  • b = 14.208 (7) Å

  • c = 25.854 (12) Å

  • V = 2443.2 (19) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 1.49 mm−1

  • T = 273 K

  • 0.25 × 0.08 × 0.07 mm

Data collection
  • Bruker SMART CCD area-detector diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 1997[Bruker (1997). SMART and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]) Tmin = 0.332, Tmax = 0.905

  • 11654 measured reflections

  • 3991 independent reflections

  • 3434 reflections with I > 2σ(I)

  • Rint = 0.030

Refinement
  • R[F2 > 2σ(F2)] = 0.027

  • wR(F2) = 0.052

  • S = 0.98

  • 3991 reflections

  • 316 parameters

  • H-atom parameters constrained

  • Δρmax = 0.22 e Å−3

  • Δρmin = −0.16 e Å−3

Table 1
Selected geometric parameters (Å, °)

Fe1—S1 2.2485 (11)
Fe1—S2 2.2487 (11)
Fe1—Fe2 2.5013 (12)
Fe2—S1 2.2465 (11)
Fe2—S2 2.2534 (11)
N1—C8 1.445 (3)
N1—C7 1.448 (4)
N1—C9 1.472 (3)
C1—Fe1—Fe2 147.16 (10)
C6—Fe2—Fe1 148.57 (11)
C8—N1—C7 111.8 (2)
C8—N1—C9 110.6 (2)
C7—N1—C9 109.4 (2)

Data collection: SMART (Bruker, 1997[Bruker (1997). SMART and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT-Plus (Bruker, 2001[Bruker (2001). SAINT-Plus. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT-Plus; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); software used to prepare material for publication: SHELXTL.

Supporting information


Comment top

The iron-only hydrogenases are important enzymes which catalyze the reduction of protons to molecular hydrogen in microorganisms (Cammack, 1999, Evans & Pickett, 2003). The crystal structure elucidation indicates that the active site of iron-only hydrogenase contains carbon monoxide ligands and an azadithiolate bridging two iron centers (Nicolet et al., 2000, Frey, 2002). Small synthetic model compounds have turned out to be an alluring topic for the purpose to understand the mechanisms of the enzymes (Felton et al., 2009, Tard & Pickett, 2009). The title compound was prepared to mimic structurally the active site of iron-only hydrogenases. Herein we report its crystal structure.

The structure of title compound is similar to the active site of iron-only hydrogenases, with a butterfly architectonic Fe2S2 core and the usual distorted square-pyramidal geometry around the iron centre. The length of Fe—Fe bond [2.5013 (12) Å] is somewhat shorter than those in the structures of natural enzymes (ca 2.6 Å) (Peters et al., 1998, Nicolet et al., 1999). The N-substituted azadithiolate ligand is η2:η2-coordinated to the Fe(CO)3 moieties to form two fused six-member rings. Ring Fe1—S1—C7—N1—C8—S2 has a chair conformation, while ring Fe2—S1—C7—N1—C8—S2 has a boat conformation. The substituted benzyl ring attached to N1 atom resides in an equatorial position and the nitrogen lone electron pair is in an axial position. As a result, the C1—Fe1—Fe2 angle [147.16 (11)°] and the C6—Fe2—Fe1 angle [148.57 (11)°] are almost equal. The sum of C—N—C angles around N1 atom is 331.9 (12)°, roughly consistent with an sp3-hybridization of N1 atom.

Selected bond distances and angles are summarized in Table 1, and the molecular structure of the title compound is shown in Fig.1.

Related literature top

For general background, see: Cammack (1999); Evans & Pickett (2003); Peters et al. (1998); Nicolet et al. (1999). For the crystal structure of the natural enzyme, see: Nicolet et al. (2000); Frey (2002). For enzyme synthetic models, see: Felton et al. (2009); Tard & Pickett (2009).

Experimental top

All reactions and operations related to the title compound were carried out under a dry, prepurified nitrogen atmosphere with standard Schlenk techniques. All solvents were dried and distilled prior to use according to standard methods. N,N'-bis(hydroxymethyl)-(4-benzothiazole)-benzylamine (2.25 g, 7.5 mmol), prepared from 4-benzothiazole-benzylamine and HCHO-H2O, was added to a degassed THF solution (30 ml) of (µ-HS)2Fe2(CO)6, freshly derived from (µ-S2)Fe2(CO)6 (1.38 g, 4 mmol), reacted with LiEt3BH (1 M solution in THF, 8 ml, 8 mmol) and F3CCO2H (0.6 ml, 8 mmol) at 195 K. The reaction mixture was stirred for 1 h at 195 K, and allowed to warm up to room temperature. The solvent was removed in vacuo and the resulting red solid was purified by column chromatography (silica, 20% dichlorometnane in hexane as eluent). The title compound was obtained in 72% yield (1.77 g). Recrystallization in the CH2Cl2/hexane solution afforded crystals suitable for X-ray study.

Refinement top

The H atoms attached to C were placed in geometrically calculated positions (C—H = 0.93–0.97 Å) and refined as riding, with Uiso(H) = 1.2Ueq(C).

Computing details top

Data collection: SMART (Bruker, 1997); cell refinement: SAINT-Plus (Bruker, 2001); data reduction: SAINT-Plus (Bruker, 2001); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. The molecular structure of the title compound, with displacement ellipsoids drawn at 30% probability level.
{µ-2-[4-(Benzothiazol-2-yl)benzyl]-2-azapropane-1,3-dithiolato- 1:2κ4S,S':S,S'}bis[tricarbonyliron(I)] top
Crystal data top
[Fe2(C16H14N2S3)(CO)6]F(000) = 1232
Mr = 610.23Dx = 1.659 Mg m3
Orthorhombic, P212121Mo Kα radiation, λ = 0.71073 Å
Hall symbol: P 2ac 2abCell parameters from 8061 reflections
a = 6.651 (3) Åθ = 2.8–23.5°
b = 14.208 (7) ŵ = 1.49 mm1
c = 25.854 (12) ÅT = 273 K
V = 2443.2 (19) Å3Needle, red
Z = 40.25 × 0.08 × 0.07 mm
Data collection top
Bruker SMART CCD area-detector
diffractometer
3991 independent reflections
Radiation source: fine-focus sealed tube3434 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.030
phi and ω scansθmax = 24.5°, θmin = 2.1°
Absorption correction: multi-scan
(SADABS; Bruker, 1997)
h = 77
Tmin = 0.332, Tmax = 0.905k = 1516
11654 measured reflectionsl = 2230
Refinement top
Refinement on F20 restraints
Least-squares matrix: fullH-atom parameters constrained
R[F2 > 2σ(F2)] = 0.027 w = 1/[σ2(Fo2) + (0.0229P)2]
where P = (Fo2 + 2Fc2)/3
wR(F2) = 0.052(Δ/σ)max = 0.002
S = 0.98Δρmax = 0.22 e Å3
3991 reflectionsΔρmin = 0.16 e Å3
316 parameters
Crystal data top
[Fe2(C16H14N2S3)(CO)6]V = 2443.2 (19) Å3
Mr = 610.23Z = 4
Orthorhombic, P212121Mo Kα radiation
a = 6.651 (3) ŵ = 1.49 mm1
b = 14.208 (7) ÅT = 273 K
c = 25.854 (12) Å0.25 × 0.08 × 0.07 mm
Data collection top
Bruker SMART CCD area-detector
diffractometer
3991 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 1997)
3434 reflections with I > 2σ(I)
Tmin = 0.332, Tmax = 0.905Rint = 0.030
11654 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0270 restraints
wR(F2) = 0.052H-atom parameters constrained
S = 0.98Δρmax = 0.22 e Å3
3991 reflectionsΔρmin = 0.16 e Å3
316 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Fe10.16578 (7)0.28420 (3)0.813925 (15)0.04281 (12)
Fe20.16580 (7)0.44576 (3)0.775496 (16)0.04460 (12)
S10.00452 (12)0.32359 (6)0.74198 (3)0.04209 (19)
S20.43111 (11)0.34726 (5)0.77264 (3)0.0433 (2)
S31.14717 (17)0.58001 (6)0.54946 (3)0.0657 (3)
N21.2033 (4)0.42166 (17)0.50317 (9)0.0503 (7)
C221.3625 (5)0.4801 (2)0.48913 (12)0.0512 (8)
N10.3099 (4)0.32042 (16)0.67095 (8)0.0379 (6)
O20.2259 (4)0.26309 (18)0.86511 (9)0.0650 (7)
C150.6908 (5)0.2851 (2)0.56797 (10)0.0424 (7)
H15A0.66490.22200.56120.051*
C140.8577 (5)0.3269 (2)0.54661 (10)0.0445 (7)
H14A0.94190.29200.52520.053*
C171.3569 (6)0.5691 (2)0.51091 (12)0.0553 (8)
C80.4569 (4)0.2927 (2)0.70916 (10)0.0446 (8)
H8A0.58960.30740.69580.053*
H8B0.44960.22500.71340.053*
C90.3716 (5)0.2892 (2)0.61904 (10)0.0452 (8)
H9A0.26330.30240.59500.054*
H9B0.39120.22160.61970.054*
C20.0731 (6)0.2714 (2)0.84573 (12)0.0484 (8)
C100.5610 (5)0.3349 (2)0.59923 (10)0.0400 (7)
C70.1125 (4)0.2830 (2)0.68263 (11)0.0452 (7)
H7A0.12280.21500.68420.054*
H7B0.02370.29820.65410.054*
C161.0824 (5)0.4642 (2)0.53409 (12)0.0456 (8)
C110.6024 (5)0.4287 (2)0.60916 (12)0.0519 (9)
H11A0.51620.46390.62990.062*
C130.9016 (4)0.4206 (2)0.55675 (11)0.0420 (8)
C120.7718 (6)0.4699 (2)0.58827 (12)0.0543 (10)
H12A0.79920.53260.59570.065*
O10.2794 (4)0.08728 (18)0.80003 (10)0.0844 (9)
C201.6675 (7)0.5202 (3)0.44691 (14)0.0793 (12)
H20A1.77430.50410.42540.095*
C10.2304 (5)0.1636 (3)0.80624 (12)0.0552 (9)
C181.5090 (6)0.6342 (3)0.50075 (15)0.0742 (11)
H18A1.50640.69390.51550.089*
C191.6602 (7)0.6080 (3)0.46892 (16)0.0804 (12)
H19A1.76230.65080.46170.096*
C211.5182 (6)0.4561 (3)0.45645 (14)0.0680 (10)
H21A1.52170.39690.44100.082*
O60.2147 (4)0.52106 (18)0.81418 (11)0.0758 (8)
O50.2323 (5)0.56723 (19)0.68549 (12)0.1013 (11)
C60.2071 (5)0.5196 (2)0.72024 (16)0.0636 (10)
O40.3651 (4)0.3247 (2)0.91230 (9)0.0943 (9)
O30.3659 (5)0.5584 (2)0.85459 (13)0.1067 (11)
C50.2917 (6)0.5140 (3)0.82303 (16)0.0676 (11)
C40.0683 (6)0.4912 (2)0.79849 (14)0.0553 (9)
C30.2877 (5)0.3088 (3)0.87403 (13)0.0626 (10)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Fe10.0384 (3)0.0517 (3)0.0384 (2)0.0004 (2)0.0018 (2)0.0047 (2)
Fe20.0388 (2)0.0445 (2)0.0505 (3)0.0012 (2)0.0048 (2)0.0011 (2)
S10.0310 (4)0.0528 (4)0.0425 (4)0.0009 (4)0.0030 (4)0.0025 (4)
S20.0326 (4)0.0577 (5)0.0396 (4)0.0015 (3)0.0032 (4)0.0018 (4)
S30.0765 (7)0.0494 (5)0.0712 (6)0.0132 (5)0.0074 (6)0.0109 (4)
N20.0531 (18)0.0530 (16)0.0450 (15)0.0094 (15)0.0074 (14)0.0076 (13)
C220.049 (2)0.064 (2)0.0410 (18)0.0103 (19)0.0034 (18)0.0065 (16)
N10.0319 (14)0.0501 (14)0.0316 (12)0.0013 (12)0.0027 (11)0.0013 (10)
O20.0529 (16)0.0789 (17)0.0634 (16)0.0022 (13)0.0112 (14)0.0070 (13)
C150.050 (2)0.0389 (15)0.0378 (16)0.0008 (17)0.0024 (16)0.0075 (14)
C140.051 (2)0.0440 (17)0.0386 (16)0.0019 (17)0.0071 (17)0.0063 (14)
C170.062 (2)0.057 (2)0.0467 (19)0.017 (2)0.0046 (19)0.0089 (16)
C80.0343 (17)0.0570 (19)0.0424 (18)0.0067 (15)0.0021 (14)0.0005 (15)
C90.044 (2)0.0549 (18)0.0363 (17)0.0024 (18)0.0042 (15)0.0033 (14)
C20.055 (2)0.0471 (19)0.0430 (19)0.0033 (18)0.0045 (17)0.0058 (15)
C100.0458 (19)0.0441 (18)0.0301 (15)0.0010 (15)0.0034 (14)0.0016 (14)
C70.0414 (19)0.0546 (18)0.0397 (17)0.0037 (16)0.0051 (15)0.0016 (15)
C160.053 (2)0.0458 (19)0.0375 (18)0.0033 (16)0.0008 (16)0.0018 (14)
C110.053 (2)0.053 (2)0.049 (2)0.0013 (17)0.0145 (17)0.0113 (16)
C130.048 (2)0.0478 (18)0.0301 (16)0.0038 (15)0.0021 (14)0.0030 (14)
C120.072 (3)0.0394 (18)0.052 (2)0.0058 (17)0.0101 (18)0.0087 (15)
O10.103 (2)0.0630 (17)0.087 (2)0.0162 (16)0.0040 (16)0.0124 (14)
C200.057 (3)0.121 (4)0.059 (2)0.016 (3)0.007 (2)0.014 (2)
C10.051 (2)0.069 (2)0.0452 (19)0.0027 (19)0.0031 (16)0.0118 (18)
C180.073 (3)0.069 (2)0.082 (3)0.022 (2)0.010 (3)0.013 (2)
C190.067 (3)0.096 (3)0.078 (3)0.033 (3)0.008 (3)0.030 (2)
C210.057 (2)0.089 (3)0.058 (2)0.016 (2)0.011 (2)0.008 (2)
O60.0529 (17)0.0811 (19)0.093 (2)0.0149 (14)0.0220 (15)0.0113 (15)
O50.121 (3)0.0787 (19)0.105 (2)0.0319 (18)0.0445 (19)0.0460 (18)
C60.056 (2)0.055 (2)0.080 (3)0.0155 (18)0.013 (2)0.005 (2)
O40.0653 (18)0.170 (3)0.0481 (15)0.004 (2)0.0124 (14)0.0157 (17)
O30.079 (2)0.118 (2)0.123 (2)0.027 (2)0.008 (2)0.067 (2)
C50.053 (3)0.069 (2)0.081 (3)0.007 (2)0.017 (2)0.021 (2)
C40.061 (2)0.0457 (19)0.060 (2)0.0039 (18)0.0030 (19)0.0018 (17)
C30.048 (2)0.093 (3)0.047 (2)0.004 (2)0.0012 (18)0.000 (2)
Geometric parameters (Å, º) top
Fe1—C11.778 (4)C14—H14A0.9300
Fe1—C31.787 (4)C17—C181.395 (5)
Fe1—C21.798 (4)C8—H8A0.9700
Fe1—S12.2485 (11)C8—H8B0.9700
Fe1—S22.2487 (11)C9—C101.506 (4)
Fe1—Fe22.5013 (12)C9—H9A0.9700
Fe2—C51.775 (4)C9—H9B0.9700
Fe2—C41.787 (4)C10—C111.386 (4)
Fe2—C61.794 (4)C7—H7A0.9700
Fe2—S12.2465 (11)C7—H7B0.9700
Fe2—S22.2534 (11)C16—C131.474 (4)
S1—C71.815 (3)C11—C121.380 (4)
S2—C81.823 (3)C11—H11A0.9300
S3—C171.722 (4)C13—C121.378 (4)
S3—C161.747 (3)C12—H12A0.9300
N2—C161.285 (4)O1—C11.143 (4)
N2—C221.393 (4)C20—C211.370 (5)
C22—C211.379 (5)C20—C191.372 (5)
C22—C171.385 (4)C20—H20A0.9300
N1—C81.445 (3)C18—C191.352 (6)
N1—C71.448 (4)C18—H18A0.9300
N1—C91.472 (3)C19—H19A0.9300
O2—C21.139 (4)C21—H21A0.9300
C15—C141.375 (4)O6—C41.137 (4)
C15—C101.378 (4)O5—C61.137 (4)
C15—H15A0.9300O4—C31.138 (4)
C14—C131.388 (4)O3—C51.143 (4)
C1—Fe1—C3100.12 (16)C18—C17—S3129.6 (3)
C1—Fe1—C299.64 (15)N1—C8—S2115.84 (19)
C3—Fe1—C291.32 (15)N1—C8—H8A108.3
C1—Fe1—S1105.63 (11)S2—C8—H8A108.3
C3—Fe1—S1154.05 (13)N1—C8—H8B108.3
C2—Fe1—S187.60 (11)S2—C8—H8B108.3
C1—Fe1—S298.12 (11)H8A—C8—H8B107.4
C3—Fe1—S288.79 (12)N1—C9—C10114.4 (2)
C2—Fe1—S2161.94 (11)N1—C9—H9A108.7
S1—Fe1—S284.46 (4)C10—C9—H9A108.7
C1—Fe1—Fe2147.16 (10)N1—C9—H9B108.7
C3—Fe1—Fe299.56 (12)C10—C9—H9B108.7
C2—Fe1—Fe2105.92 (11)H9A—C9—H9B107.6
S1—Fe1—Fe256.15 (3)O2—C2—Fe1178.9 (3)
S2—Fe1—Fe256.34 (3)C15—C10—C11118.6 (3)
C5—Fe2—C489.06 (17)C15—C10—C9120.2 (3)
C5—Fe2—C699.18 (18)C11—C10—C9121.2 (3)
C4—Fe2—C6100.78 (15)N1—C7—S1116.7 (2)
C5—Fe2—S1157.95 (13)N1—C7—H7A108.1
C4—Fe2—S188.16 (11)S1—C7—H7A108.1
C6—Fe2—S1102.83 (13)N1—C7—H7B108.1
C5—Fe2—S289.58 (13)S1—C7—H7B108.1
C4—Fe2—S2156.54 (12)H7A—C7—H7B107.3
C6—Fe2—S2102.55 (11)N2—C16—C13124.1 (3)
S1—Fe2—S284.40 (5)N2—C16—S3115.5 (2)
C5—Fe2—Fe1103.08 (14)C13—C16—S3120.4 (2)
C4—Fe2—Fe1101.48 (11)C12—C11—C10119.8 (3)
C6—Fe2—Fe1148.57 (11)C12—C11—H11A120.1
S1—Fe2—Fe156.23 (3)C10—C11—H11A120.1
S2—Fe2—Fe156.16 (3)C12—C13—C14117.9 (3)
C7—S1—Fe2110.81 (10)C12—C13—C16122.2 (3)
C7—S1—Fe1113.84 (10)C14—C13—C16120.0 (3)
Fe2—S1—Fe167.62 (3)C13—C12—C11121.9 (3)
C8—S2—Fe1109.38 (11)C13—C12—H12A119.1
C8—S2—Fe2111.55 (10)C11—C12—H12A119.1
Fe1—S2—Fe267.50 (4)C21—C20—C19120.3 (4)
C17—S3—C1689.05 (16)C21—C20—H20A119.9
C16—N2—C22110.9 (3)C19—C20—H20A119.9
C21—C22—C17119.6 (3)O1—C1—Fe1176.9 (3)
C21—C22—N2125.6 (3)C19—C18—C17118.2 (4)
C17—C22—N2114.7 (3)C19—C18—H18A120.9
C8—N1—C7111.8 (2)C17—C18—H18A120.9
C8—N1—C9110.6 (2)C18—C19—C20121.9 (4)
C7—N1—C9109.4 (2)C18—C19—H19A119.0
C14—C15—C10121.3 (3)C20—C19—H19A119.0
C14—C15—H15A119.3C20—C21—C22119.4 (4)
C10—C15—H15A119.3C20—C21—H21A120.3
C15—C14—C13120.5 (3)C22—C21—H21A120.3
C15—C14—H14A119.7O5—C6—Fe2179.3 (3)
C13—C14—H14A119.7O3—C5—Fe2177.4 (4)
C22—C17—C18120.6 (4)O6—C4—Fe2178.2 (3)
C22—C17—S3109.8 (3)O4—C3—Fe1179.8 (4)
C1—Fe1—Fe2—C5124.5 (2)C6—Fe2—S2—C851.71 (17)
C3—Fe1—Fe2—C51.57 (17)S1—Fe2—S2—C850.22 (11)
C2—Fe1—Fe2—C595.72 (16)Fe1—Fe2—S2—C8102.86 (12)
S1—Fe1—Fe2—C5171.62 (12)C5—Fe2—S2—Fe1106.11 (13)
S2—Fe1—Fe2—C580.50 (13)C4—Fe2—S2—Fe119.5 (3)
C1—Fe1—Fe2—C4143.7 (2)C6—Fe2—S2—Fe1154.58 (13)
C3—Fe1—Fe2—C490.15 (16)S1—Fe2—S2—Fe152.64 (4)
C2—Fe1—Fe2—C44.00 (16)C16—N2—C22—C21180.0 (3)
S1—Fe1—Fe2—C479.90 (12)C16—N2—C22—C170.1 (4)
S2—Fe1—Fe2—C4172.22 (12)C10—C15—C14—C131.0 (4)
C1—Fe1—Fe2—C69.4 (3)C21—C22—C17—C181.0 (5)
C3—Fe1—Fe2—C6135.5 (3)N2—C22—C17—C18178.9 (3)
C2—Fe1—Fe2—C6130.3 (3)C21—C22—C17—S3179.7 (3)
S1—Fe1—Fe2—C654.4 (2)N2—C22—C17—S30.4 (4)
S2—Fe1—Fe2—C653.5 (2)C16—S3—C17—C220.4 (3)
C1—Fe1—Fe2—S163.8 (2)C16—S3—C17—C18178.8 (3)
C3—Fe1—Fe2—S1170.05 (11)C7—N1—C8—S270.5 (3)
C2—Fe1—Fe2—S175.90 (11)C9—N1—C8—S2167.3 (2)
S2—Fe1—Fe2—S1107.88 (5)Fe1—S2—C8—N173.4 (2)
C1—Fe1—Fe2—S244.0 (2)Fe2—S2—C8—N10.7 (3)
C3—Fe1—Fe2—S282.07 (11)C8—N1—C9—C1064.8 (3)
C2—Fe1—Fe2—S2176.22 (11)C7—N1—C9—C10171.6 (2)
S1—Fe1—Fe2—S2107.88 (5)C14—C15—C10—C110.3 (4)
C5—Fe2—S1—C7130.3 (3)C14—C15—C10—C9175.7 (3)
C4—Fe2—S1—C7146.74 (16)N1—C9—C10—C15146.5 (3)
C6—Fe2—S1—C746.09 (15)N1—C9—C10—C1137.6 (4)
S2—Fe2—S1—C755.54 (11)C8—N1—C7—S163.7 (3)
Fe1—Fe2—S1—C7108.12 (11)C9—N1—C7—S1173.4 (2)
C5—Fe2—S1—Fe122.2 (3)Fe2—S1—C7—N111.1 (2)
C4—Fe2—S1—Fe1105.14 (12)Fe1—S1—C7—N162.8 (2)
C6—Fe2—S1—Fe1154.22 (11)C22—N2—C16—C13178.7 (3)
S2—Fe2—S1—Fe152.59 (3)C22—N2—C16—S30.3 (3)
C1—Fe1—S1—C745.86 (16)C17—S3—C16—N20.4 (3)
C3—Fe1—S1—C7126.7 (3)C17—S3—C16—C13178.6 (3)
C2—Fe1—S1—C7145.20 (15)C15—C10—C11—C120.7 (4)
S2—Fe1—S1—C751.04 (12)C9—C10—C11—C12176.7 (3)
Fe2—Fe1—S1—C7103.78 (12)C15—C14—C13—C120.6 (4)
C1—Fe1—S1—Fe2149.64 (11)C15—C14—C13—C16179.3 (3)
C3—Fe1—S1—Fe222.9 (3)N2—C16—C13—C12177.5 (3)
C2—Fe1—S1—Fe2111.02 (11)S3—C16—C13—C123.6 (4)
S2—Fe1—S1—Fe252.74 (3)N2—C16—C13—C142.5 (5)
C1—Fe1—S2—C851.61 (15)S3—C16—C13—C14176.3 (2)
C3—Fe1—S2—C8151.65 (15)C14—C13—C12—C110.4 (5)
C2—Fe1—S2—C8117.8 (3)C16—C13—C12—C11179.7 (3)
S1—Fe1—S2—C853.44 (11)C10—C11—C12—C131.1 (5)
Fe2—Fe1—S2—C8106.01 (11)C22—C17—C18—C190.4 (5)
C1—Fe1—S2—Fe2157.61 (11)S3—C17—C18—C19179.6 (3)
C3—Fe1—S2—Fe2102.34 (12)C17—C18—C19—C200.2 (6)
C2—Fe1—S2—Fe211.8 (3)C21—C20—C19—C180.6 (6)
S1—Fe1—S2—Fe252.57 (3)C19—C20—C21—C221.2 (6)
C5—Fe2—S2—C8151.02 (17)C17—C22—C21—C201.4 (5)
C4—Fe2—S2—C8122.3 (3)N2—C22—C21—C20178.6 (3)

Experimental details

Crystal data
Chemical formula[Fe2(C16H14N2S3)(CO)6]
Mr610.23
Crystal system, space groupOrthorhombic, P212121
Temperature (K)273
a, b, c (Å)6.651 (3), 14.208 (7), 25.854 (12)
V3)2443.2 (19)
Z4
Radiation typeMo Kα
µ (mm1)1.49
Crystal size (mm)0.25 × 0.08 × 0.07
Data collection
DiffractometerBruker SMART CCD area-detector
diffractometer
Absorption correctionMulti-scan
(SADABS; Bruker, 1997)
Tmin, Tmax0.332, 0.905
No. of measured, independent and
observed [I > 2σ(I)] reflections
11654, 3991, 3434
Rint0.030
(sin θ/λ)max1)0.583
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.027, 0.052, 0.98
No. of reflections3991
No. of parameters316
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.22, 0.16

Computer programs: SMART (Bruker, 1997), SAINT-Plus (Bruker, 2001), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), SHELXTL (Sheldrick, 2008).

Selected geometric parameters (Å, º) top
Fe1—S12.2485 (11)Fe2—S22.2534 (11)
Fe1—S22.2487 (11)N1—C81.445 (3)
Fe1—Fe22.5013 (12)N1—C71.448 (4)
Fe2—S12.2465 (11)N1—C91.472 (3)
C1—Fe1—Fe2147.16 (10)C8—N1—C9110.6 (2)
C6—Fe2—Fe1148.57 (11)C7—N1—C9109.4 (2)
C8—N1—C7111.8 (2)
 

Acknowledgements

The authors thank the Scientific and Technological Development Project of Jilin Province (grant No. 201101103) and the National Natural Science Foundation of China (grant No. 61106050) for financial support.

References

First citationBruker (1997). SMART and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationBruker (2001). SAINT-Plus. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationCammack, R. (1999). Nature (London), 297, 214–215.  Web of Science CrossRef Google Scholar
First citationEvans, D. J. & Pickett, C. J. (2003). Chem. Soc. Rev. 32, 268–275.  Web of Science CrossRef PubMed Google Scholar
First citationFelton, G. A. N., Mebi, C. A., Petro, B. J., Vannucci, A. K., Evans, D. H., Glass, R. S. & Lichtenberger, D. L. (2009). J. Organomet. Chem. 694, 2681–2699.  Web of Science CrossRef CAS Google Scholar
First citationFrey, M. (2002). ChemBioChem, 3, 152–160.  Web of Science CrossRef Google Scholar
First citationNicolet, Y., Lemon, B. J., Fontecilla-Camps, J. C. & Peters, J. W. (2000). Trends Biochem. Sci. 25, 138–143.  Web of Science CrossRef PubMed CAS Google Scholar
First citationNicolet, Y., Piras, C., Legrand, P., Hatchikian, C. E. & Fontecilla-Camps, J. C. (1999). Structure, 7, 13–23.  Web of Science CrossRef PubMed CAS Google Scholar
First citationPeters, J. W., Lanzilotta, W. N., Lemon, B. J. & Seefeldt, L. C. (1998). Science, 282, 1853–1858.  Web of Science CrossRef CAS PubMed Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationTard, C. & Pickett, C. J. (2009). Chem. Rev. 109, 2245–2274.  Web of Science CrossRef PubMed CAS Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds