organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Ethyl 2-amino-4,6-bis­­(4-fluoro­phen­yl)cyclo­hexa-1,3-diene-1-carboxyl­ate

aDepartment of Chemistry, Keene State College, 229 Main Street, Keene, NH 03435-2001, USA, bDepartment of Studies in Chemistry, Mangalore University, Mangalagangotri 574 199, India, and cDepartment of Studies in Chemistry, University of Mysore, Manasagangotri, Mysore 570 006, India
*Correspondence e-mail: jjasinski@keene.edu

(Received 30 December 2011; accepted 27 January 2012; online 4 February 2012)

In the title compound, C21H19F2NO2, the cyclo­hexa-1,3-diene ring is in a distorted envelope conformation. The dihedral angles between the mean planes of the diene moiety and the two fluoro­phenyl rings are 42.8 (2) and 75.0 (5)°. The two fluoro­phenyl rings are inclined to one another by 87.0 (3)°. In the crystal, intra­molecular N—H⋯O hydrogen bonds and weak N—H⋯O and N—H⋯F inter­molecular inter­actions are observed forming an infinite two-dimensional network along [011].

Related literature

For background to the applications of cyclo­hexenones, see: Padmavathi et al. (1999[Padmavathi, V., Sharmila, K., Padmaja, A. & Bhaskar Reddy, D. (1999). Heterocycl. Commun. 5, 451-456.], 2000[Padmavathi, V., Mohana Reddy, B. J., Balaiah, A., Venugopal Reddy, K. & Bhaskar Reddy, D. (2000). Molecules, 5, 1281-1286.]); Padmavathi, Sharmila, Balaiah et al. (2001[Padmavathi, V., Sharmila, K., Balaiah, A., Somashekara Reddy, A. & Bhaskar Reddy, D. (2001). Synth. Commun. 31, 2119-2126.]); Padmavathi, Sharmila, Somashekara Reddy & Bhaskar Reddy (2001[Padmavathi, V., Sharmila, K., Somashekara Reddy, A. & Bhaskar Reddy, D. (2001). Indian. J. Chem. Sect. B, 40, 11-14.]). For the structure of the precursor of the title compound, see: Dutkiewicz et al. (2011[Dutkiewicz, G., Narayana, B., Veena, K., Yathirajan, H. S. & Kubicki, M. (2011). Acta Cryst. E67, o336.]). For various derivatives of 4,4-difluoro­chalcone, see: Fun et al. (2010a[Fun, H.-K., Hemamalini, M., Samshuddin, S., Narayana, B. & Yathirajan, H. S. (2010a). Acta Cryst. E66, o582-o583.],b[Fun, H.-K., Hemamalini, M., Samshuddin, S., Narayana, B. & Yathirajan, H. S. (2010b). Acta Cryst. E66, o864-o865.]); Jasinski et al. (2010a[Jasinski, J. P., Guild, C. J., Samshuddin, S., Narayana, B. & Yathirajan, H. S. (2010a). Acta Cryst. E66, o1948-o1949.],b[Jasinski, J. P., Guild, C. J., Samshuddin, S., Narayana, B. & Yathirajan, H. S. (2010b). Acta Cryst. E66, o2018.]). For puckering parameters, see: Cremer & Pople (1975[Cremer, D. & Pople, J. A. (1975). J. Am. Chem. Soc. 97, 1354-1358.]).

[Scheme 1]

Experimental

Crystal data
  • C21H19F2NO2

  • Mr = 355.37

  • Orthorhombic, P b c n

  • a = 18.0199 (5) Å

  • b = 9.6391 (2) Å

  • c = 21.0754 (7) Å

  • V = 3660.70 (18) Å3

  • Z = 8

  • Cu Kα radiation

  • μ = 0.80 mm−1

  • T = 173 K

  • 0.20 × 0.14 × 0.12 mm

Data collection
  • Oxford Xcalibur Eos Gemini diffractometer

  • Absorption correction: multi-scan (CrysAlis RED; Oxford Diffraction, 2010[Oxford Diffraction (2010). CrysAlis PRO and CrysAlis RED. Oxford Diffraction Ltd, Yarnton, Oxfordshire, England.]) Tmin = 0.856, Tmax = 0.910

  • 10556 measured reflections

  • 3461 independent reflections

  • 2612 reflections with I > 2σ(I)

  • Rint = 0.017

Refinement
  • R[F2 > 2σ(F2)] = 0.055

  • wR(F2) = 0.180

  • S = 1.04

  • 3461 reflections

  • 245 parameters

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.41 e Å−3

  • Δρmin = −0.21 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
N1—H1B⋯O2i 0.86 (3) 2.23 (3) 3.066 (2) 165 (2)
N1—H1A⋯O2 0.88 (2) 2.06 (2) 2.708 (2) 130.3 (19)
N1—H1A⋯F1ii 0.88 (2) 2.37 (2) 3.104 (2) 141.9 (19)
Symmetry codes: (i) [-x+{\script{3\over 2}}, y+{\script{1\over 2}}, z]; (ii) [x+{\script{1\over 2}}, -y+{\script{1\over 2}}, -z+1].

Data collection: CrysAlis PRO (Oxford Diffraction, 2010[Oxford Diffraction (2010). CrysAlis PRO and CrysAlis RED. Oxford Diffraction Ltd, Yarnton, Oxfordshire, England.]); cell refinement: CrysAlis PRO; data reduction: CrysAlis RED; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); software used to prepare material for publication: SHELXTL.

Supporting information


Comment top

Cyclohexenones are efficient synthons in building spiro compounds (Padmavathi, Sharmila, Somashekara Reddy & Bhaskar Reddy, 2001) or intermediates in the synthesis of benzisoxazoles or carbazole derivatives (Padmavathi et al., 1999, 2000; Padmavathi, Sharmila, Balaiah et al., 2001). The cyclohexenone derivative of 4,4-difluorochalcone reacts with ammonium acetate to yield the title compound (I). The crystal structure of (1RS,6SR)-ethyl 4,6-bis(4-fluorophenyl)-2-oxocyclohex-3-ene-1-carboxylate, which is the precursor of the title compound (I), has been reported (Dutkiewicz et al., 2011). In continuation of our work on the synthesis of various derivatives of 4,4-difluorochalcone (Fun et al., 2010a,b; Jasinski et al., 2010a,b), the title compound, (I), was synthesized and its crystal structure is reported here.

In the title compound, C21H19F2NO2, the 1,3-cyclohexadiene ring is in a distorted envelope conformation with Cremer & Pople puckering parameters Q, θ and ϕ of 0.389 (2) Å, 115.8 (3)° and 90.9 (4)° (Cremer & Pople, 1975). For an ideal envelope conformation θ and ϕ are 54.7° and 120°. The dihedral angles between the mean planes of the diene moiety (C4/C3/O2/O1) and the two fluorophenyl rings are 42.8 (2)° and 75.0 (5)°, respectively (Fig. 1). The two fluorophenyl rings are inclined to one another by 87.0 (3)°. Intramolecular N—H···O hydrogen bonds and weak N—H···O, N—H···F intermolecular interactions (Table 1) are observed forming an infinite 2-D network along [011] (Fig. 2).

Related literature top

For background to the applications of cyclohexenones, see: Padmavathi et al. (1999, 2000); Padmavathi, Sharmila, Balaiah et al. (2001); Padmavathi, Sharmila, Somashekara Reddy & Bhaskar Reddy (2001). For the structure of the precursor of the title compound, see: Dutkiewicz et al. (2011). For the various derivatives of 4,4-difluorochalcone, see: Fun et al. (2010a,b); Jasinski et al. (2010a,b). For puckering parameters, see: Cremer & Pople (1975).

Experimental top

A mixture of ethyl 4,6-bis(4-fluorophenyl)-2-oxocyclohex-3-ene-1-carboxylate (3.55 g, 0.01 mol) and ammonim acetate (0.77g, 0.01 mol) in 20 ml of ethanol was refluxed for 10 h. The reaction mixture was cooled and poured into 50 ml of ice-cold water. The precipitate was collected by filtration and purified by recrystallization from ethanol. Single crystals were grown from DMF by the slow evaporation method and the yield of the compound was 70%. (m.p. 428 K).

Refinement top

H1A and H1B were located by a difference map and refined isotropically. All of the remaining H atoms were placed in their calculated positions and then refined using the riding model with atom—H lengths of 0.95 Å (CH), 0.99 Å (CH2) or 0.98 Å (CH3). Isotropic displacement parameters for these atoms were set to 1.2 (CH, CH2) or 1.5 (CH3) times Ueq of the parent atom.

Computing details top

Data collection: CrysAlis PRO (Oxford Diffraction, 2010); cell refinement: CrysAlis PRO (Oxford Diffraction, 2010); data reduction: CrysAlis RED (Oxford Diffraction, 2010); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. Molecular structure of the title compound showing the atom labeling scheme and 50% probability displacement ellipsoids.
[Figure 2] Fig. 2. Packing diagram of the title compound viewed along the c axis. Dashed lines indicate N—H···O intramolecular hydrogen bonds and weak N—H···O, N—H···F intermolecular interactions forming an infinite 2-D network along [011]. Remaining H atoms have been removed for clarity.
Ethyl 2-amino-4,6-bis(4-fluorophenyl)cyclohexa-1,3-diene-1-carboxylate top
Crystal data top
C21H19F2NO2F(000) = 1488
Mr = 355.37Dx = 1.290 Mg m3
Orthorhombic, PbcnCu Kα radiation, λ = 1.54178 Å
Hall symbol: -P 2n 2abCell parameters from 4418 reflections
a = 18.0199 (5) Åθ = 3.2–71.3°
b = 9.6391 (2) ŵ = 0.80 mm1
c = 21.0754 (7) ÅT = 173 K
V = 3660.70 (18) Å3Block, yellow
Z = 80.20 × 0.14 × 0.12 mm
Data collection top
Oxford Xcalibur Eos Gemini
diffractometer
3461 independent reflections
Radiation source: Enhance (Cu) X-ray Source2612 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.017
Detector resolution: 16.1500 pixels mm-1θmax = 71.4°, θmin = 4.2°
ω scansh = 2116
Absorption correction: multi-scan
(CrysAlis RED; Oxford Diffraction, 2010)
k = 1111
Tmin = 0.856, Tmax = 0.910l = 2225
10556 measured reflections
Refinement top
Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.055H atoms treated by a mixture of independent and constrained refinement
wR(F2) = 0.180 w = 1/[σ2(Fo2) + (0.1072P)2 + 0.4506P]
where P = (Fo2 + 2Fc2)/3
S = 1.04(Δ/σ)max < 0.001
3461 reflectionsΔρmax = 0.41 e Å3
245 parametersΔρmin = 0.21 e Å3
0 restraintsExtinction correction: SHELXL97 (Sheldrick, 2008), Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
Primary atom site location: structure-invariant direct methodsExtinction coefficient: 0.0010 (2)
Crystal data top
C21H19F2NO2V = 3660.70 (18) Å3
Mr = 355.37Z = 8
Orthorhombic, PbcnCu Kα radiation
a = 18.0199 (5) ŵ = 0.80 mm1
b = 9.6391 (2) ÅT = 173 K
c = 21.0754 (7) Å0.20 × 0.14 × 0.12 mm
Data collection top
Oxford Xcalibur Eos Gemini
diffractometer
3461 independent reflections
Absorption correction: multi-scan
(CrysAlis RED; Oxford Diffraction, 2010)
2612 reflections with I > 2σ(I)
Tmin = 0.856, Tmax = 0.910Rint = 0.017
10556 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0550 restraints
wR(F2) = 0.180H atoms treated by a mixture of independent and constrained refinement
S = 1.04Δρmax = 0.41 e Å3
3461 reflectionsΔρmin = 0.21 e Å3
245 parameters
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R-factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
F10.28820 (7)0.39132 (16)0.58085 (8)0.0963 (5)
F20.66890 (12)0.94956 (19)0.80642 (12)0.1445 (8)
O10.57361 (8)0.00028 (13)0.57519 (7)0.0679 (4)
O20.66652 (8)0.05261 (14)0.50837 (8)0.0695 (4)
N10.72288 (11)0.3120 (2)0.51875 (9)0.0692 (5)
H1B0.7509 (15)0.380 (3)0.5083 (10)0.076 (7)*
H1A0.7197 (12)0.239 (2)0.4942 (11)0.066 (6)*
C10.49783 (15)0.1988 (2)0.57203 (16)0.0931 (8)
H1C0.48540.28320.54840.140*
H1D0.45450.13750.57340.140*
H1E0.51240.22350.61540.140*
C20.56045 (13)0.12602 (19)0.53997 (12)0.0746 (6)
H2A0.60540.18500.54010.089*
H2B0.54730.10430.49540.089*
C30.62737 (10)0.08577 (18)0.55369 (10)0.0578 (5)
C40.63143 (11)0.21328 (19)0.58891 (10)0.0572 (5)
C50.67799 (11)0.31852 (19)0.56986 (10)0.0572 (5)
C60.68054 (11)0.44920 (19)0.60540 (10)0.0609 (5)
H6A0.70400.52740.58670.073*
C70.65069 (11)0.4618 (2)0.66361 (10)0.0600 (5)
C80.61518 (13)0.3357 (2)0.69326 (10)0.0667 (5)
H8A0.57630.36680.72320.080*
H8B0.65320.28520.71810.080*
C90.58026 (11)0.23520 (19)0.64523 (10)0.0592 (5)
H9A0.57590.14350.66710.071*
C100.50212 (11)0.27746 (17)0.62632 (9)0.0559 (5)
C110.44170 (12)0.2002 (2)0.64594 (11)0.0684 (6)
H11A0.44990.11950.67090.082*
C120.37006 (13)0.2363 (2)0.63060 (12)0.0770 (6)
H12A0.32930.18130.64430.092*
C130.35890 (12)0.3530 (2)0.59515 (11)0.0690 (6)
C140.41611 (13)0.4322 (2)0.57387 (12)0.0748 (6)
H14A0.40700.51260.54900.090*
C150.48779 (12)0.3937 (2)0.58902 (11)0.0715 (6)
H15A0.52810.44760.57370.086*
C160.65610 (11)0.5913 (2)0.70079 (11)0.0648 (5)
C170.66870 (14)0.7180 (2)0.67350 (13)0.0781 (6)
H17A0.67530.72260.62880.094*
C180.67220 (15)0.8387 (3)0.70790 (17)0.0898 (8)
H18A0.67900.92560.68740.108*
C190.66577 (16)0.8309 (3)0.77206 (18)0.0979 (9)
C200.6589 (2)0.7078 (3)0.80307 (16)0.1065 (10)
H20A0.65800.70390.84810.128*
C210.65327 (18)0.5888 (3)0.76701 (13)0.0934 (8)
H21A0.64730.50230.78790.112*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
F10.0684 (8)0.0980 (10)0.1224 (13)0.0017 (7)0.0188 (8)0.0061 (8)
F20.1599 (17)0.0981 (12)0.175 (2)0.0024 (11)0.0216 (15)0.0716 (13)
O10.0700 (8)0.0498 (7)0.0838 (10)0.0096 (6)0.0083 (7)0.0045 (6)
O20.0641 (8)0.0553 (7)0.0891 (11)0.0019 (6)0.0118 (8)0.0099 (7)
N10.0711 (11)0.0588 (10)0.0776 (13)0.0125 (8)0.0186 (10)0.0101 (9)
C10.0954 (18)0.0609 (12)0.123 (2)0.0220 (12)0.0001 (16)0.0023 (13)
C20.0793 (14)0.0475 (10)0.0970 (17)0.0052 (9)0.0028 (12)0.0052 (10)
C30.0523 (9)0.0474 (9)0.0737 (13)0.0016 (7)0.0012 (10)0.0031 (8)
C40.0568 (10)0.0500 (9)0.0646 (12)0.0010 (8)0.0013 (9)0.0002 (8)
C50.0565 (10)0.0524 (9)0.0627 (12)0.0008 (8)0.0039 (9)0.0009 (8)
C60.0622 (11)0.0510 (9)0.0696 (13)0.0085 (8)0.0040 (10)0.0006 (8)
C70.0620 (11)0.0568 (10)0.0613 (12)0.0023 (8)0.0005 (9)0.0001 (8)
C80.0737 (13)0.0658 (11)0.0607 (12)0.0078 (9)0.0050 (10)0.0020 (9)
C90.0644 (11)0.0490 (9)0.0642 (12)0.0044 (8)0.0068 (9)0.0062 (8)
C100.0627 (11)0.0452 (8)0.0598 (11)0.0051 (8)0.0086 (9)0.0033 (7)
C110.0690 (12)0.0577 (11)0.0784 (14)0.0072 (9)0.0090 (11)0.0090 (9)
C120.0653 (12)0.0725 (13)0.0932 (17)0.0160 (10)0.0096 (12)0.0049 (12)
C130.0622 (12)0.0663 (12)0.0786 (14)0.0002 (9)0.0066 (11)0.0128 (10)
C140.0780 (14)0.0578 (11)0.0886 (16)0.0029 (10)0.0080 (12)0.0086 (10)
C150.0680 (13)0.0568 (11)0.0897 (16)0.0090 (9)0.0015 (11)0.0141 (10)
C160.0651 (11)0.0623 (11)0.0671 (13)0.0023 (9)0.0036 (10)0.0047 (9)
C170.0852 (15)0.0661 (13)0.0831 (16)0.0069 (10)0.0037 (12)0.0076 (11)
C180.0873 (17)0.0642 (13)0.118 (2)0.0003 (11)0.0098 (16)0.0136 (14)
C190.0881 (18)0.0780 (16)0.128 (3)0.0035 (13)0.0108 (16)0.0422 (16)
C200.129 (3)0.098 (2)0.092 (2)0.0000 (17)0.0041 (18)0.0281 (16)
C210.119 (2)0.0792 (15)0.0816 (18)0.0014 (14)0.0062 (15)0.0085 (13)
Geometric parameters (Å, º) top
F1—C131.360 (2)C8—H8B0.9900
F2—C191.355 (3)C9—C101.519 (3)
O1—C31.350 (2)C9—H9A1.0000
O1—C21.445 (2)C10—C111.382 (3)
O2—C31.230 (2)C10—C151.393 (3)
N1—C51.348 (3)C11—C121.375 (3)
N1—H1B0.86 (3)C11—H11A0.9500
N1—H1A0.88 (2)C12—C131.366 (3)
C1—C21.491 (3)C12—H12A0.9500
C1—H1C0.9800C13—C141.359 (3)
C1—H1D0.9800C14—C151.381 (3)
C1—H1E0.9800C14—H14A0.9500
C2—H2A0.9900C15—H15A0.9500
C2—H2B0.9900C16—C171.369 (3)
C3—C41.438 (3)C16—C211.397 (4)
C4—C51.376 (3)C17—C181.372 (3)
C4—C91.518 (3)C17—H17A0.9500
C5—C61.466 (3)C18—C191.359 (5)
C6—C71.345 (3)C18—H18A0.9500
C6—H6A0.9500C19—C201.360 (4)
C7—C161.478 (3)C20—C211.379 (4)
C7—C81.508 (3)C20—H20A0.9500
C8—C91.536 (3)C21—H21A0.9500
C8—H8A0.9900
C3—O1—C2117.35 (16)C4—C9—H9A106.6
C5—N1—H1B121.5 (15)C10—C9—H9A106.6
C5—N1—H1A118.0 (15)C8—C9—H9A106.6
H1B—N1—H1A120 (2)C11—C10—C15117.13 (19)
C2—C1—H1C109.5C11—C10—C9120.48 (17)
C2—C1—H1D109.5C15—C10—C9122.39 (17)
H1C—C1—H1D109.5C12—C11—C10122.20 (19)
C2—C1—H1E109.5C12—C11—H11A118.9
H1C—C1—H1E109.5C10—C11—H11A118.9
H1D—C1—H1E109.5C13—C12—C11118.4 (2)
O1—C2—C1106.7 (2)C13—C12—H12A120.8
O1—C2—H2A110.4C11—C12—H12A120.8
C1—C2—H2A110.4C14—C13—F1119.0 (2)
O1—C2—H2B110.4C14—C13—C12122.1 (2)
C1—C2—H2B110.4F1—C13—C12118.9 (2)
H2A—C2—H2B108.6C13—C14—C15118.8 (2)
O2—C3—O1120.91 (17)C13—C14—H14A120.6
O2—C3—C4126.45 (17)C15—C14—H14A120.6
O1—C3—C4112.64 (17)C14—C15—C10121.3 (2)
C5—C4—C3120.69 (18)C14—C15—H15A119.3
C5—C4—C9119.73 (17)C10—C15—H15A119.3
C3—C4—C9119.46 (16)C17—C16—C21116.2 (2)
N1—C5—C4124.37 (18)C17—C16—C7122.8 (2)
N1—C5—C6115.42 (17)C21—C16—C7120.8 (2)
C4—C5—C6120.21 (18)C16—C17—C18122.8 (3)
C7—C6—C5122.06 (17)C16—C17—H17A118.6
C7—C6—H6A119.0C18—C17—H17A118.6
C5—C6—H6A119.0C19—C18—C17118.3 (3)
C6—C7—C16122.23 (18)C19—C18—H18A120.8
C6—C7—C8118.36 (18)C17—C18—H18A120.8
C16—C7—C8119.27 (18)F2—C19—C18118.8 (3)
C7—C8—C9114.13 (17)F2—C19—C20118.9 (3)
C7—C8—H8A108.7C18—C19—C20122.3 (2)
C9—C8—H8A108.7C19—C20—C21117.9 (3)
C7—C8—H8B108.7C19—C20—H20A121.1
C9—C8—H8B108.7C21—C20—H20A121.1
H8A—C8—H8B107.6C20—C21—C16122.2 (3)
C4—C9—C10113.29 (17)C20—C21—H21A118.9
C4—C9—C8110.75 (16)C16—C21—H21A118.9
C10—C9—C8112.54 (17)
C3—O1—C2—C1178.43 (19)C8—C9—C10—C1570.1 (2)
C2—O1—C3—O24.5 (3)C15—C10—C11—C121.0 (3)
C2—O1—C3—C4175.00 (17)C9—C10—C11—C12179.0 (2)
O2—C3—C4—C55.9 (3)C10—C11—C12—C130.5 (4)
O1—C3—C4—C5173.59 (18)C11—C12—C13—C141.2 (4)
O2—C3—C4—C9177.93 (19)C11—C12—C13—F1178.6 (2)
O1—C3—C4—C92.6 (3)F1—C13—C14—C15179.4 (2)
C3—C4—C5—N10.6 (3)C12—C13—C14—C150.5 (4)
C9—C4—C5—N1176.69 (19)C13—C14—C15—C101.1 (4)
C3—C4—C5—C6178.74 (18)C11—C10—C15—C141.8 (3)
C9—C4—C5—C62.6 (3)C9—C10—C15—C14178.2 (2)
N1—C5—C6—C7166.7 (2)C6—C7—C16—C1722.1 (3)
C4—C5—C6—C714.0 (3)C8—C7—C16—C17162.2 (2)
C5—C6—C7—C16177.17 (19)C6—C7—C16—C21153.7 (2)
C5—C6—C7—C81.4 (3)C8—C7—C16—C2122.1 (3)
C6—C7—C8—C931.0 (3)C21—C16—C17—C185.4 (4)
C16—C7—C8—C9153.08 (18)C7—C16—C17—C18178.6 (2)
C5—C4—C9—C1096.8 (2)C16—C17—C18—C192.7 (4)
C3—C4—C9—C1079.4 (2)C17—C18—C19—F2179.8 (2)
C5—C4—C9—C830.7 (3)C17—C18—C19—C202.6 (5)
C3—C4—C9—C8153.10 (17)F2—C19—C20—C21177.8 (3)
C7—C8—C9—C443.9 (2)C18—C19—C20—C214.5 (5)
C7—C8—C9—C1084.0 (2)C19—C20—C21—C161.5 (5)
C4—C9—C10—C11123.5 (2)C17—C16—C21—C203.3 (4)
C8—C9—C10—C11109.9 (2)C7—C16—C21—C20179.4 (3)
C4—C9—C10—C1556.5 (2)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1B···O2i0.86 (3)2.23 (3)3.066 (2)165 (2)
N1—H1A···O20.88 (2)2.06 (2)2.708 (2)130.3 (19)
N1—H1A···F1ii0.88 (2)2.37 (2)3.104 (2)141.9 (19)
Symmetry codes: (i) x+3/2, y+1/2, z; (ii) x+1/2, y+1/2, z+1.

Experimental details

Crystal data
Chemical formulaC21H19F2NO2
Mr355.37
Crystal system, space groupOrthorhombic, Pbcn
Temperature (K)173
a, b, c (Å)18.0199 (5), 9.6391 (2), 21.0754 (7)
V3)3660.70 (18)
Z8
Radiation typeCu Kα
µ (mm1)0.80
Crystal size (mm)0.20 × 0.14 × 0.12
Data collection
DiffractometerOxford Xcalibur Eos Gemini
diffractometer
Absorption correctionMulti-scan
(CrysAlis RED; Oxford Diffraction, 2010)
Tmin, Tmax0.856, 0.910
No. of measured, independent and
observed [I > 2σ(I)] reflections
10556, 3461, 2612
Rint0.017
(sin θ/λ)max1)0.615
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.055, 0.180, 1.04
No. of reflections3461
No. of parameters245
H-atom treatmentH atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å3)0.41, 0.21

Computer programs: CrysAlis PRO (Oxford Diffraction, 2010), CrysAlis RED (Oxford Diffraction, 2010), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), SHELXTL (Sheldrick, 2008).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1B···O2i0.86 (3)2.23 (3)3.066 (2)165 (2)
N1—H1A···O20.88 (2)2.06 (2)2.708 (2)130.3 (19)
N1—H1A···F1ii0.88 (2)2.37 (2)3.104 (2)141.9 (19)
Symmetry codes: (i) x+3/2, y+1/2, z; (ii) x+1/2, y+1/2, z+1.
 

Acknowledgements

HSY thanks the University of Mysore for research facilities. JPJ acknowledges the NSF–MRI program (grant No. CHE1039027) for funds to purchase the X-ray diffractometer.

References

First citationCremer, D. & Pople, J. A. (1975). J. Am. Chem. Soc. 97, 1354–1358.  CrossRef CAS Web of Science Google Scholar
First citationDutkiewicz, G., Narayana, B., Veena, K., Yathirajan, H. S. & Kubicki, M. (2011). Acta Cryst. E67, o336.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationFun, H.-K., Hemamalini, M., Samshuddin, S., Narayana, B. & Yathirajan, H. S. (2010a). Acta Cryst. E66, o582–o583.  Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
First citationFun, H.-K., Hemamalini, M., Samshuddin, S., Narayana, B. & Yathirajan, H. S. (2010b). Acta Cryst. E66, o864–o865.  Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
First citationJasinski, J. P., Guild, C. J., Samshuddin, S., Narayana, B. & Yathirajan, H. S. (2010a). Acta Cryst. E66, o1948–o1949.  Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
First citationJasinski, J. P., Guild, C. J., Samshuddin, S., Narayana, B. & Yathirajan, H. S. (2010b). Acta Cryst. E66, o2018.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationOxford Diffraction (2010). CrysAlis PRO and CrysAlis RED. Oxford Diffraction Ltd, Yarnton, Oxfordshire, England.  Google Scholar
First citationPadmavathi, V., Mohana Reddy, B. J., Balaiah, A., Venugopal Reddy, K. & Bhaskar Reddy, D. (2000). Molecules, 5, 1281–1286.  Web of Science CrossRef CAS Google Scholar
First citationPadmavathi, V., Sharmila, K., Balaiah, A., Somashekara Reddy, A. & Bhaskar Reddy, D. (2001). Synth. Commun. 31, 2119–2126.  Web of Science CrossRef CAS Google Scholar
First citationPadmavathi, V., Sharmila, K., Padmaja, A. & Bhaskar Reddy, D. (1999). Heterocycl. Commun. 5, 451–456.  CrossRef CAS Google Scholar
First citationPadmavathi, V., Sharmila, K., Somashekara Reddy, A. & Bhaskar Reddy, D. (2001). Indian. J. Chem. Sect. B, 40, 11–14.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds